Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity 
Nature  2009;458(7241):1056-1060.
AMP-activated protein kinase (AMPK) is a metabolic fuel gauge conserved along the evolutionary scale in eukaryotes that senses changes in the intracellular AMP/ATP ratio1. The interest in AMPK has recently been raised by evidence showing that AMPK plays an important role to explain the therapeutic benefits of metformin2, 3, thiazolidinediones4 and exercise5, which form the cornerstones of the clinical management of type 2 diabetes and associated metabolic disorders. In general, activation of AMPK acts to maintain cellular energy stores, switching on catabolic pathways that produce ATP, mostly by enhancing oxidative metabolism and mitochondrial biogenesis, while switching off anabolic pathways that consume ATP1. This regulation can take place acutely, through the regulation of fast post-translational events, but also by transcriptionally reprogramming the cell in order to meet energetic needs. Our study demonstrates that AMPK controls the expression of genes involved in energy metabolism in skeletal muscle by acting in coordination with another metabolic sensor, the NAD+-dependent type III deacetylase SIRT1. AMPK enhances SIRT1 activity by increasing cellular NAD+ levels, resulting in the deacetylation and modulation of the activity of downstream SIRT1 targets that include the peroxisome proliferator-activated receptor-γ coactivator 1α and the forkhead transcription factors FOXO1 and FOXO3a. The AMPK-induced SIRT1-mediated deacetylation of these targets explains many of the convergent biological effects of AMPK and SIRT1 on energy metabolism.
PMCID: PMC3616311  PMID: 19262508
AMPK; SIRT1; PGC-1α; energy expenditure; FOXO3a; FOXO1
2.  The influence of corticosteroids on the release of novel biomarkers in human endotoxemia 
Intensive Care Medicine  2007;34(3):518-522.
Sepsis intervention studies need better patient stratification methods, and one way to realize this is the introduction of stable biomarkers. A set of recently developed novel biomarkers, based upon precursor-fragments of short-lived hormones, was previously shown to be increased during sepsis. However, it is not known whether these biomarkers are influenced by sepsis intervention strategies. Therefore we investigated the markers in a model of human endotoxemia intervened by increasing doses of prednisolone.
Design and setting
Prospective, open-label study in a specialized clinical research unit of a university hospital.
Thirty-two healthy male volunteers.
Subjects received prednisolone orally at doses of 0, 3, 10 or 30 mg (n = 8 per group) at 2 h before intravenous injection of Escherichia coli lipopolysaccharide (LPS) (4 ng/kg). Blood samples were drawn during 24 h after LPS injection.
Measurements and results
LPS injection caused an increase in levels of midregional pro-adrenomedullin (MR-proADM), midregional pro-atrial natriuretic peptide (MR-proANP), C-terminal pro-arginine–vasopressin (CT-proAVP) and procalcitonin (PCT). Prednisolone caused a dose dependent inhibition of MR-proADM, MR-proANP and CT-proAVP levels.
These results show that a set of novel, highly stable sepsis biomarkers was increased during human endotoxemia and was dose-dependently inhibited by corticosteroid pre-treatment.
PMCID: PMC2244699  PMID: 18080111
Corticosteroids; Biological markers; Endotoxin; Sepsis
3.  Proteasome inhibition reduces superantigen-mediated T cell activation and the severity of psoriasis in a SCID-hu model 
There is increasing evidence that bacterial superantigens contribute to inflammation and T cell responses in psoriasis. Psoriatic inflammation entails a complex series of inductive and effector processes that require the regulated expression of various proinflammatory genes, many of which require NF-κB for maximal trans-activation. PS-519 is a potent and selective proteasome inhibitor based upon the naturally occurring compound lactacystin, which inhibits NF-κB activation by blocking the degradation of its inhibitory protein IκB. We report that proteasome inhibition by PS-519 reduces superantigen-mediated T cell–activation in vitro and in vivo. Proliferation was inhibited along with the expression of very early (CD69), early (CD25), and late T cell (HLA-DR) activation molecules. Moreover, expression of E-selectin ligands relevant to dermal T cell homing was reduced, as was E-selectin binding in vitro. Finally, PS-519 proved to be therapeutically effective in a SCID-hu xenogeneic psoriasis transplantation model. We conclude that inhibition of the proteasome, e.g., by PS-519, is a promising means to treat T cell–mediated disorders such as psoriasis.
PMCID: PMC150886  PMID: 11877475
5.  SRT1720 improves survival and healthspan of obese mice 
Scientific Reports  2011;1:70.
