PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (65)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  Genetic Disruption of SOD1 Gene Causes Glucose Intolerance and Impairs β-Cell Function 
Diabetes  2013;62(12):4201-4207.
Oxidative stress has been associated with insulin resistance and type 2 diabetes. However, it is not clear whether oxidative damage is a cause or a consequence of the metabolic abnormalities present in diabetic subjects. The goal of this study was to determine whether inducing oxidative damage through genetic ablation of superoxide dismutase 1 (SOD1) leads to abnormalities in glucose homeostasis. We studied SOD1-null mice and wild-type (WT) littermates. Glucose tolerance was evaluated with intraperitoneal glucose tolerance tests. Peripheral and hepatic insulin sensitivity was quantitated with the euglycemic-hyperinsulinemic clamp. β-Cell function was determined with the hyperglycemic clamp and morphometric analysis of pancreatic islets. Genetic ablation of SOD1 caused glucose intolerance, which was associated with reduced in vivo β-cell insulin secretion and decreased β-cell volume. Peripheral and hepatic insulin sensitivity were not significantly altered in SOD1-null mice. High-fat diet caused glucose intolerance in WT mice but did not further worsen the glucose intolerance observed in standard chow–fed SOD1-null mice. Our findings suggest that oxidative stress per se does not play a major role in the pathogenesis of insulin resistance and demonstrate that oxidative stress caused by SOD1 ablation leads to glucose intolerance secondary to β-cell dysfunction.
doi:10.2337/db13-0314
PMCID: PMC3837066  PMID: 24009256
2.  The mechanisms of genome-wide target gene regulation by TCF7L2 in liver cells 
Nucleic Acids Research  2014;42(22):13646-13661.
In the liver Wnt-signaling contributes to the metabolic fate of hepatocytes, but the precise role of the TCF7L2 in this process is unknown. We employed a temporal RNA-Seq approach to examine gene expression 3–96 h following Tcf7l2 silencing in rat hepatoma cells, and combined this with ChIP-Seq to investigate mechanisms of target gene regulation by TCF7L2. Silencing Tcf7l2 led to a time-dependent appearance of 406 differentially expressed genes (DEGs), including key regulators of cellular growth and differentiation, and amino acid, lipid and glucose metabolism. Direct regulation of 149 DEGs was suggested by strong proximal TCF7L2 binding (peak proximity score > 10) and early mRNA expression changes (≤18 h). Indirect gene regulation by TCF7L2 likely occurred via alternate transcription factors, including Hnf4a, Foxo1, Cited2, Myc and Lef1, which were differentially expressed following Tcf7l2 knock-down. Tcf7l2-silencing enhanced the expression and chromatin occupancy of HNF4α, and co-siRNA experiments revealed that HNF4α was required for the regulation of a subset of metabolic genes by TCF7L2, particularly those involved in lipid and amino-acid metabolism. Our findings suggest TCF7L2 is an important regulator of the hepatic phenotype, and highlight novel mechanisms of gene regulation by TCF7L2 that involve interplay between multiple hepatic transcriptional pathways.
doi:10.1093/nar/gku1225
PMCID: PMC4267646  PMID: 25414334
3.  Prediction of Diabetes Based on Baseline Metabolic Characteristics in Individuals at High Risk 
Diabetes Care  2013;36(11):3607-3612.
OBJECTIVE
Individuals with impaired glucose tolerance (IGT) are at high risk for developing type 2 diabetes mellitus (T2DM). We examined which characteristics at baseline predicted the development of T2DM versus maintenance of IGT or conversion to normal glucose tolerance.
RESEARCH DESIGN AND METHODS
We studied 228 subjects at high risk with IGT who received treatment with placebo in ACT NOW and who underwent baseline anthropometric measures and oral glucose tolerance test (OGTT) at baseline and after a mean follow-up of 2.4 years.
RESULTS
In a univariate analysis, 45 of 228 (19.7%) IGT individuals developed diabetes. After adjusting for age, sex, and center, increased fasting plasma glucose, 2-h plasma glucose, ∆G0–120 during OGTT, HbA1c, adipocyte insulin resistance index, ln fasting plasma insulin, and ln ∆I0–120, as well as family history of diabetes and presence of metabolic syndrome, were associated with increased risk of diabetes. At baseline, higher insulin secretion (ln [∆I0–120/∆G0–120]) during the OGTT was associated with decreased risk of diabetes. Higher β-cell function (insulin secretion/insulin resistance or disposition index; ln [∆I0–120/∆G0–120 × Matsuda index of insulin sensitivity]; odds ratio 0.11; P < 0.0001) was the variable most closely associated with reduced risk of diabetes.
