Search tips
Search criteria

Results 1-25 (33)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  MicroRNA let-7e is associated with the pathogenesis of experimental autoimmune encephalomyelitis 
European journal of immunology  2012;43(1):104-114.
MicroRNAs (miRNAs) play important roles in the regulation of immune responses. There is evidence that miRNAs also participate in the pathogenesis of multiple sclerosis (MS), but how the miRNAs regulate the pathogenesis of MS is still under investigation. The identification of new members of the miRNA family associated with the pathogenesis of MS could facilitate early diagnosis and treatment. Here we show that the level of miRNA let-7e is significantly upregulated in experimental autoimmune encephalomyelitis (EAE), an animal model of MS using miRNA array and quantitative real-time PCR. The expression of let-7e was mainly in CD4+ T cells and infiltrated mononuclear cells of central nervous system, and highly correlated with the development of EAE. We found that let-7e silencing in vivo inhibited encephalitogenic Th1 and Th17 cells and attenuated EAE, with reciprocal increase of Th2 cells; overexpression of let-7e enhanced Th1 and Th17 cells and aggravated EAE. We also identified IL-10 as one of the functional targets of let-7e. Together, we propose that let-7e is a new miRNA involved in the regulation of encephalitogenic T-cell differentiation and the pathogenesis of EAE.
PMCID: PMC3650085  PMID: 23079871
MicroRNA; mir-let-7e; EAE/MS; Th1/Th2 cells; Cell differentiation
2.  The Severity of Experimental Autoimmune Cystitis Can be Ameliorated by Anti-CXCL10 Ab Treatment 
PLoS ONE  2013;8(11):e79751.
Interstitial cystitis (IC), more recently called painful bladder syndrome (PBS) is a complex disease associated with chronic bladder inflammation that primarily affects women. Its symptoms include frequent urinary urgency accompanied by discomfort or pain in the bladder and lower abdomen. In the United States, eight million people, mostly women, have IC/PBS. New evidence that autoimmune mechanisms are important in the pathogenesis of IC/PBS triggered interest.
Methodology/Principal Findings
SWXJ mice immunized with a homogenate of similar mice’s urinary bladders develop an autoimmune phenotype comparable to clinical IC with functional and histological alterations confined to the urinary bladder. Using the murine model of experimental autoimmune cystitis (EAC), we found that serum levels of CXCR3 ligand and local T helper type 1 (Th1) cytokine are elevated. Also, IFN-γ-inducible protein10 (CXCL10) blockade attenuated overall cystitis severity scores; reversed the development of IC; decreased local production of CXCR3 and its ligands, IFN-γ, and tumor necrosis factor-α (TNF-α); and lowered systemic levels of CXCR3 ligands. Urinary bladder CD4+ T cells, mast cells, and neutrophils infiltrates were reduced following anti-CXCL10 antibody (Ab) treatment of mice. Anti-CXCL10 Ab treatment also reversed the upregulated level of CXCR3 ligand mRNA at urinary bladder sites. The decreased number and percentage of systemic CD4+ T cells in EAC mice returned to normal after anti-CXCL10 Ab treatment.
Taken together, our findings provide important new information about the mechanisms underlying EAC pathogenesis, which has symptoms similar to those of IC/PBS. CXCL10 has the potential for use in developing new therapy for IC/PBS.
PMCID: PMC3836899  PMID: 24278169
4.  Novel Vaccine Adjuvants 
BioMed Research International  2013;2013:835105.
PMCID: PMC3819826
5.  Nuclease Activity via Self-Activation and Anticancer Activity of Mononuclear Copper(II) Complex: Novel Role of Tertiary Butyl Group in the Ligand Frame 
Inorganic Chemistry  2012;51(6):3343-3345.
Copper complex [Cu(tBuPhimp)(Cl)] (1) derived from tridentate ligand tBuPhimpH having N2O donors was synthesized and molecular structure was determined. Phenoxyl radical complex was generated in solution at room temperature using Ce(IV) salt. Nuclease activity and anticancer activity of 1 was investigated. Roles of tert-butyl group and singlet oxygen in DNA cleavage activity were also discussed.
