PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118 
Acta Crystallographica Section F  2012;68(Pt 12):1427-1433.
The crystal structure of ribose 5-phosphate isomerase has been determined to 1.72 Å resolution and is presented with a brief comparison to other known ribose 5-phosphate isomerase A structures.
The structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC188 has been determined at 1.72 Å resolution. The structure was solved by molecular replacement, which identified the functional homodimer in the asymmetric unit. Despite only showing 57% sequence identity to its closest homologue, the structure adopted the typical α and β d-­ribose 5-­phosphate isomerase fold. Comparison to other related structures revealed high homology in the active site, allowing a model of the substrate-bound protein to be proposed. The determination of the structure was expedited by the use of in situ crystallization-plate screening on beamline I04-1 at Diamond Light Source to identify well diffracting protein crystals prior to routine cryocrystallography.
doi:10.1107/S174430911204273X
PMCID: PMC3509960  PMID: 23192019
ribose 5-phosphate isomerase; in situ diffraction; Lactobacillus salivarius
2.  Codon optimization and factorial screening for enhanced soluble expression of human ciliary neurotrophic factor in Escherichia coli 
BMC Biotechnology  2014;14(1):92.
Background
Neurotrophic factors influence survival, differentiation, proliferation and death of neuronal cells within the central nervous system. Human ciliary neurotrophic factor (hCNTF) has neuroprotective properties and is also known to influence energy balance. Consequently, hCNTF has potential therapeutic applications in neurodegenerative, obesity and diabetes related disorders. Clinical and biological applications of hCNTF necessitate a recombinant expression system to produce large amounts of functional protein in soluble form. Earlier attempts to express hCNTF in Escherichia coli (E. coli) were limited by low amounts and the need to refold from inclusion bodies.
Results
In this report, we describe a strategy to effectively identify constructs and conditions for soluble expression of hCNTF in E. coli. Small-scale expression screening with soluble fusion tags identified many conditions that yielded soluble expression. Codon optimized 6-His-hCNTF construct showed soluble expression in all the conditions tested. Large-scale culture of the 6-His-hCNTF construct yielded high (10 – 20 fold) soluble expression (8 – 9 fold) as compared to earlier published reports. Functional activity of recombinant 6-His-hCNTF produced was confirmed by its binding to hCNTF receptor (hCNTFRα) with an EC50 = 36 nM.
Conclusion
Our results highlight the combination of codon optimization and screening soluble fusion tags as a successful strategy for high yielding soluble expression of hCNTF in E. coli. Codon optimization of the hCNTF sequence seems to be sufficient for soluble expression of hCNTF. The combined approach of codon optimization and soluble fusion tag screen can be an effective strategy for soluble expression of pharmaceutical proteins in E. coli.
Electronic supplementary material
The online version of this article (doi:10.1186/s12896-014-0092-x) contains supplementary material, which is available to authorized users.
doi:10.1186/s12896-014-0092-x
PMCID: PMC4237735  PMID: 25394427
Neurotrophic factors; Human CNTF; Codon optimization; Recombinant soluble expression; E. coli
3.  S-Adenosyl-S-carboxymethyl-l-homocysteine: a novel cofactor found in the putative tRNA-modifying enzyme CmoA 
The putative methyltransferase CmoA is involved in the nucleoside modification of transfer RNA. X-ray crystallography and mass spectrometry are used to show that it contains a novel SAM derivative, S-adenosyl-S-carboxymethyl-l-homocysteine, in which the donor methyl group is replaced by a carboxymethyl group.
Uridine at position 34 of bacterial transfer RNAs is commonly modified to uridine-5-oxyacetic acid (cmo5U) to increase the decoding capacity. The protein CmoA is involved in the formation of cmo5U and was annotated as an S-adenosyl-l-methionine-dependent (SAM-dependent) methyltransferase on the basis of its sequence homology to other SAM-containing enzymes. However, both the crystal structure of Escherichia coli CmoA at 1.73 Å resolution and mass spectrometry demonstrate that it contains a novel cofactor, S-adenosyl-S-carboxymethyl-l-homocysteine (SCM-SAH), in which the donor methyl group is substituted by a carboxy­methyl group. The carboxyl moiety forms a salt-bridge interaction with Arg199 that is conserved in a large group of CmoA-related proteins but is not conserved in other SAM-containing enzymes. This raises the possibility that a number of enzymes that have previously been annotated as SAM-dependent are in fact SCM-SAH-dependent. Indeed, inspection of electron density for one such enzyme with known X-­ray structure, PDB entry 1im8, suggests that the active site contains SCM-SAH and not SAM.
