PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Metformin improves healthspan and lifespan in mice 
Nature communications  2013;4:2192.
Metformin is a drug commonly prescribed to treat patients with type 2 diabetes. Here we show that long-term treatment with metformin (0.1% w/w in diet) starting at middle age extends healthspan and lifespan in male mice, while a higher dose (1% w/w) was toxic. Treatment with metformin mimics some of the benefits of calorie restriction, such as improved physical performance, increased insulin sensitivity, and reduced LDL and cholesterol levels without a decrease in caloric intake. At a molecular level, metformin increases AMP-activated protein kinase activity and increases antioxidant protection, resulting in reductions in both oxidative damage accumulation and chronic inflammation. Our results indicate that these actions may contribute to the beneficial effects of metformin on healthspan and lifespan. These findings are in agreement with current epidemiological data and raise the possibility of metformin-based interventions to promote healthy aging.
doi:10.1038/ncomms3192
PMCID: PMC3736576  PMID: 23900241
3.  Cockayne syndrome group B protein prevents the accumulation of damaged mitochondria by promoting mitochondrial autophagy 
Cells from Cockayne syndrome patients and a mouse model of the disease show increased metabolism as a result of impaired autophagy-mediated removal of damaged mitochondria.
Cockayne syndrome (CS) is a devastating autosomal recessive disease characterized by neurodegeneration, cachexia, and accelerated aging. 80% of the cases are caused by mutations in the CS complementation group B (CSB) gene known to be involved in DNA repair and transcription. Recent evidence indicates that CSB is present in mitochondria, where it associates with mitochondrial DNA (mtDNA). We report an increase in metabolism in the CSBm/m mouse model and CSB-deficient cells. Mitochondrial content is increased in CSB-deficient cells, whereas autophagy is down-regulated, presumably as a result of defects in the recruitment of P62 and mitochondrial ubiquitination. CSB-deficient cells show increased free radical production and an accumulation of damaged mitochondria. Accordingly, treatment with the autophagic stimulators lithium chloride or rapamycin reverses the bioenergetic phenotype of CSB-deficient cells. Our data imply that CSB acts as an mtDNA damage sensor, inducing mitochondrial autophagy in response to stress, and that pharmacological modulators of autophagy are potential treatment options for this accelerated aging phenotype.
doi:10.1084/jem.20111721
PMCID: PMC3328359  PMID: 22473955
4.  The arcuate nucleus and NPY contribute to the antitumorigenic effect of calorie restriction 
Aging cell  2011;10(3):483-492.
Summary
Calorie restriction (CR) is known to have profound effects on tumor incidence. A typical consequence of CR is hunger, and we hypothesized that the neuroendocrine response to CR might in part mediate CR's antitumor effects. We tested CR under appetite suppression using two models: neuropeptide Y (NPY) knockout mice and monosodium glutamate (MSG)-injected mice. While CR was protective in control mice challenged with a two-stage skin carcinogenesis model, papilloma development was neither delayed nor reduced by CR in the MSG-treated and NPY knockout mice. Adiponectin levels were also not increased by CR in the appetite-suppressed mice. We propose that some of CR’s beneficial effects cannot be separated from those imposed on appetite, and that NPY neurons in the arcuate nucleus of the hypothalamus (ARC) are involved in the translation of reduced intake to downstream physiological and functional benefits.
doi:10.1111/j.1474-9726.2011.00693.x
PMCID: PMC3094497  PMID: 21385308
calorie restriction; hypothalamus; MSG; neuroendocrine; NPY; tumorigenesis
5.  SRT1720 improves survival and healthspan of obese mice 
Scientific Reports  2011;1:70.
Sirt1 is an NAD+-dependent deacetylase that extends lifespan in lower organisms and improves metabolism and delays the onset of age-related diseases in mammals. Here we show that SRT1720, a synthetic compound that was identified for its ability to activate Sirt1 in vitro, extends both mean and maximum lifespan of adult mice fed a high-fat diet. This lifespan extension is accompanied by health benefits including reduced liver steatosis, increased insulin sensitivity, enhanced locomotor activity and normalization of gene expression profiles and markers of inflammation and apoptosis, all in the absence of any observable toxicity. Using a conditional SIRT1 knockout mouse and specific gene knockdowns we show SRT1720 affects mitochondrial respiration in a Sirt1- and PGC-1α-dependent manner. These findings indicate that SRT1720 has long-term benefits and demonstrate for the first time the feasibility of designing novel molecules that are safe and effective in promoting longevity and preventing multiple age-related diseases in mammals.
doi:10.1038/srep00070
PMCID: PMC3216557  PMID: 22355589
6.  Dietary Interventions to Extend Life Span and Health Span Based on Calorie Restriction 
The societal impact of obesity, diabetes, and other metabolic disorders continues to rise despite increasing evidence of their negative long-term consequences on health span, longevity, and aging. Unfortunately, dietary management and exercise frequently fail as remedies, underscoring the need for the development of alternative interventions to successfully treat metabolic disorders and enhance life span and health span. Using calorie restriction (CR)—which is well known to improve both health and longevity in controlled studies—as their benchmark, gerontologists are coming closer to identifying dietary and pharmacological therapies that may be applicable to aging humans. This review covers some of the more promising interventions targeted to affect pathways implicated in the aging process as well as variations on classical CR that may be better suited to human adaptation.
doi:10.1093/gerona/glq042
PMCID: PMC2884086  PMID: 20371545
Aging intervention; Health span; Life span; Metformin; Resveratrol
7.  Chronic ingestion of 2-deoxy-D-glucose induces cardiac vacuolization and increases mortality in rats 
Toxicology and applied pharmacology  2009;243(3):332-339.
