PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-15 (15)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Chelation: A Fundamental Mechanism of Action of AGE Inhibitors, AGE Breakers, and Other Inhibitors of Diabetes Complications 
Diabetes  2012;61(3):549-559.
This article outlines evidence that advanced glycation end product (AGE) inhibitors and breakers act primarily as chelators, inhibiting metal-catalyzed oxidation reactions that catalyze AGE formation. We then present evidence that chelation is the most likely mechanism by which ACE inhibitors, angiotensin receptor blockers, and aldose reductase inhibitors inhibit AGE formation in diabetes. Finally, we note several recent studies demonstrating therapeutic benefits of chelators for diabetic cardiovascular and renal disease. We conclude that chronic, low-dose chelation therapy deserves serious consideration as a clinical tool for prevention and treatment of diabetes complications.
doi:10.2337/db11-1120
PMCID: PMC3282805  PMID: 22354928
2.  Gut Barrier Dysfunction in the ApcMin/+ Mouse Model of Colon Cancer Cachexia 
Biochimica et biophysica acta  2011;1812(12):1601-1606.
Background
The ApcMin/+ mouse, an animal model of colorectal cancer and cachexia, has a heterologous mutation in the Apc tumor suppressor gene, predisposing the mouse to intestinal and colon tumor development. This mouse develops intestinal polyps by ~4 weeks of age, and loses body weight gradually between ~14 and ~20 weeks of age. The strengths of this cachexia model derive from several features that mimic human cancer, including a gradual increase in tumor burden, chronic inflammation, and anemia. Little is known about the role of gut barrier dysfunction and endotoxemia in the development of cancer cachexia. We sought to determine how gut permeability and resultant endotoxemia change with the progression of cachexia.
Methods
Intestinal gut barrier integrity was assessed by permeability to FITC-dextran (MWav = 4,000 kDa; FD4). Plasma glucose and triglycerides were measured by enzymatic assays, IL-6 by ELISA, and endotoxin by the limulus amoebocyte assay. Body temperature was measured using a rectal probe.
Results
Progression of cachexia was accompanied by development of gut barrier dysfunction (permeability to FD4), hypertrophy of mesenteric lymph nodes, and an increase in plasma endotoxin concentration. Changes in blood glucose and glucose tolerance, plasma IL-6, triglycerides, and body temperature were characteristic of endotoxemia.
Conclusion
We propose a role for gut barrier dysfunction (GBD) and subsequent endotoxemia in the development of inflammation and progression of cachexia in the ApcMin/+ mouse.
doi:10.1016/j.bbadis.2011.08.010
PMCID: PMC3205242  PMID: 21914473
cachexia; colorectal cancer; endotoxin; gut barrier dysfunction; gut permeability; inflammation
3.  IL-6 regulation on skeletal muscle mitochondrial remodeling during cancer cachexia in the ApcMin/+ mouse 
Skeletal Muscle  2012;2:14.
Background
Muscle protein turnover regulation during cancer cachexia is being rapidly defined, and skeletal muscle mitochondria function appears coupled to processes regulating muscle wasting. Skeletal muscle oxidative capacity and the expression of proteins regulating mitochondrial biogenesis and dynamics are disrupted in severely cachectic ApcMin/+ mice. It has not been determined if these changes occur at the onset of cachexia and are necessary for the progression of muscle wasting. Exercise and anti-cytokine therapies have proven effective in preventing cachexia development in tumor bearing mice, while their effect on mitochondrial content, biogenesis and dynamics is not well understood. The purposes of this study were to 1) determine IL-6 regulation on mitochondrial remodeling/dysfunction during the progression of cancer cachexia and 2) to determine if exercise training can attenuate mitochondrial dysfunction and the induction of proteolytic pathways during IL-6 induced cancer cachexia.
Methods
ApcMin/+ mice were examined during the progression of cachexia, after systemic interleukin (IL)-6r antibody treatment, or after IL-6 over-expression with or without exercise. Direct effects of IL-6 on mitochondrial remodeling were examined in cultured C2C12 myoblasts.