Sirt1 is an NAD+-dependent deacetylase that extends lifespan in lower organisms and improves metabolism and delays the onset of age-related diseases in mammals. Here we show that SRT1720, a synthetic compound that was identified for its ability to activate Sirt1 in vitro, extends both mean and maximum lifespan of adult mice fed a high-fat diet. This lifespan extension is accompanied by health benefits including reduced liver steatosis, increased insulin sensitivity, enhanced locomotor activity and normalization of gene expression profiles and markers of inflammation and apoptosis, all in the absence of any observable toxicity. Using a conditional SIRT1 knockout mouse and specific gene knockdowns we show SRT1720 affects mitochondrial respiration in a Sirt1- and PGC-1α-dependent manner. These findings indicate that SRT1720 has long-term benefits and demonstrate for the first time the feasibility of designing novel molecules that are safe and effective in promoting longevity and preventing multiple age-related diseases in mammals.
PMCID: PMC3216557  PMID: 22355589
6.  Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes 
Nature  2007;450(7170):712-716.
Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases of ageing such as type 2 diabetes1,2. SIRT1, an NAD+-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produce beneficial effects on glucose homeostasis and insulin sensitivity3–9. Resveratrol, a polyphenolic SIRT1 activator, mimics the anti-ageing effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance, increases mitochondrial content, and prolongs survival10–14. Here we describe the identification and characterization of small molecule activators of SIRT1 that are structurally unrelated to, and 1,000-fold more potent than, resveratrol. These compounds bind to the SIRT1 enzyme—peptide substrate complex at an allosteric site amino-terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates. In diet-induced obese and genetically obese mice, these compounds improve insulin sensitivity, lower plasma glucose, and increase mitochondrial capacity. In Zucker fa/fa rats, hyperinsulinaemic-euglycaemic clamp studies demonstrate that SIRT1 activators improve whole-body glucose homeostasis and insulin sensitivity in adipose tissue, skeletal muscle and liver. Thus, SIRT1 activation is a promising new therapeutic approach for treating diseases of ageing such as type 2 diabetes.
PMCID: PMC2753457  PMID: 18046409
7.  Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending lifespan 
Cell metabolism  2008;8(2):157-168.
A small molecule that safely mimics the ability of dietary restriction (DR) to delay age-related diseases in laboratory animals is greatly sought after. We and others have shown that resveratrol mimics effects of DR in lower organisms. In mice, we find that resveratrol induces gene expression patterns in multiple tissues that parallel those induced by DR and every-other-day feeding. Moreover, resveratrol-fed elderly mice show a marked reduction in signs of aging including reduced albuminuria, decreased inflammation and apoptosis in the vascular endothelium, increased aortic elasticity, greater motor coordination, reduced cataract formation, and preserved bone mineral density. However, mice fed a standard diet did not live longer when treated with resveratrol beginning at 12 months of age. Our findings indicate that resveratrol treatment has a range of beneficial effects in mice but does not increase the longevity of ad libitum-fed animals when started mid-life.
PMCID: PMC2538685  PMID: 18599363
8.  Small molecule activators of SIRT1 replicate signaling pathways triggered by calorie restriction in vivo 
BMC Systems Biology  2009;3:31.
Calorie restriction (CR) produces a number of health benefits and ameliorates diseases of aging such as type 2 diabetes. The components of the pathways downstream of CR may provide intervention points for developing therapeutics for treating diseases of aging. The NAD+-dependent protein deacetylase SIRT1 has been implicated as one of the key downstream regulators of CR in yeast, rodents, and humans. Small molecule activators of SIRT1 have been identified that exhibit efficacy in animal models of diseases typically associated with aging including type 2 diabetes. To identify molecular processes induced in the liver of mice treated with two structurally distinct SIRT1 activators, SIRT501 (formulated resveratrol) and SRT1720, for three days, we utilized a systems biology approach and applied Causal Network Modeling (CNM) on gene expression data to elucidate downstream effects of SIRT1 activation.
Here we demonstrate that SIRT1 activators recapitulate many of the molecular events downstream of CR in vivo, such as enhancing mitochondrial biogenesis, improving metabolic signaling pathways, and blunting pro-inflammatory pathways in mice fed a high fat, high calorie diet.
CNM of gene expression data from mice treated with SRT501 or SRT1720 in combination with supporting in vitro and in vivo data demonstrates that SRT501 and SRT1720 produce a signaling profile that mirrors CR, improves glucose and insulin homeostasis, and acts via SIRT1 activation in vivo. Taken together these results are encouraging regarding the use of small molecule activators of SIRT1 for therapeutic intervention into type 2 diabetes, a strategy which is currently being investigated in multiple clinical trials.
PMCID: PMC2660283  PMID: 19284563

Results 1-8 (8)