Search tips
Search criteria

Results 1-14 (14)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  EatA, an Immunogenic Protective Antigen of Enterotoxigenic Escherichia coli, Degrades Intestinal Mucin 
Infection and Immunity  2014;82(2):500-508.
Enterotoxigenic Escherichia coli (ETEC) is a major cause of morbidity and mortality due to infectious diarrhea in developing countries for which there is presently no effective vaccine. A central challenge in ETEC vaccinology has been the identification of conserved surface antigens to formulate a broadly protective vaccine. Here, we demonstrate that EatA, an immunogenic secreted serine protease of ETEC, contributes to virulence by degrading MUC2, the major protein present in the small intestinal mucous layer, and that removal of this barrier in vitro accelerates toxin access to the enterocyte surface. In addition, we demonstrate that vaccination with the recombinant secreted passenger domain of EatA (rEatAp) elicits high titers of antibody and is protective against intestinal infection with ETEC. These findings may have significant implications for development of both subunit and live-attenuated vaccines against ETEC and other enteric pathogens, including Shigella flexneri, that express similar proteins.
PMCID: PMC3911389  PMID: 24478066
2.  Enterotoxigenic Escherichia coli Secretes a Highly Conserved Mucin-Degrading Metalloprotease To Effectively Engage Intestinal Epithelial Cells 
Infection and Immunity  2014;82(2):509-521.
Enterotoxigenic Escherichia coli (ETEC) is a leading cause of death due to diarrheal illness among young children in developing countries, and there is currently no effective vaccine. Many elements of ETEC pathogenesis are still poorly defined. Here we demonstrate that YghJ, a secreted ETEC antigen identified in immunoproteomic studies using convalescent patient sera, is required for efficient access to small intestinal enterocytes and for the optimal delivery of heat-labile toxin (LT). Furthermore, YghJ is a highly conserved metalloprotease that influences intestinal colonization of ETEC by degrading the major mucins in the small intestine, MUC2 and MUC3. Genes encoding YghJ and its cognate type II secretion system (T2SS), which also secretes LT, are highly conserved in ETEC and exist in other enteric pathogens, including other diarrheagenic E. coli and Vibrio cholerae bacteria, suggesting that this mucin-degrading enzyme may represent a shared virulence feature of these important pathogens.
PMCID: PMC3911403  PMID: 24478067
3.  Wikipedia: A Key Tool for Global Public Health Promotion 
The Internet has become an important health information resource for patients and the general public. Wikipedia, a collaboratively written Web-based encyclopedia, has become the dominant online reference work. It is usually among the top results of search engine queries, including when medical information is sought. Since April 2004, editors have formed a group called WikiProject Medicine to coordinate and discuss the English-language Wikipedia’s medical content. This paper, written by members of the WikiProject Medicine, discusses the intricacies, strengths, and weaknesses of Wikipedia as a source of health information and compares it with other medical wikis. Medical professionals, their societies, patient groups, and institutions can help improve Wikipedia’s health-related entries. Several examples of partnerships already show that there is enthusiasm to strengthen Wikipedia’s biomedical content. Given its unique global reach, we believe its possibilities for use as a tool for worldwide health promotion are underestimated. We invite the medical community to join in editing Wikipedia, with the goal of providing people with free access to reliable, understandable, and up-to-date health information.
PMCID: PMC3221335  PMID: 21282098
Internet; Wikipedia; public health; health information; knowledge dissemination; patient education; medical education
4.  Two interacting binding sites for quinacrine derivatives in the active site of trypanothione reductase – a template for drug design 
The Journal of biological chemistry  2004;279(28):29493-29500.