CONCLUSIONS
In a stepwise multiple-variable analysis, only HbA1c and β-cell function (ln insulin secretion/insulin resistance index) predicted the development of diabetes (r = 0.49; P < 0.0001).
doi:10.2337/dc13-0520
PMCID: PMC3816921  PMID: 24062330
4.  Prevention of Diabetes With Pioglitazone in ACT NOW 
Diabetes  2013;62(11):3920-3926.
We examined the metabolic characteristics that attend the development of type 2 diabetes (T2DM) in 441 impaired glucose tolerance (IGT) subjects who participated in the ACT NOW Study and had complete end-of-study metabolic measurements. Subjects were randomized to receive pioglitazone (PGZ; 45 mg/day) or placebo and were observed for a median of 2.4 years. Indices of insulin sensitivity (Matsuda index [MI]), insulin secretion (IS)/insulin resistance (IR; ΔI0–120/ΔG0–120, ΔIS rate [ISR]0–120/ΔG0–120), and β-cell function (ΔI/ΔG × MI and ΔISR/ΔG × MI) were calculated from plasma glucose, insulin, and C-peptide concentrations during oral glucose tolerance tests at baseline and study end. Diabetes developed in 45 placebo-treated vs. 15 PGZ-treated subjects (odds ratio [OR] 0.28 [95% CI 0.15–0.49]; P < 0.0001); 48% of PGZ-treated subjects reverted to normal glucose tolerance (NGT) versus 28% of placebo-treated subjects (P < 0.005). Higher final glucose tolerance status (NGT > IGT > T2DM) was associated with improvements in insulin sensitivity (OR 0.61 [95% CI 0.54–0.80]), IS (OR 0.61 [95% CI 0.50–0.75]), and β-cell function (ln IS/IR index and ln ISR/IR index) (OR 0.26 [95% CI 0.19–0.37]; all P < 0.0001). Of the factors measured, improved β-cell function was most closely associated with final glucose tolerance status.
doi:10.2337/db13-0265
PMCID: PMC3806596  PMID: 23863810
5.  Novel Hypothesis to Explain Why SGLT2 Inhibitors Inhibit Only 30–50% of Filtered Glucose Load in Humans 
Diabetes  2013;62(10):3324-3328.
Inhibitors of sodium-glucose cotransporter 2 (SGLT2) are a novel class of antidiabetes drugs, and members of this class are under various stages of clinical development for the management of type 2 diabetes mellitus (T2DM). It is widely accepted that SGLT2 is responsible for >80% of the reabsorption of the renal filtered glucose load. However, maximal doses of SGLT2 inhibitors fail to inhibit >50% of the filtered glucose load. Because the clinical efficacy of this group of drugs is entirely dependent on the amount of glucosuria produced, it is important to understand why SGLT2 inhibitors inhibit <50% of the filtered glucose load. In this Perspective, we provide a novel hypothesis that explains this apparent puzzle and discuss some of the clinical implications inherent in this hypothesis.
doi:10.2337/db13-0604
PMCID: PMC3781482  PMID: 24065789
6.  Characterization of Renal Glucose Reabsorption in Response to Dapagliflozin in Healthy Subjects and Subjects With Type 2 Diabetes 
Diabetes Care  2013;36(10):3169-3176.
OBJECTIVE
To examine the effect of dapagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, on the major components of renal glucose reabsorption (decreased maximum renal glucose reabsorptive capacity [TmG], increased splay, and reduced threshold), using the pancreatic/stepped hyperglycemic clamp (SHC) technique.
RESEARCH DESIGN AND METHODS
Subjects with type 2 diabetes (n = 12) and matched healthy subjects (n = 12) underwent pancreatic/SHC (plasma glucose range 5.5–30.5 mmol/L) at baseline and after 7 days of dapagliflozin treatment. A pharmacodynamic model was developed to describe the major components of renal glucose reabsorption for both groups and then used to estimate these parameters from individual glucose titration curves.
RESULTS
At baseline, type 2 diabetic subjects had elevated TmG, splay, and threshold compared with controls. Dapagliflozin treatment reduced the TmG and splay in both groups. However, the most significant effect of dapagliflozin was a reduction of the renal threshold for glucose excretion in type 2 diabetic and control subjects.
CONCLUSIONS
The SGLT2 inhibitor dapagliflozin improves glycemic control in diabetic patients by reducing the TmG and threshold at which glucose is excreted in the urine.
doi:10.2337/dc13-0387
PMCID: PMC3781504  PMID: 23735727
7.  Linkage of Type 2 Diabetes on Chromosome 9p24 in Mexican Americans: Additional Evidence from the Veterans Administration Genetic Epidemiology Study (VAGES) 
Human heredity  2013;76(1):36-46.
