PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Vapors Produced by Electronic Cigarettes and E-Juices with Flavorings Induce Toxicity, Oxidative Stress, and Inflammatory Response in Lung Epithelial Cells and in Mouse Lung 
PLoS ONE  2015;10(2):e0116732.
Oxidative stress and inflammatory response are the key events in the pathogenesis of chronic airway diseases. The consumption of electronic cigarettes (e-cigs) with a variety of e-liquids/e-juices is alarmingly increasing without the unrealized potential harmful health effects. We hypothesized that electronic nicotine delivery systems (ENDS)/e-cigs pose health concerns due to oxidative toxicity and inflammatory response in lung cells exposed to their aerosols. The aerosols produced by vaporizing ENDS e-liquids exhibit oxidant reactivity suggesting oxidants or reactive oxygen species (OX/ROS) may be inhaled directly into the lung during a “vaping” session. These OX/ROS are generated through activation of the heating element which is affected by heating element status (new versus used), and occurs during the process of e-liquid vaporization. Unvaporized e-liquids were oxidative in a manner dependent on flavor additives, while flavors containing sweet or fruit flavors were stronger oxidizers than tobacco flavors. In light of OX/ROS generated in ENDS e-liquids and aerosols, the effects of ENDS aerosols on tissues and cells of the lung were measured. Exposure of human airway epithelial cells (H292) in an air-liquid interface to ENDS aerosols from a popular device resulted in increased secretion of inflammatory cytokines, such as IL-6 and IL-8. Furthermore, human lung fibroblasts exhibited stress and morphological change in response to treatment with ENDS/e-liquids. These cells also secrete increased IL-8 in response to a cinnamon flavored e-liquid and are susceptible to loss of cell viability by ENDS e-liquids. Finally, exposure of wild type C57BL/6J mice to aerosols produced from a popular e-cig increase pro-inflammatory cytokines and diminished lung glutathione levels which are critical in maintaining cellular redox balance. Thus, exposure to e-cig aerosols/juices incurs measurable oxidative and inflammatory responses in lung cells and tissues that could lead to unrealized health consequences.
doi:10.1371/journal.pone.0116732
PMCID: PMC4319729  PMID: 25658421
2.  Impact of age on markers of HIV-1 disease 
Future virology  2013;8(1):81-101.
Aging is a complicated process characterized by a progressive loss of homeostasis, which results in an increased vulnerability to multiple diseases. HIV-1-infected patients demonstrate a premature aging phenotype and develop certain age-related diseases earlier in their lifespan than what is seen in the general population. Age-related comorbidities may include the development of bone disease, metabolic disorders, neurologic impairment and immunosenescence. Age also appears to have an effect on traditional markers of HIV-1 disease progression, including CD4+ T-cell count and viral load. These effects are not only a consequence of HIV-1 infection, but in many cases, are also linked to antiretroviral therapy. This review summarizes the complex interplay between HIV-1 infection and aging, and the impact that aging has on markers of HIV-1 disease.
doi:10.2217/fvl.12.127
PMCID: PMC3625689  PMID: 23596462
aging; comorbidities; disease progression; HIV-1; neurocognitive impairment
3.  Ku80 facilitates chromatin binding of the telomere binding protein, TRF2 
Cell Cycle  2010;9(18):3798-3806.
The Ku70/80 heterodimer is central to non-homologous end joining repair of DNA double-strand breaks and the Ku80 gene appears to be essential for human but not rodent cell survival. The Ku70/80 heterodimer is located at telomeres but its precise function in telomere maintenance is not known. In order to examine the role of Ku80 beyond DNA repair in more detail, we have taken a knockdown approach using a human fibroblast strain. Following targeted Ku80 knockdown, telomere defects are observed and the steady state levels of the TRF2 protein are reduced. Inhibitor studies indicate that this loss of TRF2 is mediated by the proteasome and degradation of TRF2 following Ku depletion appears to involve a decrease in chromatin binding of TRF2, suggesting that the Ku heterodimer enhances TRF2 chromatin association and that non-chromatin bound TRF2 is targeted to the proteasome.
doi:10.4161/cc.9.18.13129
PMCID: PMC3047804  PMID: 20890109
Ku80; TRF2; chromatin; telomere; fibroblast
4.  53BP1 contributes to a robust genomic stability in human fibroblasts 
Aging (Albany NY)  2011;3(9):836-845.
Faithful repair of damaged DNA is a crucial process in maintaining cell viability and function. A multitude of factors and pathways guides this process and includes repair proteins and cell cycle checkpoint factors. Differences in the maintenance of genomic processes are one feature that may contribute to species-specific differences in lifespan. We predicted that 53BP1, a key transducer of the DNA damage response and cell cycle checkpoint control, is highly involved in maintaining genomic stability and may function differently in cells from different species. We demonstrate a difference in the levels and recruitment of 53BP1 in mouse and human cells following DNA damage. In addition, we show that unresolved DNA damage persists more in mouse cells than in human cells, as evidenced by increased numbers of micronuclei. The difference in micronuclei seems to be related to the levels of 53BP1 present in cells. Finally, we present evidence that unresolved DNA damage correlates with species lifespan. Taken together, these studies suggest a link between recruitment of 53BP1, resolution of DNA damage, and increased species lifespan.
PMCID: PMC3227449  PMID: 21931182
53BP1; micronuclei; fibroblasts; mouse; human; stability; genome
5.  Long-Term IGF-I Exposure Decreases Autophagy and Cell Viability 
PLoS ONE  2010;5(9):e12592.
A reduction in IGF-I signaling has been found to increase lifespan in multiple organisms despite the fact that IGF-I is a trophic factor for many cell types and has been found to have protective effects against multiple forms of damage in acute settings. The increase in longevity seen in response to reduced IGF-I signaling suggests that there may be differences between the acute and chronic impact of IGF-I signaling. We have examined the possibility that long-term stimulation with IGF-I may have a negative impact at the cellular level using quiescent human fibroblasts. We find that fibroblast cells exposed to IGF-I for 14 days have reduced long-term viability as judged by colony forming assays, which is accompanied by an accumulation of senescent cells. In addition we observe an accumulation of cells with depolarized mitochondria and a reduction in autophagy in the long-term IGF-I treated cultures. An examination of mice with reduced IGF-I levels reveals evidence of enhanced autophagy and fibroblast cells derived from these mice have a larger mitochondrial mass relative to controls indicating that changes in mitochondrial turnover occurs in animals with reduced IGF-I. The results indicate that chronic IGF-I stimulation leads to mitochondrial dysfunction and reduced cell viability.
doi:10.1371/journal.pone.0012592
PMCID: PMC2935370  PMID: 20830296

Results 1-5 (5)