doi:10.1107/S0907444913004939
PMCID: PMC3663124  PMID: 23695253
SCM-SAH; Escherichia coli; putative tRNA-modification enzyme; cmo5U biosynthesis
4.  Structural and Functional Characterization of the Kindlin-1 Pleckstrin Homology Domain* 
The Journal of Biological Chemistry  2012;287(52):43246-43261.
Background: Kindlins are essential co-activators with talin of integrins.
Results: Kindlin-1 PH domain is necessary for integrin activation and has low affinity for PtdInsP species partly determined by a salt bridge across its binding pocket.
Conclusion: The PH domain is necessary to kindlins, localizing them to integrins, and displays subtle structural variations having major functional effects.
Significance: Targeting of kindlins partly depends on their PH domains.
Inside-out activation of integrins is mediated via the binding of talin and kindlin to integrin β-subunit cytoplasmic tails. The kindlin FERM domain is interrupted by a pleckstrin homology (PH) domain within its F2 subdomain. Here, we present data confirming the importance of the kindlin-1 PH domain for integrin activation and its x-ray crystal structure at a resolution of 2.1 Å revealing a C-terminal second α-helix integral to the domain but found only in the kindlin protein family. An isoform-specific salt bridge occludes the canonical phosphoinositide binding site, but molecular dynamics simulations display transient switching to an alternative open conformer. Molecular docking reveals that the opening of the pocket would enable potential ligands to bind within it. Although lipid overlay assays suggested the PH domain binds inositol monophosphates, surface plasmon resonance demonstrated weak affinities for inositol 3,4,5-triphosphate (Ins(3,4,5)P3; KD ∼100 μm) and no monophosphate binding. Removing the salt bridge by site-directed mutagenesis increases the PH domain affinity for Ins(3,4,5)P3 as measured by surface plasmon resonance and enables it to bind PtdIns(3,5)P2 on a dot-blot. Structural comparison with other PH domains suggests that the phosphate binding pocket in the kindlin-1 PH domain is more occluded than in kindlins-2 and -3 due to its salt bridge. In addition, the apparent affinity for Ins(3,4,5)P3 is affected by the presence of PO4 ions in the buffer. We suggest the physiological ligand of the kindlin-1 PH domain is most likely not an inositol phosphate but another phosphorylated species.
doi:10.1074/jbc.M112.422089
PMCID: PMC3527912  PMID: 23132860
Cell Adhesion; Cell Biology; Inositol Phosphates; Integrins; Molecular Dynamics; Surface Plasmon Resonance (SPR); X-ray Crystallography; Kindlins; Pleckstrin Homology Domains
5.  Structure and Assembly of a Trans-Periplasmic Channel for Type IV Pili in Neisseria meningitidis 
PLoS Pathogens  2012;8(9):e1002923.
Type IV pili are polymeric fibers which protrude from the cell surface and play a critical role in adhesion and invasion by pathogenic bacteria. The secretion of pili across the periplasm and outer membrane is mediated by a specialized secretin protein, PilQ, but the way in which this large channel is formed is unknown. Using NMR, we derived the structures of the periplasmic domains from N. meningitidis PilQ: the N-terminus is shown to consist of two β-domains, which are unique to the type IV pilus-dependent secretins. The structure of the second β-domain revealed an eight-stranded β-sandwich structure which is a novel variant of the HSP20-like fold. The central part of PilQ consists of two α/β fold domains: the structure of the first of these is similar to domains from other secretins, but with an additional α-helix which links it to the second α/β domain. We also determined the structure of the entire PilQ dodecamer by cryoelectron microscopy: it forms a cage-like structure, enclosing a cavity which is approximately 55 Å in internal diameter at its largest extent. Specific regions were identified in the density map which corresponded to the individual PilQ domains: this allowed us to dock them into the cryoelectron microscopy density map, and hence reconstruct the entire PilQ assembly which spans the periplasm. We also show that the C-terminal domain from the lipoprotein PilP, which is essential for pilus assembly, binds specifically to the first α/β domain in PilQ and use NMR chemical shift mapping to generate a model for the PilP:PilQ complex. We conclude that passage of the pilus fiber requires disassembly of both the membrane-spanning and the β-domain regions in PilQ, and that PilP plays an important role in stabilising the PilQ assembly during secretion, through its anchorage in the inner membrane.