Trypanothione reductase is a key enzyme in the trypanothione-based redox metabolism of pathogenic trypanosomes. Since this system is absent in humans, being replaced with glutathione and glutathione reductase, it offers a target for selective inhibition. The rational design of potent inhibitors requires accurate structures of enzyme-inhibitor complexes, but this is lacking for trypanothione reductase. We therefore used quinacrine mustard, an alkylating derivative of the competitive inhibitor quinacrine, to probe the active site of this dimeric flavoprotein. Quinacrine mustard irreversibly inactivates Trypanosoma cruzi trypanothione reductase, but not human glutathione reductase, in a time-dependent manner with a stoichiometry of two inhibitors bound per monomer. The rate of inactivation is dependent upon the oxidation state of trypanothione reductase, with the NADPH-reduced form being inactivated significantly faster than the oxidised form. Inactivation is slowed by clomipramine and a melarsen oxide-trypanothione adduct (both are competitive inhibitors) but accelerated by quinacrine. The structure of the trypanothione reductase-quinacrine mustard adduct was determined to 2.7 Å, revealing two molecules of inhibitor bound in the trypanothione-binding site. The acridine moieties interact with each other through π-stacking effects, and one acridine interacts in a similar fashion with a tryptophan residue. These interactions provide a molecular explanation for the differing effects of clomipramine and quinacrine on inactivation by quinacrine mustard. Synergism with quinacrine occurs as a result of these planar acridines being able to stack together in the active site cleft, thereby gaining an increased number of binding interactions, whereas antagonism occurs with non-planar molecules, such as clomipramine, where stacking is not possible.
PMCID: PMC3491871  PMID: 15102853
enzyme-inhibitor complex; Trypanosoma cruzi; trypanothione reductase; quinacrine mustard; X-ray diffraction
5.  Trypanothione S-transferase activity in a trypanosomatid ribosomal elongation factor 1B 
The Journal of biological chemistry  2004;279(26):27246-27256.
Trypanothione is a thiol unique to the Kinetoplastida and has been shown to be a vital component of their antioxidant defences. However, little is known as to the role of trypanothione in xenobiotic metabolism. A trypanothione S-transferase activity was detected in extracts of Leishmania major, L. infantum, L. tarentolae, Trypanosoma brucei and Crithidia fasciculata, but not Trypanosoma cruzi. No glutathione S-transferase activity was detected in any of these parasites. Trypanothione S-transferase was purified from C. fasciculata and shown to be a hexadecameric complex of three subunits with a relative molecular mass of 650,000. This enzyme complex was specific for the thiols trypanothione and glutathionylspermidine, and only used 1-chloro-2,4- dinitrobenzene from a range of glutathione S-transferases substrates. Peptide sequencing revealed that the three components were the alpha, beta and gamma subunits of ribosomal eukaryotic elongation factor 1B (eEF1B). Partial dissociation of the complex suggested that the S-transferase activity was associated with the gamma subunit. Moreover, Cibacron blue was found to be a tight-binding inhibitor and reactive blue 4 an irreversible time-dependent inhibitor that covalently modified only the gamma subunit. The rate of inactivation by reactive blue 4 was increased more than 600-fold in the presence of trypanothione and Cibacron blue protected the enzyme from inactivation by 1-chloro-2,4- dinitrobenzene, confirming that these dyes interact with the active site region. Two eEF1Bγ genes were cloned from C. fasciculata but recombinant C. fasciculata eEF1Bγ had no S-transferase activity, suggesting that eEF1Bγ is unstable in the absence of the other subunits.
PMCID: PMC3428924  PMID: 15073172
6.  Folate metabolic pathways in Leishmania 
Essays in Biochemistry  2011;51:63-80.
Trypanosomatid parasitic protozoans of the genus Leishmania are autotrophic for both folate and unconjugated pteridines. Leishmania salvage these metabolites from their mammalian hosts and insect vectors through multiple transporters. Within the parasite, folates are reduced by a bifunctional DHFR (dihydrofolate reductase)-TS (thymidylate synthase) and by a novel PTR1 (pteridine reductase 1), which reduces both folates and unconjugated pteridines. PTR1 can act as a metabolic bypass of DHFR inhibition, reducing the effectiveness of existing antifolate drugs. Leishmania possess a reduced set of folate-dependent metabolic reactions and can salvage many of the key products of folate metabolism from their hosts. For example, they lack purine synthesis, which normally requires 10-formyltetrahydrofolate, and instead rely on a network of purine salvage enzymes. Leishmania elaborate at least three pathways for the synthesis of the key metabolite 5,10-methylene-tetrahydrofolate, required for the synthesis of thymidylate, and for 10-formyltetrahydrofolate, whose presumptive function is for methionyl-tRNAMet formylation required for mitochondrial protein synthesis. Genetic studies have shown that the synthesis of methionine using 5-methyltetrahydrofolate is dispensable, as is the activity of the glycine cleavage complex, probably due to redundancy with serine hydroxymethyltransferase. Although not always essential, the loss of several folate metabolic enzymes results in attenuation or loss of virulence in animal models, and a null DHFR-TS mutant has been used to induce protective immunity. The folate metabolic pathway provides numerous opportunities for targeted chemotherapy, with strong potential for ‘repurposing’ of compounds developed originally for treatment of human cancers or other infectious agents.