Results
Mitochondrial content was not reduced during the initial development of cachexia, while muscle PGC-1α and fusion (Mfn1, Mfn2) protein expression was repressed. With progressive weight loss mitochondrial content decreased, PGC-1α and fusion proteins were further suppressed, and fission protein (FIS1) was induced. IL-6 receptor antibody administration after the onset of cachexia improved mitochondrial content, PGC-1α, Mfn1/Mfn2 and FIS1 protein expression. IL-6 over-expression in pre-cachectic mice accelerated body weight loss and muscle wasting, without reducing mitochondrial content, while PGC-1α and Mfn1/Mfn2 protein expression was suppressed and FIS1 protein expression induced. Exercise normalized these IL-6 induced effects. C2C12 myotubes administered IL-6 had increased FIS1 protein expression, increased oxidative stress, and reduced PGC-1α gene expression without altered mitochondrial protein expression.
Conclusions
Altered expression of proteins regulating mitochondrial biogenesis and fusion are early events in the initiation of cachexia regulated by IL-6, which precede the loss of muscle mitochondrial content. Furthermore, IL-6 induced mitochondrial remodeling and proteolysis can be rescued with moderate exercise training even in the presence of high circulating IL-6 levels.
doi:10.1186/2044-5040-2-14
PMCID: PMC3431229  PMID: 22769563
FIS1; PGC-1α; Exercise; IL-6r; MFN1; Cachexia; Mitochondria; Muscle; Autophagy
4.  Inactivation of Glyceraldehyde-3-Phosphate Dehydrogenase by Fumarate in Diabetes: Formation of S-(2-Succinyl)Cysteine, a Novel Chemical Modification of Protein and Possible Biomarker of Mitochondrial Stress 
Diabetes  2007;57(1):41-49.
OBJECTIVE
S-(2-succinyl)cysteine (2SC) is formed by a Michael addition reaction of the Krebs cycle intermediate, fumarate, with cysteine residues in protein. We investigated the role of fumarate in chemical modification and inhibition of the sulfhydryl enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), in vitro and in tissues of diabetic rats.
RESEARCH DESIGN AND METHODS
GAPDH was incubated with fumarate in PBS to assess effects of fumarate on enzyme activity in vitro. Sites of 2SC formation were determined by analysis of tryptic peptides by high-performance liquid chromatography–quadrupole/time-of-flight mass spectrometry. 2SC and fumarate in gastrocnemius muscle of control and streptozotocin-induced diabetic rats were measured by liquid chromatography/tandem mass spectrometry and by gas chromatography/mass spectrometry, respectively. GAPDH was isolated from muscle by immunoprecipitation, and sites of modification of GAPDH were determined by mass spectrometry analysis.
RESULTS
2SC was found, both in vitro and in vivo, about equally at active-site Cys-149 and nucleophilic Cys-244. Inactivation of GAPDH by fumarate in vitro correlated with formation of 2SC. In diabetic compared with control rats, fumarate and 2SC concentration increased approximately fivefold, accompanied by an ~25% decrease in GAPDH specific activity. The fractional modification of GAPDH by 2SC was significantly increased in diabetic versus control animals, consistent with the decreased specific activity of GAPDH in muscle of diabetic animals.
CONCLUSIONS
Fumarate contributes to inactivation of GAPDH in diabetes. 2SC may be a useful biomarker of mitochondrial stress in diabetes. Modification of GAPDH and other enzymes and proteins by fumarate may contribute to the metabolic changes underlying the development of diabetes complications.