Objective
Type 2 diabetes (T2DM) is a complex metabolic disease and is more prevalent in certain ethnic groups such as the Mexican Americans. The goal of our study was to perform a genome-wide linkage analysis to localize T2DM susceptibility loci in Mexican Americans.
Methods
We used the phenotypic and genotypic data from 1,122 Mexican American individuals (307 families) who participated in the Veterans Administration Genetic Epidemiology Study (VAGES). Genome-wide linkage analysis was performed, using the variance components approach. Data from two additional Mexican American family studies, the San Antonio Family Heart Study (SAFHS) and the San Antonio Family Diabetes/Gallbladder Study (SAFDGS), were combined with the VAGES data to test for improved linkage evidence.
Results
After adjusting for covariate effects, T2DM was found to be under significant genetic influences (h2 = 0.62, P = 2.7 × 10−6). The strongest evidence for linkage of T2DM occurred between markers D9S1871 and D9S2169 on chromosome 9p24.2-p24.1 (LOD = 1.8). Given that we previously reported suggestive evidence for linkage of T2DM at this region in SAFDGS also, we found the significant and increased linkage evidence (LOD = 4.3, empirical P = 1.0 × 10−5, genome-wide P = 1.6 × 10−3) for T2DM at the same chromosomal region when we performed genome-wide linkage analysis of the VAGES data combined with SAFHS and SAFDGS data.
Conclusion
Significant T2DM linkage evidence was found on chromosome 9p24 in Mexican Americans. Importantly, the chromosomal region of interest in this study overlaps with several recent genome-wide association studies (GWASs) involving T2DM related traits. Given its overlap with such findings and our own initial T2DM association findings in the 9p24 chromosomal region, high throughput sequencing of the linked chromosomal region could identify the potential causal T2DM genes.
doi:10.1159/000354849
PMCID: PMC3919448  PMID: 24060607
Type 2 diabetes; Linkage; Chromosome 9p24; Mexican Americans; VAGES
8.  Genetic epidemiology of cardiometabolic risk ractors and their clustering patterns in Mexican American children and adolescents: The SAFARI Study 
Human genetics  2013;132(9):10.1007/s00439-013-1315-2.
Pediatric metabolic syndrome (MS) and its cardiometabolic components (MSCs) have become increasingly prevalent, yet little is known about the genetics underlying MS risk in children. We examined the prevalence and genetics of MS-related traits among 670 non-diabetic Mexican American (MA) children and adolescents, aged 6–17 years (49 % female), who were participants in the San Antonio Family Assessment of Metabolic Risk Indicators in Youth (SAFARI) study. These children are offspring or biological relatives of adult participants from three well-established Mexican American family studies in San Antonio, Texas, at increased risk of type 2 diabetes. MS was defined as ≥ 3 abnormalities among 6 MSC measures: waist circumference, systolic and/or diastolic blood pressure, fasting insulin, triglycerides, HDL-cholesterol, and fasting and/or 2-h OGTT glucose. Genetic analyses of MS, number of MSCs (MSC-N), MS factors, and bivariate MS traits were performed. Overweight/obesity (53 %), pre-diabetes (13 %), acanthosis nigricans (33 %), and MS (19 %) were strikingly prevalent, as were MS components, including abdominal adiposity (32 %) and low HDL-cholesterol (32 %). Factor analysis of MS traits yielded three constructs: adipo-insulin-lipid, blood pressure, and glucose factors, and their factor scores were highly heritable. MS itself exhibited 68 % heritability. MSC-N showed strong positive genetic correlations with obesity, insulin resistance, inflammation, and acanthosis nigricans, and negative genetic correlation with physical fitness. MS trait pairs exhibited strong genetic and/or environmental correlations. These findings highlight the complex genetic architecture of MS/MSCs in MA children, and underscore the need for early screening and intervention to prevent chronic sequelae in this vulnerable pediatric population.
doi:10.1007/s00439-013-1315-2
PMCID: PMC3845827  PMID: 23736306
9.  Mechanisms of Glucose Lowering of Dipeptidyl Peptidase-4 Inhibitor Sitagliptin When Used Alone or With Metformin in Type 2 Diabetes 
Diabetes Care  2013;36(9):2756-2762.
OBJECTIVE
To assess glucose-lowering mechanisms of sitagliptin (S), metformin (M), and the two combined (M+S).
