Search tips
Search criteria

Results 1-14 (14)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
author:("Garg, nyha")
1.  Mode of Action and Structure-Activity Relationship Studies of Geobacillin I 
The Journal of antibiotics  2013;67(1):133-136.
PMCID: PMC4004768  PMID: 24169799
lanthionine; lantibiotics/membrane disruption; mode of action; nisin; lipid II
2.  Neuronal nitric oxide synthase is phosphorylated in response to insulin stimulation in skeletal muscle 
Type 2 Diabetes (T2DM) is the seventh leading cause of death in the United States, and is quickly becoming a global pandemic. T2DM results from reduced insulin sensitivity coupled with a relative failure of insulin secretion. Reduced insulin sensitivity has been associated with reduced nitric oxide synthase (NOS) activity and impaired glucose uptake in T2DM skeletal muscle. Upon insulin stimulation, NO synthesis increases in normal adult skeletal muscle, whereas no such increase is observed in T2DM adults. Endothelial NOS is activated by phosphorylation in the C-terminal tail in response to insulin. Neuronal NOS (nNOS), the primary NOS isoform in skeletal muscle, contains a homologous phosphorylation site, raising the possibility that nNOS, too, may undergo an activating phosphorylation event upon insulin treatment. Yet it remains unknown if or how nNOS is regulated by insulin in skeletal muscle. Data shown herein indicate that nNOS is phosphorylated in response to insulin in skeletal muscle and that this phosphorylation event occurs rapidly in C2C12 myotubes, resulting in increased NO production. In vivo phosphorylation of nNOS was also observed in response to insulin in mouse skeletal muscle. These results indicate, for the first time, that nNOS is phosphorylated in skeletal muscle in response to insulin and in association with increased NO production.
PMCID: PMC3703775  PMID: 23680665
Nitric oxide synthase; Type 2 Diabetes (T2DM); insulin signaling; myotubes; skeletal muscle
4.  Chemical Rescue and Inhibition Studies to Determine the Role of Arg301 in Phosphite Dehydrogenase 
PLoS ONE  2014;9(1):e87134.
Phosphite dehydrogenase (PTDH) catalyzes the NAD+-dependent oxidation of phosphite to phosphate. This reaction requires the deprotonation of a water nucleophile for attack on phosphite. A crystal structure was recently solved that identified Arg301 as a potential base given its proximity and orientation to the substrates and a water molecule within the active site. Mutants of this residue showed its importance for efficient catalysis, with about a 100-fold loss in kcat and substantially increased Km,phosphite for the Ala mutant (R301A). The 2.35 Å resolution crystal structure of the R301A mutant with NAD+ bound shows that removal of the guanidine group renders the active site solvent exposed, suggesting the possibility of chemical rescue of activity. We show that the catalytic activity of this mutant is restored to near wild-type levels by the addition of exogenous guanidinium analogues; Brønsted analysis of the rates of chemical rescue suggests that protonation of the rescue reagent is complete in the transition state of the rate-limiting step. Kinetic isotope effects on the reaction in the presence of rescue agents show that hydride transfer remains at least partially rate-limiting, and inhibition experiments show that Ki of sulfite with R301A is ∼400-fold increased compared to the parent enzyme, similar to the increase in Km for phosphite in this mutant. The results of our experiments indicate that Arg301 plays an important role in phosphite binding as well as catalysis, but that it is not likely to act as an active site base.
PMCID: PMC3909101  PMID: 24498026
5.  High-throughput microRNA profiling of pediatric high-grade gliomas 
Neuro-Oncology  2013;16(2):228-240.
High-grade gliomas (HGGs) account for 15% of all pediatric brain tumors and are a leading cause of cancer-related mortality and morbidity. Pediatric HGGs (pHGGs) are histologically indistinguishable from their counterpart in adulthood. However, recent investigations indicate that differences occur at the molecular level, thus suggesting that the molecular path to gliomagenesis in childhood is distinct from that of adults. MicroRNAs (miRNAs) have been identified as key molecules in gene expression regulation, both in development and in cancer. miRNAs have been investigated in adult high-grade gliomas (aHGGs), but scant information is available for pHGGs.