doi:10.2337/db07-0838
PMCID: PMC2423377  PMID: 17934141
5.  Succination of Proteins by Fumarate: Mechanism of Inactivation of Glyceraldehyde-3-Phosphate Dehydrogenase in Diabetes 
S-(2-succinyl)cysteine (2SC) is a chemical modification of proteins formed by a Michael addition reaction between the Krebs cycle intermediate, fumarate, and thiol groups in protein—a process known as succination of protein. Succination causes irreversible inactivation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in vitro. GAPDH was immunoprecipitated from muscle of diabetic rats, then analyzed by ultra-performance liquid chromatography–electrospray ionization–mass spectroscopy. Succination of GAPDH was increased in muscle of diabetic rats, and the extent of succination correlated strongly with the decrease in specific activity of the enzyme. We propose that 2SC is a biomarker of mitochondrial and oxidative stress in diabetes and that succination of GAPDH and other thiol proteins may provide the chemical link between glucotoxicity and the pathogenesis of diabetic complications.
doi:10.1196/annals.1433.047
PMCID: PMC2423376  PMID: 18448829
protein; chemical modification; cysteine; diabetes; fumarate; glyceraldehyde-3-phosphate dehydrogenase; oxidative stress; mitochondrial stress; succination
6.  Formation of Methionine Sulfoxide during Glycoxidation and Lipoxidation of Ribonuclease A 
Chemical modification of proteins by reactive oxygen species affects protein structure, function and turnover during aging and chronic disease. Some of this damage is direct, for example by oxidation of amino acids in protein by peroxide or other reactive oxygen species, but autoxidation of ambient carbohydrates and lipids amplifies both the oxidative and chemical damage to protein and leads to formation of advanced glycoxidation and lipoxidation end-products (AGE/ALEs). In previous work we have observed the oxidation of methionine during glycoxidation and lipoxidation reactions, and in the present work we set out to determine if methionine sulfoxide (MetSO) in protein was a more sensitive indicator of glycoxidative and lipoxidative damage than AGE/ALEs. We also investigated the sites of methionine oxidation in a model protein, ribonuclease A (RNase), in order to determine whether analysis of the site specificity of methionine oxidation in proteins could be used to indicate the source of the oxidative damage, i.e. carbohydrate or lipid. We describe here the development of an LC/MS/MS for quantification of methionine oxidation at specific sites in RNase during glycoxidation or lipoxidation by glucose or arachidonate, respectively. Glycoxidized and lipoxidized RNase were analyzed by tryptic digestion, followed by reversed phase HPLC and mass spectrometric analysis to quantify methionine and methionine sulfoxide containing peptides. We observed that: 1) compared to AGE/ALEs, methionine sulfoxide was a more sensitive biomarker of glycoxidative or lipoxidative damage to proteins; 2) regardless of oxidizable substrate, the relative rate of oxidation of methionine residues in RNase was Met29 > Met30 > Met13, with Met79 being resistant to oxidation; and 3) arachidonate produced a significantly greater yield of MetSO, compared to glucose. The methods developed here should be useful for assessing a protein’s overall exposure to oxidative stress from a variety of sources in vivo.
doi:10.1016/j.abb.2006.10.029
PMCID: PMC1828205  PMID: 17141728
glycoxidation; lipoxidation; methionine sulfoxide; oxidation; oxidative stress
7.  The effect of exercise on IL-6-induced cachexia in the ApcMin/+ mouse 
Background
Cachexia involves unintentional body weight loss including diminished muscle and adipose tissue mass and is associated with an underlying disease. Systemic overexpression of IL-6 accelerates cachexia in the ApcMin/+ mouse, but does not induce wasting in control C57BL/6 mice. With many chronic diseases, chronic inflammation and metabolic dysfunction can be improved with moderate exercise. A direct effect of regular moderate exercise on the prevention of IL-6-induced cachexia in the ApcMin/+ mouse has not been investigated. The purpose of this study was to assess the effects of exercise on the development of cachexia in the ApcMin/+ mouse.
Methods
Mice were randomly assigned to moderate treadmill exercise (18 m/min, 1 h, 6 days/week, 5% grade) or cage control (CC) groups from 6 to 14 weeks of age. At 12 weeks of age, mice were electroporated with either IL-6-containing or control plasmid into the quadriceps muscle. Mice were killed after 2 weeks of systemic IL-6 overexpression or control treatment.