RESEARCH DESIGN AND METHODS
We randomized 16 patients with type 2 diabetes mellitus (T2DM) to four 6-week treatments with placebo (P), M, S, and M+S. After each period, subjects received a 6-h meal tolerance test (MTT) with [14C]glucose to calculate glucose kinetics. Fasting plasma glucose (FPG), fasting plasma insulin, C-peptide (insulin secretory rate [ISR]), fasting plasma glucagon, and bioactive glucagon-like peptide (GLP-1) and gastrointestinal insulinotropic peptide (GIP) were measured.
RESULTS
FPG decreased from P, 160 ± 4 to M, 150 ± 4; S, 154 ± 4; and M+S, 125 ± 3 mg/dL. Mean post-MTT plasma glucose decreased from P, 207 ± 5 to M, 191 ± 4; S, 195 ± 4; and M+S, 161 ± 3 mg/dL (P < 0.01). The increase in mean post-MTT plasma insulin and in ISR was similar in P, M, and S and slightly greater in M+S. Fasting plasma glucagon was equal (∼65–75 pg/mL) with all treatments, but there was a significant drop during the initial 120 min with S 24% and M+S 34% (both P < 0.05) vs. P 17% and M 16%. Fasting and mean post-MTT plasma bioactive GLP-1 were higher (P < 0.01) after S and M+S vs. M and P. Basal endogenous glucose production (EGP) fell from P 2.0 ± 0.1 to S 1.8 ± 0.1 mg/kg ⋅ min, M 1.8 ± 0.2 mg/kg ⋅ min (both P < 0.05 vs. P), and M+S 1.5 ± 0.1 mg/kg ⋅ min (P < 0.01 vs. P). Although the EGP slope of decline was faster in M and M+S vs. S, all had comparable greater post-MTT EGP inhibition vs. P (P < 0.05).
CONCLUSIONS
M+S combined produce additive effects to 1) reduce FPG and postmeal plasma glucose, 2) augment GLP-1 secretion and β-cell function, 3) decrease plasma glucagon, and 4) inhibit fasting and postmeal EGP compared with M or S monotherapy.
doi:10.2337/dc12-2072
PMCID: PMC3747902  PMID: 23579178
10.  Pathophysiologic Approach to Therapy in Patients With Newly Diagnosed Type 2 Diabetes 
Diabetes Care  2013;36(Suppl 2):S127-S138.
doi:10.2337/dcS13-2011
PMCID: PMC3920797  PMID: 23882037
11.  In Vivo Actions of Peroxisome Proliferator–Activated Receptors 
Diabetes Care  2013;36(Suppl 2):S162-S174.
doi:10.2337/dcS13-2003
PMCID: PMC3920780  PMID: 23882042
12.  Is Incretin-Based Therapy Ready for the Care of Hospitalized Patients With Type 2 Diabetes? 
Diabetes Care  2013;36(7):2107-2111.
Significant data suggest that overt hyperglycemia, either observed with or without a prior diagnosis of diabetes, contributes to an increase in mortality and morbidity in hospitalized patients. In this regard, goal-directed insulin therapy has remained as the standard of care for achieving and maintaining glycemic control in hospitalized patients with critical and noncritical illness. As such, protocols to assist in the management of hyperglycemia in the inpatient setting have become commonplace in hospital settings. Clearly, insulin is a known entity, has been in clinical use for almost a century, and is effective. However, there are limitations to its use. Based on the observed mechanisms of action and efficacy, there has been a great interest in using incretin-based therapy with glucagon-like peptide-1 (GLP-1) receptor agonists instead of, or complementary to, an insulin-based approach to improve glycemic control in hospitalized, severely ill diabetic patients. To provide an understanding of both sides of the argument, we provide a discussion of this topic as part of this two-part point-counterpoint narrative. In this point narrative as presented below, Drs. Schwartz and DeFronzo provide an opinion that now is the time to consider GLP-1 receptor agonists as a logical consideration for inpatient glycemic control. It is important to note the recommendations they propose under “incretin-based approach” with these agents represent their opinion for use and, as they point out, well-designed prospective studies comparing these agents with insulin will be required to establish their efficacy and safety. In the counterpoint narrative following Drs. Schwartz and DeFronzo’s contribution, Drs. Umpierrez and Korytkowski provide a defense of insulin in the inpatient setting as the unquestioned gold standard for glycemic management in hospitalized settings.
—William T. Cefalu
Editor in Chief, Diabetes Care
doi:10.2337/dc12-2060
PMCID: PMC3687277  PMID: 23801800
13.  Personalized Management of Hyperglycemia in Type 2 Diabetes 
Diabetes Care  2013;36(6):1779-1788.