Author Summary
Many bacteria which cause infectious disease in humans use large fibers, called pili, to attach to the surfaces of the cells of the host. Pili are also involved in a particular type of movement of bacteria, termed twitching motility, and the uptake of DNA into the bacterial cell. They are made up of thousands of copies of a specific pilin protein. The process of assembly of pili is complicated: it requires the cooperative action of a group of proteins which span both the inner and outer membranes in bacteria. Here we have determined the structure of part of the machinery which forms a channel between both membranes. One of the proteins, PilQ, is organized in a segmental way, being divided into separate domains which are jointed, hence allowing them to move relative to each other. We infer that this movement is critical to the functioning of the channel, which must open up to allow passage of the pilus fiber. We suggest that the function of the other protein we have studied, PilP, is to maintain the PilQ assembly during pilus secretion.
doi:10.1371/journal.ppat.1002923
PMCID: PMC3441751  PMID: 23028322
6.  Mapping Protein–Protein Interactions within a Stable Complex of DNA Primase and DnaB Helicase from Bacillus stearothermophilus† 
Biochemistry  2000;39(1):171-182.
For the first time, we demonstrate directly a stable complex between a bacterial DnaG (primase) and DnaB (helicase). Utilizing fragments of both proteins, we are able to dissect interactions within this complex and provide direct evidence that it is the C-terminal domain of primase that interacts with DnaB. Furthermore, this C-terminal domain is sufficient to induce maximal stimulation of the helicase and ATPase activities of DnaB. However, the region of DnaB that interacts with the C-terminal domain of primase appears to comprise a surface on DnaB that includes regions from both of the previously identified N- and C-terminal domains. Using a combination of biochemical and physical techniques, we show that the helicase–primase complex comprises one DnaB hexamer and either two or three molecules of DnaG. Our results show that in Bacillus stearothermophilus the helicase–primase interaction at the replication fork may not be transient, as was shown to be the case in Escherichia coli. Instead, primase appears to interact with the helicase forming a tighter complex with enhanced ATPase and helicase activities.
PMCID: PMC3188359  PMID: 10625492
7.  Crystal Structures of Penicillin-Binding Protein 3 from Pseudomonas aeruginosa: Comparison of Native and Antibiotic-Bound Forms 
Journal of Molecular Biology  2011;405(1-3):173-184.
We report the first crystal structures of a penicillin-binding protein (PBP), PBP3, from Pseudomonas aeruginosa in native form and covalently linked to two important β-lactam antibiotics, carbenicillin and ceftazidime. Overall, the structures of apo and acyl complexes are very similar; however, variations in the orientation of the amino-terminal membrane-proximal domain relative to that of the carboxy-terminal transpeptidase domain indicate interdomain flexibility. Binding of either carbenicillin or ceftazidime to purified PBP3 increases the thermostability of the enzyme significantly and is associated with local conformational changes, which lead to a narrowing of the substrate-binding cleft. The orientations of the two β-lactams in the active site and the key interactions formed between the ligands and PBP3 are similar despite differences in the two drugs, indicating a degree of flexibility in the binding site. The conserved binding mode of β-lactam-based inhibitors appears to extend to other PBPs, as suggested by a comparison of the PBP3/ceftazidime complex and the Escherichia coli PBP1b/ceftoxamine complex. Since P. aeruginosa is an important human pathogen, the structural data reveal the mode of action of the frontline antibiotic ceftazidime at the molecular level. Improved drugs to combat infections by P. aeruginosa and related Gram-negative bacteria are sought and our study provides templates to assist that process and allows us to discuss new ways of inhibiting PBPs.
doi:10.1016/j.jmb.2010.10.024
PMCID: PMC3025346  PMID: 20974151
PBP, penicillin-binding protein; HMM, high molecular mass; LMM, low molecular mass; PDB, Protein Data Bank; ESRF, European Synchrotron Radiation Facility; anti-bacterial; Pseudomonas aeruginosa; carbenicillin; ceftazidime; enzyme structure
8.  Novel structural features in two ZHX homeodomains derived from a systematic study of single and multiple domains 
Background
Zhx1 to 3 (zinc-fingers and homeoboxes) form a set of paralogous genes encoding multi-domain proteins. ZHX proteins consist of two zinc fingers followed by five homeodomains. ZHXs have biological roles in cell cycle control by acting as co-repressors of the transcriptional regulator Nuclear Factor Y. As part of a structural genomics project we have expressed single and multi-domain fragments of the different human ZHX genes for use in structure determination.