PMCID: PMC3307853  PMID: 22372979
6.  Clinical and biological significance of CXCR5 expressed by prostate cancer specimens and cell lines 
Chemokines and chemokine receptors, has been shown to be involved in metastatic process of prostate cancer (PCa). In this study, we have show that primary PCa tissues and cell lines (LNCaP and PC3) express CXCR5, a specific chemokine receptor for the CXCL13. Expression of CXCR5 was significantly higher (P < 0.001) in PCa cases than compared to normal match (NM) tissues. CXCR5 intensity correlated (R2 = 0.97) with Gleason score. While prostate tumor tissues with Gleason scores ≥ 7, displayed predominantly nuclear CXCR5 expression patterns, PCa specimens with Gleason scores ≤ 6 showed predominantly membrane and cytoplasmic expression patterns that were comparable to benign prostatic hyperplasia (BPH). Similar to tissue expression, PCa cell lines expressed significantly more CXCR5 than normal prostatic epithelial cells (PrECs) and CXCR5 expression was distributed among intracellular and extracellular compartments. Functional in vitro assays showed higher migratory and invasive potentials toward CXCL13, an effect that was CXCR5-mediated. In both PCa cell lines, CXCL13 treatment increased the expression of collagenase-1 or matrix metalloproteinase-1 (MMP-1), collagenase-3 (MMP-13), stromelysin-1 (MMP-3), stromalysin-2 (MMP-10), and stromelysin-3 (MMP-11). These data demonstrate the clinical and biological relevance of the CXCL13-CXCR5 pathway and its role in PCa cell invasion and migration.
PMCID: PMC3600527  PMID: 19610059
chemokine; prostate cancer; tissue expression
7.  Serum CXCL13 positively correlates with prostatic disease, prostate-specific antigen and mediates prostate cancer cell invasion, integrin clustering and cell adhesion 
Cancer letters  2009;283(1):29-35.
Chemokines and corresponding receptor interactions have been shown to be involved in prostate cancer (PCa) progression and organ-specific metastasis. We have recently shown that PCa cell lines and primary prostate tumors express CXCR5, which correlates with PCa grade. In this study, we present the first evidence that CXCL13, the only ligand for CXCR5, and IL-6 were significantly elevated in PCa patient serum compared to serum from subjects with benign prostatic hyperplasia (BPH), or high-grade prostatic intraepithelial neoplasia (HGPIN) as well as normal healthy donors (NHD). Serum CXCL13 levels significantly (p < 0.0001) correlated with serum prostate-specific antigen (PSA), whereas serum IL-6 levels significantly (p < 0.0003) correlated with CXCL13 serum levels. CXCL13 was found to be a better predictor of PCa than PSA. In addition, CXCL13 was highly expressed by human bone marrow endothelial (HBME) cells and osteoblasts (OBs), but not osteoclasts (OCs), following treatment with physiologically relevant levels of interleukin-6 (IL-6). We further demonstrate that CXCL13, produced by IL-6-treated HBME cells, was able to induce PCa cell invasion in a CXCR5-dependent manner. CXCL13-mediated PCa cell αvβ3-integrin clustering and adhesion to HBME cells was abrogated by CXCR5 blockade. These results demonstrate that the CXCL13-CXCR5 axis is significantly associated with PCa progression.
PMCID: PMC3600557  PMID: 19375853
chemokine; prostate; integrin; adhesion; invasion
8.  CXCR4-gp120-IIIB interactions induce caspase-mediated apoptosis of prostate cancer cells and inhibit tumor growth 
Molecular cancer therapeutics  2009;8(1):178-184.
CXC chemokine receptor 4 (CXCR4) has been implicated in prostate cancer metastasis and this receptor also acts as a coreceptor for HIV-1 120-kDa glycoprotein variant IIIB (gp120-IIIB). The interaction between CXCR4 and gp120-IIIB has been shown to mediate apoptosis of both immune and endothelial cells. In this study, we have examined the effects of gp120-IIIB on hormone-refractory prostate cancer cells (PC3 and DU145) in vitro and tumor growth in vivo. Normal prostatic epithelial (PrEC) and prostate cancer cell lines were treated with gp120-IIIB with or without anti-CXCR4 antibody. Caspase expression was evaluated by real-time PCR and active caspase assays. Apoptosis was determined by flow cytometry. gp120-IIIB treatment correlated with active caspase-3 and -9 expression and apoptosis of prostate cancer cells but not PrEC cells. This effect was significantly inhibited after CXCR4 blockade. PC3 and DU145 tumor-bearing mice received intraperitoneal injections of gp120-IIIB and controls received bovine serum albumin in PBS. PC3 and DU145 tumor sizes were measured over time and excised tumors were evaluated for CD44, CD34, lymphatic endothelial cell marker LYVE-1, active caspase-3, and active caspase-9 expression by immunohistochemistry. The tumor size in mice receiving gp120-IIIB was significantly smaller than compared with tumors in control mice. This regression was associated with significant decreases in CD44, CD34, and LYVE-1 and increases in active caspase-3 and -9 expression. These results suggest that gp120-IIIB induced apoptosis in prostate cancer cells and reduced tumor-associated lymphoendothelial cells.