Results
IL-6 overexpression induced an 8% loss in body weight in CC mice, which was significantly attenuated by exercise. IL-6 overexpression in CC mice increased fasting insulin and triglyceride levels, which were normalized by exercise, and associated with increased oxidative capacity, an induction of AKT signaling, and a repression of AMPK signaling in muscle. These exercise-induced changes occurred despite elevated inflammatory signaling in skeletal muscle.
Conclusion
We conclude that moderate-intensity exercise can attenuate IL-6-dependent cachexia in ApcMin/+ mice, independent of changes in IL-6 concentration and muscle inflammatory signaling. The exercise effect was associated with improved insulin sensitivity and improved energy status in the muscle.
doi:10.1007/s13539-011-0047-1
PMCID: PMC3374019  PMID: 22476915
Inflammation; Colorectal cancer; Insulin resistance; Oxidative capacity
8.  The Regulation of Skeletal Muscle Protein Turnover during the Progression of Cancer Cachexia in the ApcMin/+ Mouse 
PLoS ONE  2011;6(9):e24650.
Muscle wasting that occurs with cancer cachexia is caused by an imbalance in the rates of muscle protein synthesis and degradation. The ApcMin/+ mouse is a model of colorectal cancer that develops cachexia that is dependent on circulating IL-6. However, the IL-6 regulation of muscle protein turnover during the initiation and progression of cachexia in the ApcMin/+ mouse is not known. Cachexia progression was studied in ApcMin/+ mice that were either weight stable (WS) or had initial (≤5%), intermediate (6–19%), or extreme (≥20%) body weight loss. The initiation of cachexia reduced %MPS 19% and a further ∼50% with additional weight loss. Muscle IGF-1 mRNA expression and mTOR targets were suppressed with the progression of body weight loss, while muscle AMPK phosphorylation (Thr 172), AMPK activity, and raptor phosphorylation (Ser 792) were not increased with the initiation of weight loss, but were induced as cachexia progressed. ATP dependent protein degradation increased during the initiation and progression of cachexia. However, ATP independent protein degradation was not increased until cachexia had progressed beyond the initial phase. IL-6 receptor antibody administration prevented body weight loss and suppressed muscle protein degradation, without any effect on muscle %MPS or IGF-1 associated signaling. In summary, the %MPS reduction during the initiation of cachexia is associated with IGF-1/mTOR signaling repression, while muscle AMPK activation and activation of ATP independent protein degradation occur later in the progression of cachexia. IL-6 receptor antibody treatment blocked cachexia progression through the suppression of muscle protein degradation, while not rescuing the suppression of muscle protein synthesis. Attenuation of IL-6 signaling was effective in blocking the progression of cachexia, but not sufficient to reverse the process.
doi:10.1371/journal.pone.0024650
PMCID: PMC3176277  PMID: 21949739
9.  Citric acid inhibits development of cataracts, proteinuria and ketosis in streptozotocin (type1) diabetic rats 
Although many fruits such as lemon and orange contain citric acid, little is known about beneficial effects of citric acid on health. Here we measured the effect of citric acid on the pathogenesis of diabetic complications in streptozotocin-induced diabetic rats. Although oral administration of citric acid to diabetic rats did not affect blood glucose concentration, it delayed the development of cataracts, inhibited accumulation of advanced glycation end products (AGEs) such as Nε-(carboxyethyl)lysine (CEL) and Nε-(carboxymethyl)lysine (CML) in lens proteins, and protected against albuminuria and ketosis . We also show that incubation of protein with acetol, a metabolite formed from acetone by acetone monooxygenase, generate CEL, suggesting that inhibition of ketosis by citric acid may lead to the decrease in CEL in lens proteins. These results demonstrate that the oral administration of citric acid ameliorates ketosis and protects against the development of diabetic complications in an animal model of type 1 diabetes.