We explored the differences in microRNAs between pHGG and aHGG, in both fresh-frozen and paraffin-embedded tissue, by high-throughput miRNA profiling. We also evaluated the biological effects of miR-17-92 cluster silencing on a pHGG cell line.
Comparison of miRNA expression patterns in formalin versus frozen specimens resulted in high correlation between both types of samples. The analysis of miRNA profiling revealed a specific microRNA pattern in pHGG with an overexpression and a proliferative role of the miR-17-92 cluster. Moreover, we highlighted a possible quenching function of miR-17-92 cluster on its target gene PTEN, together with an activation of tumorigenic signaling such as sonic hedgehog in pHGG.
Our results suggest that microRNA profiling represents a tool to distinguishing pediatric from adult HGG and that miR-17-92 cluster sustains pHGG.
PMCID: PMC3895388  PMID: 24305714
cancer; expression profiling; microRNA; pediatric gliomas
6.  microRNA-17-92 cluster is a direct Nanog target and controls neural stem cell through Trp53inp1 
The EMBO Journal  2013;32(21):2819-2832.
The transcription factor Nanog plays a critical role in the self-renewal of embryonic stem cells as well as in neural stem cells (NSCs). microRNAs (miRNAs) are also involved in stemness regulation. However, the miRNA network downstream of Nanog is still poorly understood. High-throughput screening of miRNA expression profiles in response to modulated levels of Nanog in postnatal NSCs identifies miR-17-92 cluster as a direct target of Nanog. Nanog controls miR-17-92 cluster by binding to the upstream regulatory region and maintaining high levels of transcription in NSCs, whereas Nanog/promoter association and cluster miRNAs expression are lost alongside differentiation. The two miR-17 family members of miR-17-92 cluster, namely miR-17 and miR-20a, target Trp53inp1, a downstream component of p53 pathway. To support a functional role, the presence of miR-17/20a or the loss of Trp53inp1 is required for the Nanog-induced enhancement of self-renewal of NSCs. We unveil an arm of the Nanog/p53 pathway, which regulates stemness in postnatal NSCs, wherein Nanog counteracts p53 signals through miR-17/20a-mediated repression of Trp53inp1.
microRNA-17-92 cluster is a direct Nanog target and controls neural stem cell through Trp53inp1
Direct control of the miRNA-17/92 cluster enables Nanog to restrain p53 activity and thus to maintain pluripotency in neural stem cells.
PMCID: PMC3817465  PMID: 24076654
microRNA; miR-17-92 cluster; Nanog; neural stem cells; Trp53inp1
8.  Deficiency of Insulin-Like Growth Factor-1 Receptor Confers Resistance to Oxidative Stress in C2C12 Myoblasts 
PLoS ONE  2013;8(5):e63838.
IGF-1 receptor (IGF-1R) signaling regulates cell growth, transformation and survival. Haploinsufficiency of the IGF-1R is reported to paradoxically confer resistance to oxidative stress in vivo and in cells cultured from Igf1r+/− mice. In order to determine whether IGF-1R deficiency directly confers resistance to oxidative stress in specific cell types, an siRNA-mediated approach was applied to reduce IGF-1R in C2C12 myoblasts, NIH3T3 fibroblasts and MC3T3-E1 osteoblasts. Treating the IGF-1R deficient myoblasts with H2O2 resulted in significantly higher phosphorylation of Akt as compared to cells having normal expression of IGF-1R. Similar results were obtained with UV treatment, another inducer of oxidative stress. This enhanced activation of Akt was associated with reduced level of cleaved caspase-3 and PARP. Moreover, in the IGF-1R knockdown myoblasts, phosphorylation of the Akt substrate Bad was enhanced after peroxide treatment. However, in NIH-3T3 fibroblasts and MC3T3-E1 osteoblasts, the loss of IGF-1R by siRNA directed knockdown was associated with reduced levels of phosphorylated Akt on treatment with H2O2 or UV as compared to control cells and these cells showed more apoptosis. These results suggest a novel mechanism of cell type specific differential regulation of resistance to oxidative stress induced apoptosis by reduced levels of IGF-1R.