Results
A total of 30 single and multiple domain ZHX1-3 constructs selected from bioinformatics protocols were screened for soluble expression in E. coli using high throughput methodologies. Two homeodomains were crystallized leading to structures for ZHX1 HD4 and ZHX2 HD2. ZHX1 HD4, although closest matched to homeodomains from 'homez' and 'engrailed', showed structural differences, notably an additional C-terminal helix (helix V) which wrapped over helix I thereby making extensive contacts. Although ZHX2 HD2-3 was successfully expressed and purified, proteolysis occurred during crystallization yielding crystals of just HD2. The structure of ZHX2 HD2 showed an unusual open conformation with helix I undergoing 'domain-swapping' to form a homodimer.
Conclusions
Although multiple-domain constructs of ZHX1 selected by bioinformatics studies could be expressed solubly, only single homeodomains yielded crystals. The crystal structure of ZHX1 HD4 showed additional hydrophobic interactions relative to many known homeodomains via extensive contacts formed by the novel C-terminal helix V with, in particular, helix I. Additionally, the replacement of some charged covariant residues (which are commonly observed to form salt bridges in non-homeotherms such as the Drosophila 'engrailed' homeodomain), by apolar residues further increases hydrophobic contacts within ZHX1 HD4, and potentially stability, relative to engrailed homeodomain. ZHX1 HD4 helix V points away from the normally observed DNA major groove binding site on homeodomains and thus would not obstruct the putative binding of nucleic acid. In contrast, for ZHX2 HD2 the observed altered conformation involving rearrangement of helix I, relative to the canonical homeodomain fold, disrupts the normal DNA binding site, although protein-protein binding is possible as observed in homodimer formation.
doi:10.1186/1472-6807-10-13
PMCID: PMC2893186  PMID: 20509910
9.  The Phenylmethylthiazolylthiourea Nonnucleoside Reverse Transcriptase (RT) Inhibitor MSK-076 Selects for a Resistance Mutation in the Active Site of Human Immunodeficiency Virus Type 2 RT 
Journal of Virology  2004;78(14):7427-7437.
The phenylmethylthiazolylthiourea (PETT) derivative MSK-076 shows, besides high potency against human immunodeficiency virus type 1 (HIV-1), marked activity against HIV-2 (50% effective concentration, 0.63 μM) in cell culture. Time-of-addition experiments pointed to HIV-2 reverse transcriptase (RT) as the target of action of MSK-076. Recombinant HIV-2 RT was inhibited by MSK-076 at 23 μM. As was also found for HIV-1 RT, MSK-076 inhibited HIV-2 RT in a noncompetitive manner with respect to dGTP and poly(rC)·oligo(dG) as the substrate and template-primer, respectively. MSK-076 selected for A101P and G112E mutations in HIV-2 RT and for K101E, Y181C, and G190R mutations in HIV-1 RT. The selected mutated strains of HIV-2 were fully resistant to MSK-076, and the mutant HIV-2 RT enzymes into which the A101P and/or G112E mutation was introduced by site-directed mutagenesis showed more than 50-fold resistance to MSK-076. Mapping of the resistance mutations to the HIV-2 RT structure ascertained that A101P is located at a position equivalent to the nonnucleoside RT inhibitor (NNRTI)-binding site of HIV-1 RT. G112E, however, is distal to the putative NNRTI-binding site in HIV-2 RT but close to the active site, implying a novel molecular mode of action and mechanism of resistance. Our findings have important implications for the development of new NNRTIs with pronounced activity against a wider range of lentiviruses.
doi:10.1128/JVI.78.14.7427-7437.2004
PMCID: PMC434123  PMID: 15220416

Results 1-9 (9)