doi:10.1016/j.bbrc.2010.01.095
PMCID: PMC2917331  PMID: 20117096
Advanced glycation end-product (AGEs); Nε-(carboxyethyl)lysine (CEL); cataract; diabetes; ketosis; nephropathy
10.  Mice Deficient in Both Mn Superoxide Dismutase and Glutathione Peroxidase-1 Have Increased Oxidative Damage and a Greater Incidence of Pathology but No Reduction in Longevity 
To test the impact of increased mitochondrial oxidative stress as a mechanism underlying aging and age-related pathologies, we generated mice with a combined deficiency in two mitochondrial-localized antioxidant enzymes, Mn superoxide dismutase (MnSOD) and glutathione peroxidase-1 (Gpx-1). We compared life span, pathology, and oxidative damage in Gpx1−/−, Sod2+/−Gpx1+/−, Sod2+/−Gpx1−/−, and wild-type control mice. Oxidative damage was elevated in Sod2+/−Gpx1−/− mice, as shown by increased DNA oxidation in liver and skeletal muscle and increased protein oxidation in brain. Surprisingly, Sod2+/−Gpx1−/− mice showed no reduction in life span, despite increased levels of oxidative damage. Consistent with the important role for oxidative stress in tumorigenesis during aging, the incidence of neoplasms was significantly increased in the older Sod2+/−Gpx1−/− mice (28–30 months). Thus, these data do not support a significant role for increased oxidative stress as a result of compromised mitochondrial antioxidant defenses in modulating life span in mice and do not support the oxidative stress theory of aging.
doi:10.1093/gerona/glp132
PMCID: PMC2781787  PMID: 19776219
Oxidative stress; Longevity
11.  Glycation of wood frog (Rana sylvatica) hemoglobin and blood proteins: in vivo and in vitro studies 
Cryobiology  2009;59(2):223-225.
The effects of in vivo freezing and glucose cryoprotectant on protein glycation were investigated in the wood frog, Rana sylvatica. Our studies revealed no difference in the fructoselysine content of blood plasma sampled from control, 27 h frozen and 18 h thawed wood frogs. Glycated hemoglobin (GHb) decreased slightly with 48 h freezing exposure and was below control levels after 7 d recovery, while glycated serum albumin was unchanged by 48 h freezing but did increase after 7 d of recovery. In vitro exposure of blood lysates to glucose revealed that the GHb production in wood frogs was similar to that of the rat but was lower than in leopard frogs. We conclude that wood frog hemoglobin was glycated in vitro; however, GHb production was not apparent during freezing and recovery when in vivo glucose is highly elevated. It is possible that wood frog blood proteins have different in vivo susceptibilities to glycation.
doi:10.1016/j.cryobiol.2009.06.008
PMCID: PMC2905309  PMID: 19540217
freeze tolerance; protein glycation; glucose cryoprotectant; hemoglobin; serum albumin; fructoselysine; Rana pipiens
12.  A Perspective on the Maillard Reaction and the Analysis of Protein Glycation by Mass Spectrometry: Probing the Pathogenesis of Chronic Disease 
Journal of proteome research  2009;8(2):754-769.
The Maillard reaction, starting from the glycation of protein and progressing to the formation of advanced glycation end-products (AGEs), is implicated in the development of complications of diabetes mellitus, as well as in the pathogenesis of cardiovascular, renal, and neurodegenerative diseases. In this perspective review, we provide an overview on the relevance of the Maillard reaction in the pathogenesis of chronic disease and discuss traditional approaches and recent developments in the analysis of glycated proteins by mass spectrometry. We propose that proteomics approaches, particularly bottom-up proteomics, will play a significant role in analyses of clinical samples leading to the identification of new markers of disease development and progression.
doi:10.1021/pr800858h
PMCID: PMC2642649  PMID: 19093874
13.  Improved Methods for the Enrichment and Analysis of Glycated Peptides 
Analytical chemistry  2008;80(24):9822-9829.