In June 2012, 13 thought leaders convened in a Diabetes Care Editors’ Expert Forum to discuss the concept of personalized medicine in the wake of a recently published American Diabetes Association/European Association for the Study of Diabetes position statement calling for a patient-centered approach to hyperglycemia management in type 2 diabetes. This article, an outgrowth of that forum, offers a clinical translation of the underlying issues that need to be considered for effectively personalizing diabetes care. The medical management of type 2 diabetes has become increasingly complex, and its complications remain a great burden to individual patients and the larger society. The burgeoning armamentarium of pharmacological agents for hyperglycemia management should aid clinicians in providing early treatment to delay or prevent these complications. However, trial evidence is limited for the optimal use of these agents, especially in dual or triple combinations. In the distant future, genotyping and testing for metabolomic markers may help us to better phenotype patients and predict their responses to antihyperglycemic drugs. For now, a personalized (“n of 1”) approach in which drugs are tested in a trial-and-error manner in each patient may be the most practical strategy for achieving therapeutic targets. Patient-centered care and standardized algorithmic management are conflicting approaches, but they can be made more compatible by recognizing instances in which personalized A1C targets are warranted and clinical circumstances that may call for comanagement by primary care and specialty clinicians.
doi:10.2337/dc13-0512
PMCID: PMC3661796  PMID: 23704680
15.  IMPACT OF OBESITY SEVERITY AND DURATION ON PANCREATIC β-AND α-CELLS DYNAMICS IN NORMOGLYCEMIC NON-HUMAN PRIMATES 
Objective
Obesity is associated to high insulin and glucagon plasma levels. Enhanced β–cell function and β–cell expansion are responsible for insulin hypersecretion. It is unknown whether hyperglucagonemia is due to α-cell hypersecretion or to an increase in α-cell mass. In this study, we investigated the dynamics of the β-cell and α-cell function and mass in pancreas of obese normoglycemic baboons.
Methods
Pancreatic β- and α-cell volumes were measured in 51 normoglycemic baboons divided into 6 groups according to overweight severity or duration. Islets morphometric parameters were correlated to overweight and to diverse metabolic and laboratory parameters.
Results
Relative α-cell volume (RαV) and relative islet α-cell volume (RIαV) increased significantly with both overweight duration and severity. Conversely, in spite of the induction of insulin resistance, overweight produced only modest effects on relative β-cell volume (RβV) and relative islet β-cell volume (RIβV). Of note, RIβV did not increase neither with overweight duration nor with overweight severity, supposedly because of the concomitant, greater, increase in RIαV. Baboons' body weights correlated with serum levels of Interleukin-6 and Tumour Necrosis Factor-α soluble Receptors (IL-6sR and sTNF-R1), demonstrating that overweight induces abnormal activation of the signaling of two cytokines known to impact differently β- and α-cell viability and replication.
Conclusion
In conclusion, overweight and insulin resistance induce in baboons a significant increase in α-cell volumes (RαV, RIαV) while have minimal effects on the β-cells. This study suggests that an increase in the α-cell mass may precede the loss of β-cells and the transition to overt hyperglycemia and diabetes.
doi:10.1038/ijo.2012.205
PMCID: PMC3906680  PMID: 23229736
Obesity duration; obesity severity; α-cell volume; β-cells volume; pancreatic islet remodelling; insulin resistance
16.  Pioglitazone slows progression of atherosclerosis in prediabetes independent of changes in cardiovascular risk factors 
Objective
To determine whether changes in standard and novel risk factors during the ACT NOW trial explained the slower rate of CIMT progression with pioglitazone treatment in persons with prediabetes.
Methods and Results
CIMT was measured in 382 participants at the beginning and up to three additional times during follow-up of the ACT NOW trial. During an average follow-up of 2.3 years, the mean unadjusted annual rate of CIMT progression was significantly (P=0.01) lower with pioglitazone treatment (4.76 × 10−3 mm/year, 95% CI, 2.39 × 10−3 – 7.14 × 10−3 mm/year) compared with placebo (9.69 × 10−3 mm/year, 95% CI, 7.24 × 10−3 – 12.15 × 10−3 mm/year). High-density lipoprotein cholesterol, fasting and 2-hour glucose, HbA1c, fasting insulin, Matsuda insulin sensitivity index, adiponectin and plasminogen activator inhibitor-1 levels improved significantly with pioglitazone treatment compared with placebo (P < 0.001). However, the effect of pioglitazone on CIMT progression was not attenuated by multiple methods of adjustment for traditional, metabolic and inflammatory risk factors and concomitant medications, and was independent of changes in risk factors during pioglitazone treatment.