PMCID: PMC3600559  PMID: 19139127
9.  Role of resveratrol-induced CD11b+ Gr-1+ myeloid derived suppressor cells (MDSCs) in the reduction of CXCR3+ T cells and amelioration of chronic colitis in IL-10−/− mice 
Brain, behavior, and immunity  2011;26(1):72-82.
Resveratrol, a naturally occurring polyphenol has received significant attention as a potent anti-inflammatory agent. Inflammatory bowel disease (IBD) is a chronic intestinal inflammation caused by hyperactivated effector immune cells that produce pro-inflammatory cytokines. Myeloid derived suppressor cells (MDSCs) are a heterogeneous population characterized by the co-expression of CD11b+ and Gr-1+ and have long been known for their immunosuppressive function. We report that resveratrol effectively attenuated overall clinical scores as well as various pathological markers of colitis in IL-10−/− mice by down regulating Th1 responses. Resveratrol lessened the colitis-associated decrease in body weight and increased levels of serum amyloid A (SAA), CXCL10 and colon TNF-α, IL-6, RANTES, IL-12 and IL-1β concentrations. After resveratrol treatment, the percentage of CXCR3 expressing T cells was decreased in the spleen, mesenteric lymph nodes (MLN), and intestinal lamina propria (LP). However, the percentage and absolute numbers of CD11b+ and Gr-1+cells in the lamina propria (LP) and spleen were increased after resveratrol treatment as compared with the vehicle treatment. Co-culture of resveratrol induced CD11b+ Gr-1+ cells with T cells, attenuated T cell proliferation, and most importantly reduced IFN-γ and GM-CSF production by LP derived T cells from vehicle treated IL-10−/− mice with chronic colitis. The current study suggests that administration of resveratrol into IL-10−/− mice induces immunosuppressive CD11b+ Gr-1+ MDSCs in the colon, which correlates with reversal of established chronic colitis, and down regulation of mucosal and systemic CXCR3+ expressing effector T cells as well as inflammatory cytokines in the colon. The induction of immunosuppressive CD11b+ Gr-1+ cells by resveratrol during colitis is unique, and suggests an as-yet-unidentified mode of anti-inflammatory action of this plant polyphenol.
PMCID: PMC3506001  PMID: 21807089
Inflammation; Resveratrol; Colitis; CXCR3; CD11b+ and Gr-1+ and MDSCs
10.  Resveratrol (trans-3,5,4'-trihydroxystilbene) suppresses EL4 tumor growth by induction of apoptosis involving reciprocal regulation of SIRT1 and NF-κB 
Molecular nutrition & food research  2011;55(8):1207-1218.
Understanding the molecular mechanisms through which natural products and dietary supplements exhibit anticancer properties is crucial and can lead to drug discovery and chemoprevention. The current study sheds new light on the mode of action of Resveratarol (RES), a plant-derived polyphenolic compound, against EL-4 lymphoma growth.
Methods and results
Immuno-compromised NOD/SCID mice injected with EL-4 tumor cells and treated with RES (100 mg/kg body weight) showed delayed development and progression of tumor growth and increased mean survival time. RES caused apoptosis in EL4 cells through activation of aryl hydrocarbon receptor (AhR) and upregulation of Fas and FasL expression in vitro. Blocking of RES-induced apoptosis in EL4 cells by FasL mAb, cleavage of caspases and PARP, and release of cytochorme c, demonstrated the participation of both extrinsic and intrinsic pathways of apoptosis. RES also induced upregulation of SIRT1 and downregulation of NF-kB in EL4 cells. SiRNA-mediated down regulation of SIRT1 in EL4 cells increased the activation of NF-kB but decreased RES-mediated apoptosis, indicating the critical role of SIRT1 in apoptosis via blocking activation of NF-kB.
These data suggest that RES-induced SIRT1 upregulation promotes tumor cell apoptosis through negative regulation of NF-kB, leading to suppression of tumor growth.