PMCID: PMC3278214  PMID: 22023442
7.  The Role of the Mitochondrial Glycine Cleavage Complex in the Metabolism and Virulence of the Protozoan Parasite Leishmania major*S 
The Journal of biological chemistry  2007;283(1):155-165.
For the human pathogen Leishmania major, a key metabolic function is the synthesis of thymidylate, which requires 5,10-methylenetetrahydrofolate (5,10-CH2-THF). 5,10-CH2-THF can be synthesized from glycine by the mitochondrial glycine cleavage complex (GCC). Bioinformatic analysis revealed the four subunits of the GCC in the L. major genome, and the role of the GCC in parasite metabolism and virulence was assessed through studies of the P subunit (glycine decarboxylase (GCVP)). First, a tagged GCVP protein was expressed and localized to the parasite mitochondrion. Second, a gcvP− mutant was generated and shown to lack significant GCC activity using an indirect in vivo assay after incorporation of label from [2-14C]glycine into DNA. The gcvP− mutant grew poorly in the presence of excess glycine or minimal serine; these studies also established that L. major promastigotes require serine for optimal growth. Although gcvP− promastigotes and amastigotes showed normal virulence in macrophage infections in vitro, both forms of the parasite showed substantially delayed replication and lesion pathology in infections of both genetically susceptible or resistant mice. These data suggest that, as the physiology of the infection site changes during the course of infection, so do the metabolic constraints on parasite replication. This conclusion has great significance to the interpretation of metabolic requirements for virulence. Last, these studies call attention in trypanosomatid protozoa to the key metabolic intermediate 5,10-CH2-THF, situated at the junction of serine, glycine, and thymidylate metabolism. Notably, genome-based predictions suggest the related parasite Trypanosoma brucei is totally dependent on the GCC for 5,10-CH2-THF synthesis.
PMCID: PMC2963101  PMID: 17981801
In most organisms 10-formyl-tetrahydrofolate (10-CHO-THF) participates in the synthesis of purines in the cytosol and formylation of mitochondrial initiator methionyl-tRNAMet. Here we studied 10-CHO-THF biosynthesis in the protozoan parasite Leishmania major, a purine auxotroph. Two distinct synthetic enzymes are known, a bifunctional methylene-tetrahydrofolate dehydrogenase/cyclohydrolase (DHCH) or formyl-tetrahydrofolate ligase (FTL), and phylogenomic profiling revealed considerable diversity for these in trypanosomatids. All species surveyed contain a DHCH1, which was shown recently to be essential in L. major. A second DHCH2 occurred only in L. infantum, L. mexicana and T. cruzi, and as a pseudogene in L. major. DHCH2s bear N-terminal extensions and we showed a LiDHCH2-GFP fusion was targeted to the mitochondrion. FTLs were found in all species except Trypanosoma brucei. L. major ftl− null mutants were phenotypically normal in growth, differentiation, animal infectivity and sensitivity to a panel of pteridine analogs, but grew more slowly when starved for serine or glycine, as expected for amino acids that are substrates in C1-folate metabolism. Cell fractionation and western blotting showed that both L. major DHCH1 and FTL were localized to the cytosol and not the mitochondrion. These localization data predict that in L. major cytosolic 10-formyl-tetrahydrofolate must be transported into the mitochondrion to support methionyl-tRNAMet formylation. The retention in all the trypanosomatids of at least one enzyme involved in 10-formyl-tetrahydrofolate biosynthesis, and the essentiality of this metabolite in L. major, suggests that this pathway represents a promising new area for chemotherapeutic attack in these parasites.