Conclusions
Pioglitazone slowed progression of CIMT, independent of improvement in hyperglycemia, insulin resistance, dyslipidemia and systemic inflammation in prediabetes. These results suggest a possible direct vascular benefit of pioglitazone.
doi:10.1161/ATVBAHA.112.300346
PMCID: PMC3908828  PMID: 23175674
Carotid atherosclerosis progression; Impaired glucose tolerance; Insulin resistance; Inflammation; Pioglitazone
17.  Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production 
Chronic hyperglycemia impairs insulin action, resulting in glucotoxicity, which can be ameliorated in animal models by inducing glucosuria with renal glucose transport inhibitors. Here, we examined whether reduction of plasma glucose with a sodium-glucose cotransporter 2 (SGLT2) inhibitor could improve insulin-mediated tissue glucose disposal in patients with type 2 diabetes. Eighteen diabetic men were randomized to receive either dapagliflozin (n = 12) or placebo (n = 6) for 2 weeks. We measured insulin-mediated whole body glucose uptake and endogenous glucose production (EGP) at baseline and 2 weeks after treatment using the euglycemic hyperinsulinemic clamp technique. Dapagliflozin treatment induced glucosuria and markedly lowered fasting plasma glucose. Insulin-mediated tissue glucose disposal increased by approximately 18% after 2 weeks of dapagliflozin treatment, while placebo-treated subjects had no change in insulin sensitivity. Surprisingly, following dapagliflozin treatment, EGP increased substantially and was accompanied by an increase in fasting plasma glucagon concentration. Together, our data indicate that reduction of plasma glucose with an agent that works specifically on the kidney to induce glucosuria improves muscle insulin sensitivity. However, glucosuria induction following SGLT2 inhibition is associated with a paradoxical increase in EGP. These results provide support for the glucotoxicity hypothesis, which suggests that chronic hyperglycemia impairs insulin action in individuals with type 2 diabetes.
doi:10.1172/JCI70704
PMCID: PMC3904617  PMID: 24463448
18.  Disruption of Growth Factor Receptor–Binding Protein 10 in the Pancreas Enhances β-Cell Proliferation and Protects Mice From Streptozotocin-Induced β-Cell Apoptosis 
Diabetes  2012;61(12):3189-3198.
Defects in insulin secretion and reduction in β-cell mass are associated with type 2 diabetes in humans, and understanding the basis for these dysfunctions may reveal strategies for diabetes therapy. In this study, we show that pancreas-specific knockout of growth factor receptor–binding protein 10 (Grb10), which is highly expressed in pancreas and islets, leads to elevated insulin/IGF-1 signaling in islets, enhanced β-cell mass and insulin content, and increased insulin secretion in mice. Pancreas-specific disruption of Grb10 expression also improved glucose tolerance in mice fed with a high-fat diet and protected mice from streptozotocin-induced β-cell apoptosis and body weight loss. Our study has identified Grb10 as an important regulator of β-cell proliferation and demonstrated that reducing the expression level of Grb10 could provide a novel means to increase β-cell mass and reduce β-cell apoptosis. This is critical for effective therapeutic treatment of both type 1 and 2 diabetes.
doi:10.2337/db12-0249
PMCID: PMC3501856  PMID: 22923474
19.  Fat-Specific DsbA-L Overexpression Promotes Adiponectin Multimerization and Protects Mice From Diet-Induced Obesity and Insulin Resistance 
Diabetes  2012;61(11):2776-2786.
The antidiabetic and antiatherosclerotic effects of adiponectin make it a desirable drug target for the treatment of metabolic and cardiovascular diseases. However, the adiponectin-based drug development approach turns out to be difficult due to extremely high serum levels of this adipokine. On the other hand, a significant correlation between adiponectin multimerization and its insulin-sensitizing effects has been demonstrated, suggesting a promising alternative therapeutic strategy. Here we show that transgenic mice overexpressing disulfide bond A oxidoreductase-like protein in fat (fDsbA-L) exhibited increased levels of total and the high-molecular-weight form of adiponectin compared with wild-type (WT) littermates. The fDsbA-L mice also displayed resistance to diet-induced obesity, insulin resistance, and hepatic steatosis compared with WT control mice. The protective effects of DsbA-L overexpression on diet-induced insulin resistance, but not increased body weight and fat cell size, were significantly decreased in adiponectin-deficient fDsbA-L mice (fDsbA-L/Ad−/−). In addition, the fDsbA-L/Ad−/− mice displayed greater activity and energy expenditure compared with adiponectin knockout mice under a high-fat diet. Taken together, our results demonstrate that DsbA-L protects mice from diet-induced obesity and insulin resistance through adiponectin-dependent and independent mechanisms. In addition, upregulation of DsbA-L could be an effective therapeutic approach for the treatment of obesity and its associated metabolic disorders.
doi:10.2337/db12-0169
PMCID: PMC3478538  PMID: 22807031
20.  Why Do SGLT2 Inhibitors Inhibit Only 30–50% of Renal Glucose Reabsorption in Humans? 
Diabetes  2012;61(9):2199-2204.