PMCID: PMC3516994  PMID: 21520490
Cancer; Lymphoma; Resveratrol; AhR; Fas; FasL; Apoptosis; Extrinsic pathway; Intrinsic pathway
11.  CD49f and CD61 identify Her2/neu-induced mammary tumor initiating cells that are potentially derived from luminal progenitors and maintained by the integrin-TGFβ signaling 
Oncogene  2011;31(21):2614-2626.
HER2/Neu is overexpressed in 20-30% of breast cancers and associated with aggressive phenotypes and poor prognosis. For deciphering the role of HER2/Neu in breast cancer, mouse mammary tumor virus (MMTV)-Her2/neu transgenic mice that develop mammary tumors resembling human HER2-subtype breast cancer have been established. Several recent studies have revealed that HER2/Neu is overexpressed in and regulates self renewal of breast tumor initiating cells (TICs). However, in the MMTV-Her2/neu transgenic mouse model, the identity of TICs remains elusive, despite previous studies showing supportive evidence for existence of TICs in Her2/neu-induced mammary tumors. Through systematic screening and characterization, we identified surface markers CD49f, CD61 and ESA were aberrantly overexpressed in Her2-overexpressing mammary tumor cells. Analysis of these markers as well as CD24 detected anomalous expansion of the luminal progenitor population in preneoplastic mammary glands of Her2/neu-transgenic mice, indicating that aberrant luminal progenitors originated Her2-induced mammary tumors. The combined markers, CD49f and CD61, further delineated the CD49fhighCD61high-sorted fraction as a TIC-enriched population, which displayed increased tumorsphere formation ability, enhanced tumorigenicity both in vitro and in vivo and drug resistance to pacitaxel and doxorubicin. Moreover, the TIC-enriched population manifested increased TGFβ signaling and exhibited gene expression signatures of stemness, TGFβ signaling and Epithelial-to-Mesenchymal Transition. Our findings that self-renewal and clonogenicity of TICs were suppressed by pharmacologically inhibiting the TGFβ signaling further indicate that the TGFβ pathway is vital for maintenance of the TIC population. Finally, we showed that the integrin β3 (CD61) signaling pathway was required for sustaining active TGFβ signaling and self-renewal of TICs. We for the first time developed a technique to highly enrich TICs from mammary tumors of Her2/neu-transgenic mice, unraveled their properties and identified the cooperative integrin β3-TGFβ signaling axis as a potential therapeutic target for HER2-induced TICs.
PMCID: PMC3260386  PMID: 21996747
Tumor Initiating Cells; Her2/neu; mammary tumor; CD49f; CD61; ESA
12.  Prenatal Exposure to TCDD Triggers Significant Modulation of microRNA Expression Profile in the Thymus That Affects Consequent Gene Expression 
PLoS ONE  2012;7(9):e45054.
MicroRNAs (miRs) are a class of small RNAs that regulate gene expression. There are over 700 miRs encoded in the mouse genome and modulate most of the cellular pathways and functions by controlling gene expression. However, there is not much known about the pathophysiological role of miRs. TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), an environmental contaminant is well known to induce severe toxicity (acute and chronic) with long-term effects. Also, in utero exposure of fetus to TCDD has been shown to cause thymic atrophy and alterations in T cell differentiation. It is also relevant to understand “the fetal basis of adult disease” hypothesis, which proposes that prenatal exposure to certain forms of nutritional and environmental stress can cause increased susceptibility to clinical disorders later in life. In the current study, therefore, we investigated the effects of prenatal exposure to TCDD on miR profile in fetal thymocytes and searched for their possible role in causing thymic atrophy and alterations in the expression of apoptotic genes.
Methodology/Principal Findings
miR arrays of fetal thymocytes post exposure to TCDD and vehicle were performed. Of the 608 mouse miRs screened, 78 miRs were altered more than 1.5 fold and 28 miRs were changed more than 2 fold in fetal thymocytes post-TCDD exposure when compared to vehicle controls. We validated the expression of several of the miRs using RT-PCR. Furthermore, several of the miRs that were downregulated contained highly complementary sequence to the 3′-UTR region of AhR, CYP1A1, Fas and FasL. Also, the Ingenuity Pathway Analysis software and database was used to analyze the 78 miRs that exhibited significant expression changes and revealed that as many as 15 pathways may be affected.