PMCID: PMC2692634  PMID: 19450731
9.  Seeking Health Information Online: Does Wikipedia Matter? 
To determine the significance of the English Wikipedia as a source of online health information.
The authors measured Wikipedia's ranking on general Internet search engines by entering keywords from MedlinePlus, NHS Direct Online, and the National Organization of Rare Diseases as queries into search engine optimization software. We assessed whether article quality influenced this ranking. The authors tested whether traffic to Wikipedia coincided with epidemiological trends and news of emerging health concerns, and how it compares to MedlinePlus.
Cumulative incidence and average position of Wikipedia® compared to other Web sites among the first 20 results on general Internet search engines (Google®, Google UK®, Yahoo®, and MSN®), and page view statistics for selected Wikipedia articles and MedlinePlus pages.
Wikipedia ranked among the first ten results in 71–85% of search engines and keywords tested. Wikipedia surpassed MedlinePlus and NHS Direct Online (except for queries from the latter on Google UK), and ranked higher with quality articles. Wikipedia ranked highest for rare diseases, although its incidence in several categories decreased. Page views increased parallel to the occurrence of 20 seasonal disorders and news of three emerging health concerns. Wikipedia articles were viewed more often than MedlinePlus Topic (p = 0.001) but for MedlinePlus Encyclopedia pages, the trend was not significant (p = 0.07–0.10).
Based on its search engine ranking and page view statistics, the English Wikipedia is a prominent source of online health information compared to the other online health information providers studied.
PMCID: PMC2705249  PMID: 19390105
10.  PTR1-dependent synthesis of tetrahydrobiopterin contributes to oxidant susceptibility in the trypanosomatid protozoan parasite Leishmania major 
Current genetics  2009;55(3):287-299.
Leishmania must survive oxidative stress, but lack many classical antioxidant enzymes and rely heavily on trypanothione-dependent pathways. We used forward genetic screens to recover loci mediating oxidant resistance via overexpression in Leishmania major, which identified pteridine reductase 1 (PTR1). Comparisons of isogenic lines showed ptr1- null mutants were 18-fold more sensitive to H2O2 than PTR1-overproducing lines, and significant 3-5 fold differences were seen with a broad panel of oxidant-inducing agents. The toxicities of simple nitric oxide generators and other drug classes (except antifolates) were unaffected by PTR1 levels. H2O2 susceptibility could be modulated by exogenous biopterin but not folate, in a PTR1-but not dihydrofolate reductase-dependent manner, implicating H4B metabolism specifically. Neither H2O2 consumption, nor the level of intracellular oxidative stress, was affected by PTR1 levels. Coupled with the fact that reduced pteridines are at least 100-fold less abundant than cellular thiols), these data argue strongly that reduced pteridines act through a mechanism other than scavenging. The ability of unconjugated pteridines to counter oxidative stress has implications to infectivity and response to chemotherapy. Since the intracellular pteridine levels of Leishmania can be readily manipulated, these organisms offer a powerful setting for the dissection of pteridine-dependent oxidant susceptibility in higher eukaryotes.
PMCID: PMC2759280  PMID: 19396443
11.  Methylene tetrahydrofolate dehydrogenase/cyclohydrolase and the synthesis of 10-CHO-THF are essential in Leishmania major 
Molecular microbiology  2009;71(6):1386-1401.
