PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  The AEROPATH project targeting Pseudomonas aeruginosa: crystallographic studies for assessment of potential targets in early-stage drug discovery 
A focused strategy has been directed towards the structural characterization of selected proteins from the bacterial pathogen P. aeruginosa. The objective is to exploit the resulting structural data, in combination with ligand-binding studies, and to assess the potential of these proteins for early-stage antimicrobial drug discovery.
Bacterial infections are increasingly difficult to treat owing to the spread of antibiotic resistance. A major concern is Gram-negative bacteria, for which the discovery of new antimicrobial drugs has been particularly scarce. In an effort to accelerate early steps in drug discovery, the EU-funded AEROPATH project aims to identify novel targets in the opportunistic pathogen Pseudomonas aeruginosa by applying a multidisciplinary approach encompassing target validation, structural characterization, assay development and hit identification from small-molecule libraries. Here, the strategies used for target selection are described and progress in protein production and structure analysis is reported. Of the 102 selected targets, 84 could be produced in soluble form and the de novo structures of 39 proteins have been determined. The crystal structures of eight of these targets, ranging from hypothetical unknown proteins to metabolic enzymes from different functional classes (PA1645, PA1648, PA2169, PA3770, PA4098, PA4485, PA4992 and PA5259), are reported here. The structural information is expected to provide a firm basis for the improvement of hit compounds identified from fragment-based and high-throughput screening campaigns.
doi:10.1107/S1744309112044739
PMCID: PMC3539698  PMID: 23295481
protein structure; Gram-negative bacteria; Pseudomonas aeruginosa; infectious diseases; structure-based inhibitor design
2.  Structure of Trypanosoma brucei glutathione synthetase: Domain and loop alterations in the catalytic cycle of a highly conserved enzyme 
Graphical abstract
The close similarity of Trypanosoma brucei glutathione synthetase to the human orthologue indicates that the enzyme would be a difficult target for drug discovery.
Glutathione synthetase catalyses the synthesis of the low molecular mass thiol glutathione from l-γ-glutamyl-l-cysteine and glycine. We report the crystal structure of the dimeric enzyme from Trypanosoma brucei in complex with the product glutathione. The enzyme belongs to the ATP-grasp family, a group of enzymes known to undergo conformational changes upon ligand binding. The T. brucei enzyme crystal structure presents two dimers in the asymmetric unit. The structure reveals variability in the order and position of a small domain, which forms a lid for the active site and serves to capture conformations likely to exist during the catalytic cycle. Comparisons with orthologous enzymes, in particular from Homo sapiens and Saccharomyces cerevisae, indicate a high degree of sequence and structure conservation in part of the active site. Structural differences that are observed between the orthologous enzymes are assigned to different ligand binding states since key residues are conserved. This suggests that the molecular determinants of ligand recognition and reactivity are highly conserved across species. We conclude that it would be difficult to target the parasite enzyme in preference to the host enzyme and therefore glutathione synthetase may not be a suitable target for antiparasitic drug discovery.
doi:10.1016/j.molbiopara.2009.12.011
PMCID: PMC2845819  PMID: 20045436
AMP-PNP, adenylyl imidodiphosphate; GS, glutathione synthetase; GSH, glutathione; HEPES, 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid, N-(2-hydroxyethyl)piperazine-N-(2-ethanesulfonic acid); MOPS, 3-(N-morpholino)-propanesulfonic acid; NCS, non-crystallographic symmetry; Tb, Trypanosoma brucei; TEV, tobacco etch virus; TLS, translation/libration/screw; TSA, trypanothione synthetase; T[SH]2, trypanothione; ATP-grasp; Glutathione; Glutathione synthetase; Trypanosoma brucei; Trypanothione; X-ray structure
3.  Characterization of Aquifex aeolicus 4-diphosphocytidyl-2C-methyl-d-erythritol kinase – ligand recognition in a template for antimicrobial drug discovery 
The Febs Journal  2008;275(11):2779-2794.
4-Diphosphocytidyl-2C-methyl-d-erythritol kinase (IspE) catalyses the ATP-dependent conversion of 4-diphosphocytidyl-2C-methyl-d-erythritol (CDPME) to 4-diphosphocytidyl-2C-methyl-d-erythritol 2-phosphate with the release of ADP. This reaction occurs in the non-mevalonate pathway of isoprenoid precursor biosynthesis and because it is essential in important microbial pathogens and absent from mammals it represents a potential target for anti-infective drugs. We set out to characterize the biochemical properties, determinants of molecular recognition and reactivity of IspE and report the cloning and purification of recombinant Aquifex aeolicus IspE (AaIspE), kinetic data, metal ion, temperature and pH dependence, crystallization and structure determination of the enzyme in complex with CDP, CDPME and ADP. In addition, 4-fluoro-3,5-dihydroxy-4-methylpent-1-enylphosphonic acid (compound 1) was designed to mimic a fragment of the substrate, a synthetic route to 1 was elucidated and the complex structure determined. Surprisingly, this ligand occupies the binding site for the ATP α-phosphate not the binding site for the methyl-d-erythritol moiety of CDPME. Gel filtration and analytical ultracentrifugation indicate that AaIspE is a monomer in solution. The enzyme displays the characteristic α/β galacto-homoserine-mevalonate-phosphomevalonate kinase fold, with the catalytic centre positioned in a deep cleft between the ATP- and CDPME-binding domains. Comparisons indicate a high degree of sequence conservation on the IspE active site across bacterial species, similarities in structure, specificity of substrate recognition and mechanism. The biochemical characterization, attainment of well-ordered and reproducible crystals and the models resulting from the analyses provide reagents and templates to support the structure-based design of broad-spectrum antimicrobial agents.