Sodium glucose cotransporter 2 (SGLT2) inhibition is a novel and promising treatment for diabetes under late-stage clinical development. It generally is accepted that SGLT2 mediates 90% of renal glucose reabsorption. However, SGLT2 inhibitors in clinical development inhibit only 30–50% of the filtered glucose load. Why are they unable to inhibit 90% of glucose reabsorption in humans? We will try to provide an explanation to this puzzle in this perspective analysis of the unique pharmacokinetic and pharmacodynamic profiles of SGLT2 inhibitors in clinical trials and examine possible mechanisms and molecular properties that may be responsible.
doi:10.2337/db12-0052
PMCID: PMC3425428  PMID: 22923645
21.  Non-Alcoholic Fatty Liver Disease (NAFLD) and Its Connection with Insulin Resistance, Dyslipidemia, Atherosclerosis and Coronary Heart Disease 
Nutrients  2013;5(5):1544-1560.
Non-alcoholic fatty liver disease is marked by hepatic fat accumulation not due to alcohol abuse. Several studies have demonstrated that NAFLD is associated with insulin resistance leading to a resistance in the antilipolytic effect of insulin in the adipose tissue with an increase of free fatty acids (FFAs). The increase of FFAs induces mitochondrial dysfunction and development of lipotoxicity. Moreover, in subjects with NAFLD, ectopic fat also accumulates as cardiac and pancreatic fat. In this review we analyzed the mechanisms that relate NAFLD with metabolic syndrome and dyslipidemia and its association with the development and progression of cardiovascular disease.
doi:10.3390/nu5051544
PMCID: PMC3708335  PMID: 23666091
non-alcoholic fatty liver(NAFLD); steatosis; visceral fat; lipotoxicity; insulin resistance; free fatty acids; dyslipidemia; cardiometabolic risk
22.  Parental transmission of type 2 diabetes mellitus in a highly endogamous population 
World Journal of Diabetes  2013;4(2):40-46.
AIM: To determine the parental transmission of diabetes mellitus (DM) and evaluate its influence on the clinical characteristics.
METHODS: This was a cross sectional study. The survey was carried out in urban and semi-urban primary health care centers. Of the 2400 registered with diagnosed diabetes, 1980 agreed and gave their consent to take part in this study, thus giving a response rate of 82.5%. Face to face interviews were conducted using a structured questionnaire followed by laboratory tests. DM was defined according to the World Health Organization expert group. A trained nurse performed physical examinations and measurements.
RESULTS: Of the study population, 72.9% reported a family history of DM. Family history of DM was significantly higher in females (54.2%; P = 0.04) and in the age group below 30 years (24%; P < 0.001). The prevalence of diabetes was higher among patients with a diabetic mother (25.4% vs 22.1%) and maternal aunts/uncles (31.2% vs 22.2%) compared to patients with a diabetic father and paternal aunts/uncles. Family history of DM was higher in patients of consanguineous parents (38.5%) than those of non-consanguineous parents (30.2%). The development of type 2 diabetes mellitus (T2DM) complications was higher in patients with either a paternal or maternal history of DM than in those without. No significant difference was observed in the metabolic characteristics of patients with/without family history of DM except for hypertension. Complications were higher in diabetic patients with a family history of DM.
CONCLUSION: The present study found a significant maternal effect in transmission of T2DM. Family history is associated with the increased incidence of diabetes.
doi:10.4239/wjd.v4.i2.40
PMCID: PMC3629295  PMID: 23599872
Diabetes mellitus; Family history; Parental transmission; Genetic disorders; Consanguinity; Maternal transmission
23.  Short-Term Exercise Training Improves Insulin Sensitivity but Does Not Inhibit Inflammatory Pathways in Immune Cells from Insulin-Resistant Subjects 
Journal of Diabetes Research  2013;2013:107805.