Calorie restriction (CR), the purposeful reduction of energy intake with maintenance of adequate micronutrient intake, is well known to extend the lifespan of laboratory animals. Compounds like 2-deoxy-D-glucose (2DG) that can recapitulate the metabolic effects of CR are of great interest for their potential to extend lifespan. 2DG treatment has been shown to have potential therapeutic benefits for treating cancer and seizures. 2DG has also recapitulated some hallmarks of the CR phenotype including reduced body temperature and circulating insulin in short-term rodent trials, but one chronic feeding study in rats found toxic effects. The present studies were performed to further explore the long-term effects of 2DG in vivo. First we demonstrate that 2DG increases mortality of male Fischer-344 rats. Increased incidence of pheochromocytoma in the adrenal medulla was also noted in the 2DG treated rats. We reconfirm the cardiotoxicity of 2DG in a 6-week follow-up study evaluating male Brown Norway rats and a natural form of 2DG in addition to again examining effects in Fischer-344 rats and the original synthetic 2DG. High levels of both 2DG sources reduced weight gain secondary to reduced food intake in both strains. Histopathological analysis of the hearts revealed increasing vacuolarization of cardiac myocytes with dose, and tissue staining revealed the vacuoles were free of both glycogen and lipid. We did, however, observe higher expression of both cathepsin D and LC3 in the hearts of 2DG-treated rats which indicates an increase in autophagic flux. Although a remarkable CR-like phenotype can be reproduced with 2DG treatment, the ultimate toxicity of 2DG seriously challenges 2DG as a potential CR mimetic in mammals and also raises concerns about other therapeutic applications of the compound.
doi:10.1016/j.taap.2009.11.025
PMCID: PMC2830378  PMID: 20026095
Deoxyglucose; Calorie restriction; Lifespan; Mortality; Cardiac vacuolarization
8.  NQR1 controls lifespan by regulating the promotion of respiratory metabolism in yeast 
Aging cell  2009;8(2):140-151.
Summary
The activity and expression of plasma membrane NADH coenzyme Q reductase is increased by calorie restriction (CR) in rodents. Although this effect is well established and is necessary for CR's ability to delay aging, the mechanism is unknown. Here we show that the Saccharomyces cerevisiae homolog, NQR1, resides at the plasma membrane and when overexpressed extends both replicative and chronological lifespan. We show that NQR1 extends replicative lifespan in a SIR2-dependent manner by shifting cells towards respiratory metabolism. Chronological lifespan extension, in contrast, occurs via a SIR2-independent decrease in ethanol production. We conclude that NQR1 is a key mediator of lifespan extension by CR through its effects on yeast metabolism and discuss how these findings could suggest a function for this protein in lifespan extension in mammals.
doi:10.1111/j.1474-9726.2009.00461.x
PMCID: PMC2699585  PMID: 19239415
Plasma membrane; coenzyme Q reductase; NQR1; coenzyme Q; replicative lifespan; chronological lifespan; dietary restriction
9.  Hungry for Life: How the arcuate nucleus and neuropeptide Y may play a critical role in mediating the benefits of calorie restriction 
Laboratory studies consistently demonstrate extended lifespan in animals on calorie restriction (CR), where total caloric intake is reduced by 10–40% but adequate nutrition is otherwise maintained. CR has been further shown to delay the onset and severity of chronic diseases associated with aging such as cancer, and to extend the functional health span of important functions including cognition. Less understood are the underlying mechanisms through which CR might act to induce such alterations. One theory postulates that CR’s beneficial effects are intimately tied to the neuroendocrine response to low energy availability, of which the arcuate nucleus in the hypothalamus plays a pivotal role. Neuropeptide Y (NPY), a neurotransmitter in the front line of the arcuate response to low energy availability, is the primary hunger signal affected by CR and therefore may be a critical mechanism for lifespan extension.
doi:10.1016/j.mce.2008.10.044
PMCID: PMC2668104  PMID: 19041366
NPY; Calorie restriction; Lifespan; Appetite; Hypothalamus; Aging
10.  Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending lifespan 
Cell metabolism  2008;8(2):157-168.
SUMMARY
A small molecule that safely mimics the ability of dietary restriction (DR) to delay age-related diseases in laboratory animals is greatly sought after. We and others have shown that resveratrol mimics effects of DR in lower organisms. In mice, we find that resveratrol induces gene expression patterns in multiple tissues that parallel those induced by DR and every-other-day feeding. Moreover, resveratrol-fed elderly mice show a marked reduction in signs of aging including reduced albuminuria, decreased inflammation and apoptosis in the vascular endothelium, increased aortic elasticity, greater motor coordination, reduced cataract formation, and preserved bone mineral density. However, mice fed a standard diet did not live longer when treated with resveratrol beginning at 12 months of age. Our findings indicate that resveratrol treatment has a range of beneficial effects in mice but does not increase the longevity of ad libitum-fed animals when started mid-life.
doi:10.1016/j.cmet.2008.06.011
PMCID: PMC2538685  PMID: 18599363

Results 1-10 (10)