doi:10.1111/j.1742-4658.2008.06418.x
PMCID: PMC2655357  PMID: 18422643
enzyme–ligand complex; GHMP kinase; isoprenoid biosynthesis; molecular recognition; non-mevalonate pathway
4.  Structural and mechanistic insights into type II trypanosomatid tryparedoxin-dependent peroxidases 
Biochemical Journal  2008;414(Pt 3):375-381.
TbTDPX (Trypanosoma brucei tryparedoxin-dependent peroxidase) is a genetically validated drug target in the fight against African sleeping sickness. Despite its similarity to members of the GPX (glutathione peroxidase) family, TbTDPX2 is functional as a monomer, lacks a selenocysteine residue and relies instead on peroxidatic and resolving cysteine residues for catalysis and uses tryparedoxin rather than glutathione as electron donor. Kinetic studies indicate a saturable Ping Pong mechanism, unlike selenium-dependent GPXs, which display infinite Km and Vmax values. The structure of the reduced enzyme at 2.1 Å (0.21 nm) resolution reveals that the catalytic thiol groups are widely separated [19 Å (0.19 nm)] and thus unable to form a disulphide bond without a large conformational change in the secondary-structure architecture, as reported for certain plant GPXs. A model of the oxidized enzyme structure is presented and the implications for small-molecule inhibition are discussed.
doi:10.1042/BJ20080889
PMCID: PMC2552391  PMID: 18522537
dithiol-dependent peroxidase; drug discovery; glutathione peroxidase; Leishmania; Trypanosoma; trypanothione; GPX, glutathione peroxidase; His6, hexahistidine; Lm, Leishmania major; PEG, poly(ethylene glycol); Pt, Populus trichocarpaxdeltoides (hybrid poplar); r.m.s.d., root mean square deviation; Tb, Trypanosoma brucei; TDPX, tryparedoxin-dependent peroxidase; TryX, tryparedoxin
5.  The Synthesis of UDP-N-acetylglucosamine Is Essential for Bloodstream Form Trypanosoma brucei in Vitro and in Vivo and UDP-N-acetylglucosamine Starvation Reveals a Hierarchy in Parasite Protein Glycosylation*S⃞ 
The Journal of Biological Chemistry  2008;283(23):16147-16161.
A gene encoding Trypanosoma brucei UDP-N-acetylglucosamine pyrophosphorylase was identified, and the recombinant protein was shown to have enzymatic activity. The parasite enzyme is unusual in having a strict substrate specificity for N-acetylglucosamine 1-phosphate and in being located inside a peroxisome-like microbody, the glycosome. A bloodstream form T. brucei conditional null mutant was constructed and shown to be unable to sustain growth in vitro or in vivo under nonpermissive conditions, demonstrating that there are no alternative metabolic or nutritional routes to UDP-N-acetylglucosamine and providing a genetic validation for the enzyme as a potential drug target. The conditional null mutant was also used to investigate the effects of N-acetylglucosamine starvation in the parasite. After 48 h under nonpermissive conditions, about 24 h before cell lysis, the status of parasite glycoprotein glycosylation was assessed. Under these conditions, UDP-N-acetylglucosamine levels were less than 5% of wild type. Lectin blotting and fluorescence microscopy with tomato lectin revealed that poly-N-acetyllactosamine structures were greatly reduced in the parasite. The principal parasite surface coat component, the variant surface glycoprotein, was also analyzed. Endoglycosidase digestions and mass spectrometry showed that, under UDP-N-acetylglucosamine starvation, the variant surface glycoprotein was specifically underglycosylated at its C-terminal Asn-428 N-glycosylation site. The significance of this finding, with respect to the hierarchy of site-specific N-glycosylation in T. brucei, is discussed.
doi:10.1074/jbc.M709581200
PMCID: PMC2414269  PMID: 18381290
6.  Trypanosoma brucei UDP-galactose-4′-epimerase in ternary complex with NAD+ and the substrate analogue UDP-4-deoxy-4-fluoro-α-d-galactose 
The structure of recombinant T. brucei UDP-galactose-4′-epimerase cocrystallized with NAD+ and the substrate analogue UDP-4-deoxy-4-fluoro-α-d-galactose has been determined at medium resolution. Comparisons with structures of human and E. coli UDP-galactose-4′-epimerase–ligand complexes reveal that the hexose moieties are able to adopt different orientations in the active site.