These studies revealed that TCDD-mediated alterations in miR expression may be involved in the regulation of its toxicity including cancer, hepatic injury, apoptosis, and cellular development.
PMCID: PMC3443208  PMID: 23024791
13.  Resveratrol Prevents Endothelial Cells Injury in High-Dose Interleukin-2 Therapy against Melanoma 
PLoS ONE  2012;7(4):e35650.
Immunotherapy with high-dose interleukin-2 (HDIL-2) is an effective treatment for patients with metastatic melanoma and renal cell carcinoma. However, it is accompanied by severe toxicity involving endothelial cell injury and induction of vascular leak syndrome (VLS). In this study, we found that resveratrol, a plant polyphenol with anti-inflammatory and anti-cancer properties, was able to prevent the endothelial cell injury and inhibit the development of VLS while improving the efficacy of HDIL-2 therapy in the killing of metastasized melanoma. Specifically, C57BL/6 mice were injected with B16F10 cells followed by resveratrol by gavage the next day and continued treatment with resveratrol once a day. On day 9, mice received HDIL-2. On day 12, mice were evaluated for VLS and tumor metastasis. We found that resveratrol significantly inhibited the development of VLS in lung and liver by protecting endothelial cell integrity and preventing endothelial cells from undergoing apoptosis. The metastasis and growth of the tumor in lung were significantly inhibited by HDIL-2 and HDIL-2 + resveratrol treatment. Notably, HDIL-2 + resveratrol co-treatment was more effective in inhibiting tumor metastasis and growth than HDIL-2 treatment alone. We also analyzed the immune status of Gr-1+CD11b+ myeloid-derived suppressor cells (MDSC) and FoxP3+CD4+ regulatory T cells (Treg). We found that resveratrol induced expansion and suppressive function of MDSC which inhibited the development of VLS after adoptive transfer. However, resveratrol suppressed the HDIL-2-induced expansion of Treg cells. We also found that resveratrol enhanced the susceptibility of melanoma to the cytotoxicity of IL-2-activated killer cells, and induced the expression of the tumor suppressor gene FoxO1. Our results suggested the potential use of resveratrol in HDIL-2 treatment against melanoma. We also demonstrated, for the first time, that MDSC is the dominant suppressor cell than regulatory T cell in the development of VLS.
PMCID: PMC3331985  PMID: 22532866
14.  Resveratrol suppresses colitis and colon cancer associated with colitis 
Resveratrol is a naturally occurring polyphenol that exhibits pleiotropic health beneficial effects including anti-inflammatory, cardio- and cancer-protective activities. It is recognized as one of the more promising natural molecules in the prevention and treatment of chronic inflammatory and autoimmune disorders. Ulcerative Colitis (UC) is an idiopathic, chronic inflammatory disease of the colon associated with a high colon cancer risk. Here, we used a Dextran Sulfate Sodium (DSS) mouse model of colitis, which resembles human UC pathology. Resveratrol mixed in food ameliorates DSS-induced colitis in mice in a dose-dependent manner. Resveratrol significantly improves inflammation score, down regulates the percentage of neutrophils in the mesenteric lymph nodes and lamina propiria, and modulates CD3+ T cells that express tumor necrosis factor-alpha and interferon gamma. Markers of inflammation and inflammatory stress (p53 and p53-Phospho-Serine 15), are also down regulated by resveratrol. Since chronic colitis drives colon cancer risk, we carried out experiments to determine the chemopreventive properties of resveratrol. Tumor incidence is reduced from 80% in mice treated with Azoxymethane (AOM) + DSS to 20% in AOM + DSS + Resveratrol (300 p.p.m.) treated mice. Tumor multiplicity also decreased with resveratrol treatment. AOM + DSS treated mice had 2.4 ± 0.7 tumors per animal compared with AOM + DSS + 300 p.p.m. resveratrol, which had 0.2 ± 0.13 tumors per animal. The current study indicates that resveratrol is a useful, non-toxic complementary and alternative strategy to abate colitis and potentially colon cancer associated with colitis.