PMCID: PMC3651254  PMID: 23675509
9.  Oral rehabilitation of a Parkinson’s patient: A case report 
Parkinson’s disease is an idiopathic disorder of the central nervous system, characterized by resting tremors, muscular rigidity, slow and decreased movements. Oral rehabilitation of these patients requires special care, especially in those cases where the patient’s socioeconomic status is not good and patient cannot come several times for fabrication of a complete denture. This clinical report presents a case of a Parkinson’s patient who was completely rehabilitated in 3 appointments using special techniques. Border molding, final impression and jaw relation procedures were done in one appointment by using a custom tray with detachable handles and occlusal rims.
PMCID: PMC3845922  PMID: 24303468
Parkinson’s disease; Tich buttons; Detachable handles and occlusal rims; Monoplane teeth
10.  Cloning, sequence analysis, expression of Cyathus bulleri laccase in Pichia pastoris and characterization of recombinant laccase 
BMC Biotechnology  2012;12:75.
Laccases are blue multi-copper oxidases and catalyze the oxidation of phenolic and non-phenolic compounds. There is considerable interest in using these enzymes for dye degradation as well as for synthesis of aromatic compounds. Laccases are produced at relatively low levels and, sometimes, as isozymes in the native fungi. The investigation of properties of individual enzymes therefore becomes difficult. The goal of this study was to over-produce a previously reported laccase from Cyathus bulleri using the well-established expression system of Pichia pastoris and examine and compare the properties of the recombinant enzyme with that of the native laccase.
In this study, complete cDNA encoding laccase (Lac) from white rot fungus Cyathus bulleri was amplified by RACE-PCR, cloned and expressed in the culture supernatant of Pichia pastoris under the control of the alcohol oxidase (AOX)1 promoter. The coding region consisted of 1,542 bp and encodes a protein of 513 amino acids with a signal peptide of 16 amino acids. The deduced amino acid sequence of the matured protein displayed high homology with laccases from Trametes versicolor and Coprinus cinereus. The sequence analysis indicated the presence of Glu 460 and Ser 113 and LEL tripeptide at the position known to influence redox potential of laccases placing this enzyme as a high redox enzyme. Addition of copper sulfate to the production medium enhanced the level of laccase by about 12-fold to a final activity of 7200 U L-1. The recombinant laccase (rLac) was purified by ~4-fold to a specific activity of ~85 U mg-1 protein. A detailed study of thermostability, chloride and solvent tolerance of the rLac indicated improvement in the first two properties when compared to the native laccase (nLac). Altered glycosylation pattern, identified by peptide mass finger printing, was proposed to contribute to altered properties of the rLac.
Laccase of C. bulleri was successfully produced extra-cellularly to a high level of 7200 U L-1 in P. pastoris under the control of the AOX1 promoter and purified by a simple three-step procedure to homogeneity. The kinetic parameters against ABTS, Guaiacol and Pyrogallol were similar with the nLac and the rLac. Tryptic finger print analysis of the nLac and the rLac indicated altered glycosylation patterns. Increased thermo-stability and salt tolerance of the rLac was attributed to this changed pattern of glycosylation.
PMCID: PMC3558336  PMID: 23092193
Cyathus bulleri; Heterologous laccase expression; Pichia pastoris; Recombinant laccase; Peptide mass fingerprinting
11.  High Fat Diet Induced Insulin Resistance and Glucose Intolerance is Gender-Specific in IGF-1R Heterozygous Mice 
Interactions between genes and environment play a critical role in the pathogenesis of Type 2 diabetes. Low birth weight, due to genetic and environmental variables affecting fetal growth, is associated with increased susceptibility to the development of type 2 diabetes and metabolic disorders in adulthood. Clinical studies have shown that polymorphisms in the Insulin-like growth factor 1 (IGF-1) gene or heterozygous mutations in IGF-1 and IGF-1 receptor (IGF-1R) genes, resulting in reduced IGF-1 action, are associated with low birth weight and post-natal growth. Mice lacking one of the IGF-1R alleles (Igf1r+/−) exhibit a 10% reduction in post-natal growth, and develop glucose intolerance and insulin resistance as they age. To investigate whether adverse environmental factors could accelerate the onset of the metabolic syndrome, we conducted a short duration intervention of high fat diet (HFD) feeding in male and female Igf1r+/− and wild-type (WT) control mice. The HFD resulted in insulin resistance, hyperglycemia, and impaired glucose tolerance in males of both genotypes whereas in females exacerbated diabetes was observed only in the Igf1r+/− genotype, thus suggesting a sexual dimorphism in the influence of obesity on the genetic predisposition to diabetes caused by reduced IGF-1 action.
