Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Functionality of unliganded VDR in breast cancer cells: repressive action on CYP24 basal transcription 
Molecular and cellular biochemistry  2010;342(1-2):143-150.
It is well-established that CYP24, an immediate target gene of VDR is upregulated by VDR ligands. This study is focused on the functional role of unliganded VDR by investigating the correlation between the expression of VDR protein and basal mRNA levels of CYP24 in breast cancer cell lines. Analyses of multiple breast cancer cell lines demonstrated an inverse correlation between VDR protein expression and CYP24 mRNA expression levels; while in the presence of ligand, VDR protein level was positively correlated with CYP24 expression. In MCF-7 cells, VDR was mainly distributed in the nuclei in the absence of ligand. VDR overexpression in MCF-7 cells and MDA-MB231 cells decreased CYP24 mRNA expression levels and CYP24 promoter activity. Conversely, knockdown of VDR using siRNA techniques in MCF-7 and T47D cells significantly increased CYP24 mRNA expression. We also found that overexpression of VDR with a polymorphic site (FokI-FF) at its AF-1 domain, which makes VDR shorter by three amino acids, failed to repress CYP24 promoter activity. This report provides conclusive evidence for the repressive action of unliganded VDR on the expression of its target gene CYP24 and the importance of an intact VDR AF-1 domain for its repressive action.
PMCID: PMC2923673  PMID: 20440542
Vitamin D receptor; CYP24; Breast cancer cells; Unliganded VDR
2.  Oncolytic targeting of androgen-sensitive prostate tumor by the respiratory syncytial virus (RSV): consequences of deficient interferon-dependent antiviral defense 
BMC Cancer  2011;11:43.
Oncolytic virotherapy for cancer treatment utilizes viruses for selective infection and death of cancer cells without any adverse effect on normal cells. We previously reported that the human respiratory syncytial virus (RSV) is a novel oncolytic virus against androgen-independent PC-3 human prostate cancer cells. The present study extends the result to androgen-dependent prostate cancer, and explores the underlying mechanism that triggers RSV-induced oncolysis of prostate cancer cells.
The oncolytic effect of RSV on androgen-sensitive LNCaP human prostate cancer cells and on androgen-independent RM1 murine prostate cancer cells was studied in vitro in culture and in vivo in a xenograft or allograft tumor model. In vitro, cell viability, infectivity and apoptosis were monitored by MTT assay, viral plaque assay and annexin V staining, respectively. In vivo studies involved virus administration to prostate tumors grown in immune compromised nude mice and in syngeneic immune competent C57BL/6J mice. Anti-tumorogenic oncolytic activity was monitored by measuring tumor volume, imaging bioluminescent tumors in live animals and performing histopathological analysis and TUNEL assay with tumors
We show that RSV imposes a potent oncolytic effect on LNCaP prostate cancer cells. RSV infectivity was markedly higher in LNCaP cells compared to the non-tumorigenic RWPE-1 human prostate cells. The enhanced viral burden led to LNCaP cell apoptosis and growth inhibition of LNCaP xenograft tumors in nude mice. A functional host immune response did not interfere with RSV-induced oncolysis, since growth of xenograft tumors in syngeneic C57BL/6J mice from murine RM1 cells was inhibited upon RSV administration. LNCaP cells failed to activate the type-I interferon (IFNα/β)-induced transcription factor STAT-1, which is required for antiviral gene expression, although these cells could produce IFN in response to RSV infection. The essential role of IFN in restricting infection was further borne out by our finding that neutralizing IFN activity resulted in enhanced RSV infection in non-tumorigenic RWPE-1 prostate cells.
We demonstrated that RSV is potentially a useful therapeutic tool in the treatment of androgen-sensitive and androgen-independent prostate cancer. Moreover, impaired IFN-mediated antiviral response is the likely cause of higher viral burden and resulting oncolysis of androgen-sensitive prostate cancer cells.
PMCID: PMC3038980  PMID: 21276246
3.  Xenobiotic- and Vitamin D-responsive Induction of the Steroid/bile acid-sulfotransferase Sult2A1 in Young and Old Mice: The role of a Gene Enhancer in the Liver Chromatin 
Gene  2006;386(1-2):218-223.
The xenobiotic-activated nuclear receptors PXR (pregnane X receptor) and CAR (constitutive androstane receptor) and the vitamin D3-activated nuclear receptor VDR regulate steroid and xenobiotic metabolism by inducing the phase I cytochrome P450 monooxygenases, phase II conjugating transferases, and the phase III transporters, which mediate the efflux of water-soluble lipid metabolites from cells. Metabolic stress due to the deviant expression of steroid- and xenobiotic-metabolizing enzymes is known to have severe health consequences including accelerated aging, and increased expression of these enzymes is associated with extended longevity (Gachon et al, 2006; McElwee et al, 2004). Information on the similarities and dissimilarities in drug metabolism between the young and old, as may be uncovered by studying aging regulation of the genes relevant to steroid and xenobiotic metabolism, is likely to have clinical significance. In this report, we examined the VDR- and PXR-mediated gene induction of the phase II sulfotransferase Sult2A1 in the livers of 4-month and 20-month old mice. Sult2A1 converts bile acids, steroids and a number of drugs to the corresponding sulfated metabolites, which are readily eliminated from the body due to increased water solubility. In RT-PCR assay, aging did not change the induction of Sult2A1 mRNAs by the hormonally active vitamin D3 and the catatoxic synthetic steroid PCN (pregnenolone-16α-carbonitrile). Chromatin immunoprecipitation (ChIP) from liver nuclei showed that aging had no effect on the activity of an IR0 enhancer in the Sult2A1 chromatin to recruit VDR, RXR-α (retinoid X receptor) and PXR in mice injected with D3 or PCN. Thus, mice in late life are as competent as those in early life in responding to the hormonal and xenobiotic signaling for Sult2A1 induction. This is the first report describing the role of aging in the functional response of an enhancer in the liver chromatin to the nuclear receptor-dependent signaling.
PMCID: PMC1888572  PMID: 17123747
Aging; Sulfotransferase; Gene Enhancer; Nuclear Receptor; Tissue ChIP

Results 1-3 (3)