PMCID: PMC2853724  PMID: 20332304
Inflammation; Resveratrol; Colitis; Colon Cancer
15.  Stem cells as potential therapeutic targets for inflammatory bowel disease 
The rates of incidence and prevalence of Crohn’s disease and ulcerative colitis, the two major forms of inflammatory bowel disease (IBD), are rising. Estimates indicate >1 million new cases of IBD in the United States annually. The conventional therapies available for IBD range from anti-inflammatory drugs to immunosuppressive agents, but these therapies generally fail to achieve satisfactory results due to their side effects. Interest in a new therapeutic option, that is, biological therapy, has gained much momentum recently due to its focus on different stages of the inflammatory process. Stem cell (SC) research has become a new direction for IBD therapy due to our recent understanding of cell populations involved in the pathogenic process. To this end, hematopoietic and mesenchymal stem cells are receiving more attention from IBD investigators. The intestinal environment, with its crypts and niches, supports incoming embryonic and hematopoietic stem cells and allows them to engraft and differentiate. The above findings suggest that, in the future, SC-based therapy will be a promising alternative to conventional therapy for IBD. In this review, we discuss SCs as potential therapeutic targets for future treatment of IBD.
PMCID: PMC2900153  PMID: 20515838
Inflammatory bowel disease; Crohn’s disease; Ulcerative Colitis; Stem cells; Review
16.  Taming the beast within: resveratrol suppresses colitis and prevents colon cancer 
Aging (Albany NY)  2010;2(4):183-184.
PMCID: PMC2881508  PMID: 20436227
Inflammation; complementary and alternative medicine; SIRT-1; NF-kappaB; inflammatory bowel disease
17.  Helper T Cell Epitope-Mapping Reveals MHC-Peptide Binding Affinities That Correlate with T Helper Cell Responses to Pneumococcal Surface Protein A 
PLoS ONE  2010;5(2):e9432.
Understanding the requirements for protection against pneumococcal carriage and pneumonia will greatly benefit efforts in controlling these diseases. Several proteins and polysaccharide capsule have recently been implicated in the virulence of and protective immunity against Streptococcus pneumonia. Pneumococcal surface protein A (PspA) is highly conserved among S. pneumonia strains, inhibits complement activation, binds lactoferrin, elicits protective systemic immunity against pneumococcal infection, and is necessary for full pneumococcal virulence. Identification of PspA peptides that optimally bind human leukocyte antigen (HLA) would greatly contribute to global vaccine efforts, but this is hindered by the multitude of HLA polymorphisms. Here, we have used an experimental data set of 54 PspA peptides and in silico methods to predict peptide binding to HLA and murine major histocompatibility complex (MHC) class II. We also characterized spleen- and cervical lymph node (CLN)-derived helper T lymphocyte (HTL) cytokine responses to these peptides after S. pneumonia strain EF3030-challenge in mice. Individual, yet overlapping peptides, 15 amino acids in length revealed residues 199 to 246 of PspA (PspA199–246) consistently caused the greatest IFN-γ, IL-2, IL-5 and proliferation as well as moderate IL-10 and IL-4 responses by ex vivo stimulated splenic and CLN CD4+ T cells isolated from S. pneumonia strain EF3030-challeged F1 (B6×BALB/c) mice. IEDB, RANKPEP, SVMHC, MHCPred, and SYFPEITHI in silico analysis tools revealed peptides in PspA199–246 also interact with a broad range of HLA-DR, -DQ, and -DP allelles. These data suggest that predicted MHC class II-peptide binding affinities do not always correlate with T helper (Th) cytokine or proliferative responses to PspA peptides, but when used together with in vivo validation can be a useful tool to choose candidate pneumococcal HTL epitopes.
PMCID: PMC2828482  PMID: 20195541
18.  1-(2-Bromo­benz­yl)-3-isopropyl­benz­imid­azolin-2-one 
In the structure of the title compound, C17H17BrN2O, the central phenyl and imidazol-2-one rings are coplanar (dihedral angle between planes of 0.73 (11)°). The angles subtended by the substituents on the N atoms of the imidazol-2-one ring range from 109.71 (14)° to 128.53 (15) due to steric hindrance of these substituents with the phenyl H atoms. The carbonyl O and Br both make two weak C—H⋯O and C—H⋯Br inter­actions with two adjacent mol­ecules, thus forming an three-dimensional array.
PMCID: PMC2971215  PMID: 21578426
19.  Ginkgo biloba extract EGb 761 has anti-inflammatory properties and ameliorates colitis in mice by driving effector T cell apoptosis 
Carcinogenesis  2008;29(9):1799-1806.