PMCID: PMC3185216  PMID: 21910970
IGF-1; IGF-1R; Igf1r+/−; SGA; HFD; Type 2 diabetes
12.  Does Reduced IGF-1R Signaling in Igf1r+/− Mice Alter Aging? 
PLoS ONE  2011;6(11):e26891.
Mutations in insulin/IGF-1 signaling pathway have been shown to lead to increased longevity in various invertebrate models. Therefore, the effect of the haplo- insufficiency of the IGF-1 receptor (Igf1r+/−) on longevity/aging was evaluated in C57Bl/6 mice using rigorous criteria where lifespan and end-of-life pathology were measured under optimal husbandry conditions using large sample sizes. Igf1r+/− mice exhibited reductions in IGF-1 receptor levels and the activation of Akt by IGF-1, with no compensatory increases in serum IGF-1 or tissue IGF-1 mRNA levels, indicating that the Igf1r+/− mice show reduced IGF-1 signaling. Aged male, but not female Igf1r+/− mice were glucose intolerant, and both genders developed insulin resistance as they aged. Female, but not male Igf1r+/− mice survived longer than wild type mice after lethal paraquat and diquat exposure, and female Igf1r+/− mice also exhibited less diquat-induced liver damage. However, no significant difference between the lifespans of the male Igf1r+/− and wild type mice was observed; and the mean lifespan of the Igf1r+/− females was increased only slightly (less than 5%) compared to wild type mice. A comprehensive pathological analysis showed no significant difference in end-of-life pathological lesions between the Igf1r+/− and wild type mice. These data show that the Igf1r+/− mouse is not a model of increased longevity and delayed aging as predicted by invertebrate models with mutations in the insulin/IGF-1 signaling pathway.
PMCID: PMC3223158  PMID: 22132081
13.  Inhibition of the Growth of Plasmodium falciparum in Culture by Stearylamine-Phosphatidylcholine Liposomes 
We have examined the effect of stearylamine (SA) in liposomes on the viability of Plasmodium falciparum in culture by studying the inhibition of incorporation of [3H]-hypoxanthine in the nucleic acid of parasites. Stearylamine in liposomes significantly inhibits the growth of the parasites depending on the phospholipids composition. The maximum inhibition was observed when SA was delivered through Soya phosphatidylcholine (SPC) liposomes. The chain length of alkyl group and density of SA in liposomes play a significant role in inhibiting the growth of the parasites. Incorporation of either cholesterol or Distearylphosphatidylethanolamine−Methoxy-Polyethylene glycol-2000 (DSPE-mPEG-2000) in Soya phosphatidylcholine-stearylamine (SPC-SA) liposomes improves the efficacy. Intraerythrocytic entry of intact SPC-SA liposomes into infected erythrocytes was visualized using fluorescent microscopy. No hemolysis was observed in uninfected erythrocytes, and slight hemolysis was noted in infected erythrocytes at high concentrations of SPC-SA liposomes. Overall, our data suggested SA in SPC-liposomes might have potential application in malaria chemotherapy.
PMCID: PMC3135048  PMID: 21772979
14.  Production of Lantipeptides in Escherichia coli 
Lantipeptides are ribosomally synthesized and posttranslationally modified peptides containing thioether cross-links. We describe the preparation of seven different lantipeptides in Escherichia coli and demonstrate that this methodology can be used to incorporate nonproteinogenic amino acids.
PMCID: PMC3044485  PMID: 21114289

Results 1-14 (14)