10-formyl tetrahydrofolate is a key metabolite in C1 carbon metabolism, arising through the action of formate-tetrahydrofolate ligase (FTL) and/or 5,10-methenyltetrahydrofolate cyclohydrolase/5,10-methylene tetrahydrofolate dehydrogenase (DHCH). Leishmania major possesses single DHCH1 and FTL genes encoding exclusively cytosolic proteins, unlike other organisms where isoforms occur in the mitochondrion as well. Recombinant DHCH1 showed typical NADP+-dependent methylene tetrahydrofolate DH and 5,10-methenyltetrahydrofolate CH activities, and the DH activity was potently inhibited by a substrate analog 5,10-CO-THF (Ki 105 nM), as was Leishmania growth (EC50 1.1 μM). Previous studies showed null ftl− mutants were normal, raising the possibility that loss of the purine synthetic pathway had rendered 10-CHO-THF dispensable in evolution. We were unable to generate dhch1− null mutants by gene replacement, despite using a wide spectrum of nutritional supplements expected to bypass DHCH function. We applied an improved method for testing essential genes in Leishmania, based upon segregational loss of episomal complementing genes rather than transfection; analysis of ~1400 events without successful loss of DHCH1 again established its requirement. Lastly, we employed ‘genetic metabolite complementation’ using ectopically expressed FTL as an alternative source of 10-CHO-THF; now dhch1− null parasites were readily obtained. These data establish a requirement for 10-CHO tetrahydrofolate metabolism in L. major, and provide genetic and pharmacological validation of DHCH as a target for chemotherapy, in this and potentially other protozoan parasites.
PMCID: PMC2692627  PMID: 19183277
trypanosomatid protozoa; C1-THF metabolism; 1 carbon transfer; chemotherapy; formyl methionyl-tRNA
12.  Roles of Trypanothione S-Transferase and Tryparedoxin Peroxidase in Resistance to Antimonials▿  
The clinical value of antimonial drugs, the mainstay therapy for leishmaniasis, is now threatened by the emergence of acquired drug resistance, and a comprehensive understanding of the underlying mechanisms is required. Using the model organism Leishmania tarentolae, we have examined the role of trypanothione S-transferase (TST) in trivalent antimony [Sb(III)] resistance. TST has S-transferase activity with substrates such as chlorodinitrobenzene as well as peroxidase activity with alkyl and aryl hydroperoxides but not with hydrogen peroxide. Although S-transferase activity and TST protein levels were unchanged in Sb(III)-sensitive and -resistant lines, rates of metabolism of hydrogen peroxide, t-butyl hydroperoxide, and cumene hydroperoxide were significantly increased. Elevated peroxidase activities were shown to be both trypanothione and tryparedoxin dependent and were associated with the overexpression of classical tryparedoxin peroxidase (TryP) in the cytosol of L. tarentolae. The role of TryP in Sb(III) resistance was verified by overexpression of the recombinant Leishmania major protein in Sb(III)-sensitive promastigotes. An approximate twofold increase in the level of TryP activity in this transgenic cell line was accompanied by a significant decrease in sensitivity to Sb(III) (twofold; P < 0.001). Overexpression of an enzymatically inactive TryP failed to result in Sb(III) resistance. This indicates that TryP-dependent resistance is not due to sequestration of Sb(III) and suggests that enhanced antioxidant defenses may well be a key feature of mechanisms of clinical resistance to antimonial drugs.
PMCID: PMC2292513  PMID: 18250189
13.  A Gene Wiki for Community Annotation of Gene Function 
PLoS Biology  2008;6(7):e175.
This manuscript describes the creation of comprehensive gene wiki, seeded with data from public domain sources, which will enable and encourage community annotation of gene function.
PMCID: PMC2443188  PMID: 18613750
14.  Crystallization and preliminary X-ray analysis of Leishmania major glyoxalase I 
The detoxification enzyme glyoxalase I from L. major has been crystallized. Preliminary molecular-replacement calculations indicate the presence of three glyoxalase I dimers in the asymmetric unit.
Glyoxalase I (GLO1) is a putative drug target for trypanosomatids, which are pathogenic protozoa that include the causative agents of leishmaniasis. Significant sequence and functional differences between Leishmania major and human GLO1 suggest that it may make a suitable template for rational inhibitor design. L. major GLO1 was crystallized in two forms: the first is extremely disordered and does not diffract, while the second, an orthorhombic form, produces diffraction to 2.0 Å. Molecular-replacement calculations indicate that there are three GLO1 dimers in the asymmetric unit, which take up a helical arrangement with their molecular dyads arranged approximately perpendicular to the c axis. Further analysis of these data are under way.
PMCID: PMC1952357  PMID: 16511153
glyoxalase I; leishmaniasis

Results 1-14 (14)