Background. Exercise has an anti-inflammatory effect against, and immune cells play critical roles in the development, of insulin resistance and atherosclerotic vascular disease (AVD). Thus, the goal of this study was to determine whether exercise improves insulin sensitivity in insulin-resistant subjects by downregulating proinflammatory signaling in immune cells. Methods. Seventeen lean, 8 obese nondiabetic, and 11 obese type 2 diabetic individuals underwent an aerobic exercise program for 15 days and an insulin clamp before and after exercise. Peripheral mononuclear cells (PMNC) were obtained for determination of Toll-like receptor (TLR) 2 and 4 protein content and mitogen-activated protein kinase phosphorylation. Results. Compared with that in lean individuals, TLR4 protein content was increased by 4.2-fold in diabetic subjects. This increase in TLR4 content was accompanied by a 3.0-fold increase in extracellular signal-regulated kinase (ERK) phosphorylation. Exercise improved insulin sensitivity in the lean, obese, and type 2 diabetes groups. However, exercise did not affect TLR content or ERK phosphorylation. Conclusions. TLR4 content and ERK phosphorylation are increased in PMNC of type 2 diabetic individuals. While exercise improves insulin sensitivity, this effect is not related to changes in TLR2/TLR4 content or ERK phosphorylation in PMNC of type 2 diabetic individuals.
doi:10.1155/2013/107805
PMCID: PMC3647562  PMID: 23671849
24.  Effect of acute physiological hyperinsulinemia on gene expression in human skeletal muscle in vivo 
This study was undertaken to test the hypothesis that short-term exposure (4 h) to physiological hyperinsulinemia in normal, healthy subjects without a family history of diabetes would induce a low grade inflammatory response independently of glycemic status. Twelve normal glucose tolerant subjects received a 4-h euglycemic hyperinsulinemic clamp with biopsies of the vastus lateralis muscle. Microarray analysis identified 121 probe sets that were significantly altered in response to physiological hyperinsulinemia while maintaining euglycemia. In normal, healthy human subjects insulin increased the mRNAs of a number of inflammatory genes (CCL2, CXCL2 and THBD) and transcription factors (ATF3, BHLHB2, HES1, KLF10, JUNB, FOS, and FOSB). A number of other genes were upregulated in response to insulin, including RRAD, MT, and SGK. CITED2, a known coactivator of PPARα, was significantly downregulated. SGK and CITED2 are located at chromosome 6q23, where we previously detected strong linkage to fasting plasma insulin concentrations. We independently validated the mRNA expression changes in an additional five subjects and closely paralleled the results observed in the original 12 subjects. A saline infusion in healthy, normal glucose-tolerant subjects without family history of diabetes demonstrated that the genes altered during the euglycemic hyperinsulinemic clamp were due to hyperinsulinemia and were unrelated to the biopsy procedure per se. The results of the present study demonstrate that insulin acutely regulates the levels of mRNAs involved in inflammation and transcription and identifies several candidate genes, including HES1 and BHLHB2, for further investigation.
doi:10.1152/ajpendo.00607.2007
PMCID: PMC3581328  PMID: 18334611
gene expression; muscle; insulin action; euglycemic hyperinsulinemic clamp; inflammation
25.  Distinct β-Cell Defects in Impaired Fasting Glucose and Impaired Glucose Tolerance 
Diabetes  2012;61(2):447-453.
To characterize the defects in β-cell function in subjects with impaired fasting glucose (IFG) and compare the results to impaired glucose tolerance (IGT) and normal glucose tolerance (NGT) subjects, β-cell glucose sensitivity and rate sensitivity during the oral glucose tolerance test were measured with the model by Mari in 172 Mexican Americans. A subgroup (n = 70) received a 2-h hyperglycemic clamp (+125 mg/dL), and first- and second-phase insulin secretion were quantitated. Compared with NGT, subjects with IFG and IGT manifested a decrease in β-cell glucose sensitivity; IFG subjects, but not IGT subjects, had decreased β-cell rate sensitivity. In IFG subjects, the defect in β-cell glucose sensitivity was time dependent, began to improve after 60 min, and was comparable to NGT after 90 min. The incremental area under the plasma C-peptide concentration curve during the first 12 min of the hyperglycemic clamp (ΔC-pep[AUC]0–12) was inversely related with the increase in FPG concentration (r = −36, r = 0.001), whereas ΔC-pep[AUC]15–120 positively correlated with FPG concentration (r = 0.29, r < 0.05). When adjusted for the prevailing level of insulin resistance, first-phase insulin secretion was markedly decreased in both IFG and IGT, whereas second-phase insulin secretion was decreased only in IGT. These results demonstrate distinct defects in β-cell function in IFG and IGT.
doi:10.2337/db11-0995
PMCID: PMC3266412  PMID: 22275086

Results 1-25 (65)