The structure of the NAD-dependent oxidoreductase UDP-galactose-4′-epimerase from Trypanosoma brucei in complex with cofactor and the substrate analogue UDP-4-deoxy-4-fluoro-α-d-galactose has been determined using diffraction data to 2.7 Å resolution. Despite the high level of sequence and structure conservation between the trypanosomatid enzyme and those from humans, yeast and bacteria, the binding of the 4-fluoro-α-d-galactose moiety is distinct from previously reported structures. Of particular note is the observation that when bound to the T. brucei enzyme, the galactose moiety of this fluoro-derivative is rotated approximately 180° with respect to the orientation of the hexose component of UDP-glucose when in complex with the human enzyme. The architecture of the catalytic centre is designed to effectively bind different orientations of the hexose, a finding that is consistent with a mechanism that requires the sugar to maintain a degree of flexibility within the active site.
doi:10.1107/S1744309106028740
PMCID: PMC2242870  PMID: 16946458
short-chain dehydrogenase/reductases; Trypanosoma brucei; UDP-galactose-4′-epimerase; UDP-4-deoxy-4-fluoro-α-d-galactose
7.  High-resolution complex of papain with remnants of a cysteine protease inhibitor derived from Trypanosoma brucei  
Attempts to crystallize a complex of papain (C. papaya) with a cysteine protease inhibitor from the parasitic pathogen T. brucei failed. However, over an extended period the mixture produced an ordered crystal of the protease carrying two peptide fragments in the active site. These correspond to dipeptides and tripeptides that are assigned as fragments of the inhibitor, which has presumably suffered proteolytic cleavage.
Attempts to cocrystallize the cysteine protease papain derived from the latex of Carica papaya with an inhibitor of cysteine proteases (ICP) from Trypanosoma brucei were unsuccessful. However, crystals of papain that diffracted to higher resolution, 1.5 Å, than other crystals of this archetypal cysteine protease were obtained, so the analysis was continued. Surprisingly, the substrate-binding cleft was occupied by two short peptide fragments which have been assigned as remnants of ICP. Comparisons reveal that these peptides bind in the active site in a manner similar to that of the human cysteine protease inhibitor stefin B when it is complexed to papain. The assignment of the fragment sequences is consistent with the specificity of the protease.
doi:10.1107/S1744309106014849
PMCID: PMC2243108  PMID: 16754967
papain; cysteine protease; inhibitors; Trypanosoma brucei
8.  Dihydroquinazolines as a Novel Class of Trypanosoma brucei Trypanothione Reductase Inhibitors: Discovery, Synthesis, and Characterization of their Binding Mode by Protein Crystallography 
Journal of Medicinal Chemistry  2011;54(19):6514-6530.
Trypanothione reductase (TryR) is a genetically validated drug target in the parasite Trypanosoma brucei, the causative agent of human African trypanosomiasis. Here we report the discovery, synthesis, and development of a novel series of TryR inhibitors based on a 3,4-dihydroquinazoline scaffold. In addition, a high resolution crystal structure of TryR, alone and in complex with substrates and inhibitors from this series, is presented. This represents the first report of a high resolution complex between a noncovalent ligand and this enzyme. Structural studies revealed that upon ligand binding the enzyme undergoes a conformational change to create a new subpocket which is occupied by an aryl group on the ligand. Therefore, the inhibitor, in effect, creates its own small binding pocket within the otherwise large, solvent exposed active site. The TryR–ligand structure was subsequently used to guide the synthesis of inhibitors, including analogues that challenged the induced subpocket. This resulted in the development of inhibitors with improved potency against both TryR and T. brucei parasites in a whole cell assay.
doi:10.1021/jm200312v
PMCID: PMC3188286  PMID: 21851087
9.  Chemical, genetic and structural assessment of pyridoxal kinase as a drug target in the African trypanosome 
Molecular Microbiology  2012;86(1):51-64.
Pyridoxal-5′-phosphate (vitamin B6) is an essential cofactor for many important enzymatic reactions such as transamination and decarboxylation. African trypanosomes are unable to synthesise vitamin B6de novo and rely on uptake of B6 vitamers such as pyridoxal and pyridoxamine from their hosts, which are subsequently phosphorylated by pyridoxal kinase (PdxK). A conditional null mutant of PdxK was generated in Trypanosoma brucei bloodstream forms showing that this enzyme is essential for growth of the parasite in vitro and for infectivity in mice. Activity of recombinant T. brucei PdxK was comparable to previously published work having a specific activity of 327 ± 13 mU mg−1 and a Kmapp with respect to pyridoxal of 29.6 ± 3.9 µM. A coupled assay was developed demonstrating that the enzyme has equivalent catalytic efficiency with pyridoxal, pyridoxamine and pyridoxine, and that ginkgotoxin is an effective pseudo substrate. A high resolution structure of PdxK in complex with ATP revealed important structural differences with the human enzyme. These findings suggest that pyridoxal kinase is an essential and druggable target that could lead to much needed alternative treatments for this devastating disease.
doi:10.1111/j.1365-2958.2012.08189.x
PMCID: PMC3470933  PMID: 22857512

Results 1-9 (9)