Nonenzymatic glycation of tissue proteins has important implications in the development of complications of diabetes mellitus. Herein we report improved methods for the enrichment and analysis of glycated peptides using boronate affinity chromatography and electron-transfer dissociation mass spectrometry, respectively. The enrichment of glycated peptides was improved by replacing an off-line desalting step with an online wash of column-bound glycated peptides using 50 mM ammonium acetate, followed by elution with 100 mM acetic acid. The analysis of glycated peptides by MS/MS was improved by considering only higher charged (≥3) precursor ions during data-dependent acquisition, which increased the number of glycated peptide identifications. Similarly, the use of supplemental collisional activation after electron transfer (ETcaD) resulted in more glycated peptide identifications when the MS survey scan was acquired with enhanced resolution. Acquiring ETD-MS/MS data at a normal MS survey scan rate, in conjunction with the rejection of both 1+ and 2+ precursor ions, increased the number of identified glycated peptides relative to ETcaD or the enhanced MS survey scan rate. Finally, an evaluation of trypsin, Arg-C, and Lys-C showed that tryptic digestion of glycated proteins was comparable to digestion with Lys-C and that both were better than Arg-C in terms of the number of glycated peptides and corresponding glycated proteins identified by LC–MS/MS.
doi:10.1021/ac801704j
PMCID: PMC2752342  PMID: 18989935
14.  The Metal Chelators, Trientine and Citrate, Inhibit the Development of Cardiac Pathology in the Zucker Diabetic Rat 
Experimental Diabetes Research  2009;2009:696378.
Purpose. The objective of this study was to determine the efficacy of dietary supplementation with the metal chelators, trientine or citric acid, in preventing the development of cardiomyopathy in the Zucker diabetic rat. Hypothesis. We hypothesized that dietary chelators would attenuate metal-catalyzed oxidative stress and damage in tissues and protect against pathological changes in ventricular structure and function in type II diabetes. Methods. Animals (10 weeks old) included lean control (LC, fa/+), untreated Zucker diabetic fatty (ZDF, fa/fa), and ZDF rats treated with either trientine (triethylenetetramine) or citrate at 20 mg/d in drinking water, starting when rats were frankly diabetic. Cardiac functional assessment was determined using a Millar pressure/volume catheter placed in the left ventricle at 32 weeks of age. Results. End diastolic volume for the ZDF animals increased by 36% indicating LV dilatation (P < .05) and was accompanied by a 30% increase in the end diastolic pressure (P ≤ .05). Both trientine and citric acid prevented the increases in EDV and EDP (P < .05). Ejection fraction and myocardial relaxation were also significantly improved with chelator treatment. Conclusion. Dietary supplementation with trientine and citric acid significantly prevented structural and functional changes in the diabetic heart, supporting the merits of mild chelators for prevention of cardiovascular disease in diabetes.
doi:10.1155/2009/696378
PMCID: PMC2669293  PMID: 19390595
15.  Enrichment and Analysis of Non-enzymatically Glycated Peptides: Boronate Affinity Chromatography Coupled with Electron Transfer Dissociation Mass Spectrometry 
Journal of proteome research  2007;6(6):2323-2330.
Non-enzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. However, no effective high-throughput methods exist for identifying proteins containing this low abundance post-translational modification in bottom-up proteomic studies. In this report, phenylboronate affinity chromatography was used in a two-step enrichment scheme to selectively isolate first glycated proteins and then glycated, tryptic peptides from human serum glycated in vitro. Enriched peptides were subsequently analyzed by alternating electron transfer dissociation (ETD) and collision induced dissociation (CID) tandem mass spectrometry. ETD fragmentation mode permitted identification of a significantly higher number of glycated peptides (87.6% of all identified peptides) versus CID mode (17.0% of all identified peptides), when utilizing enrichment on first the protein and then the peptide level. This study illustrates that phenylboronate affinity chromatography coupled with LC-MS/MS and using ETD as the fragmentation mode is an efficient approach for analysis of glycated proteins and may have broad application in studies of diabetes mellitus.
doi:10.1021/pr070112q
PMCID: PMC2587408  PMID: 17488106
non-enzymatic glycation; boronate affinity enrichment; electron transfer dissociation; collision-induced dissociation; post-translational modification; liquid chromatography; mass spectrometry

Results 1-15 (15)