Ulcerative colitis is a dynamic, chronic inflammatory condition of the colon associated with an increased colon cancer risk. Ginkgo biloba is a putative antioxidant and has been used for thousands of years to treat a variety of ailments. The aim of this study was to test whether the standardized G.biloba extract, EGb 761, is an antioxidant that can be used to prevent and treat colitis in mice. Here, we show that EGb 761 suppresses the activation of macrophages and can be used to both prevent and treat mouse colitis. Markers of inflammation (iNOS, Cox-2 and tumor necrosis factor-α) and inflammatory stress (p53 and p53-phospho-serine 15) are also downregulated by EGb 761. Furthermore, we show that EGb 761 reduces the numbers of CD4+/CD25−/Foxp3− effector T cells in the colon. Interestingly, EGb 761 drives CD4+ effector T cell apoptosis in vitro and in vivo, providing a mechanistic explanation to the reduction in numbers of this cell type in the colon. This current study is in agreement with previous studies supporting a use of EGb 761 as a complementary and alternative strategy to abate colitis and associated colon cancer.
PMCID: PMC2527648  PMID: 18567620
20.  Leptin-signaling inhibition results in efficient anti-tumor activity in estrogen receptor positive or negative breast cancer 
We have shown previously that treatment with pegylated leptin peptide receptor antagonist 2 (PEG-LPrA2) reduced the expression of vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor type 2 (VEGFR2) and growth of 4T1-breast cancer (BC) in syngeneic mice. In this investigation, PEG-LPrA2 was used to evaluate whether the inhibition of leptin signaling has differential impact on the expression of pro-angiogenic and pro-proliferative molecules and growth of human estrogen receptor-positive (ER+) and estrogen receptor-negative (ER-) BC xenografts hosted by immunodeficient mice.
To test the contribution of leptin signaling to BC growth and expression of leptin-targeted molecules, PEG-LPrA2 treatment was applied to severe immunodeficient mice hosting established ER+ (MCF-7 cells; ovariectomized/supplemented with estradiol) and ER- (MDA-MB231 cells) BC xenografts. To further assess leptin and PEG-LPrA2 effects on ER+ and ER- BC, the expression of VEGF and VEGFR2 (protein and mRNA) was investigated in cell cultures.
PEG-LPrA2 more effectively reduced the growth of ER+ (>40-fold) than ER- BC (twofold) and expression of pro-angiogenic (VEGF/VEGFR2, leptin/leptin receptor OB-R, and IL-1 receptor type I) and pro-proliferative molecules (proliferating cell nuclear antigen and cyclin D1) in ER+ than in ER- BC. Mouse tumor stroma in ER+ BC expressed high levels of VEGF and leptin that was induced by leptin signaling. Leptin upregulated the transcriptional expression of VEGF/VEGFR2 in MCF-7 and MDA-MB231 cells.
These results suggest that leptin signaling plays an important role in the growth of both ER+ and ER- BC that is associated with the leptin regulation of pro-angiogenic and pro-proliferative molecules. These data provide support for the potential use of leptin-signaling inhibition as a novel treatment for ER+ and ER- BC.
PMCID: PMC2716504  PMID: 19531256
21.  CXCL10 blockade protects mice from cyclophosphamide-induced cystitis 
Alterations in serum CXCR3 ligand levels were examined in interstitial cystitis (IC) patients; similar expression patterns in serum as well as CXCR3, CXCR3 ligands, and cytokines expressed by peripheral and local leukocyte subpopulations were characterized during cyclophosphamide (CYP)-induced acute cystitis in mice.
Serum levels of monokine-induced by interferon-γ (IFN-γ) (MIG/CXCL9), IFN-γ-inducible protein-10 (IP-10/CXCL10), and IFN-γ-inducible T cell α chemoattractant (I-TAC/CXCL11) were elevated in patients with IC. These clinical features closely correlated with CYP-induced cystitis in mice. Serum levels of these CXCR3 ligands and local T helper type 1 (Th1) cytokines were also increased. We demonstrate that CXCR3 as well as CXCL9, CXCL10 and CXCL11 mRNA were significantly expressed by urinary bladder lymphocytes, while CXCR3 and CXCL9 transcripts were significantly expressed by iliac lymph node leukocytes following CYP treatment. We also show that the number of CD4+ T cells, mast cells, natural killer (NK) cells, and NKT cells were increased at systemic (spleen) and mucosal (urinary bladder and iliac lymph nodes) sites, following CYP-induced cystitis in mice. Importantly, CXCL10 blockade attenuated these increases caused by CYP.
Antibody (Ab)-mediated inhibition of the most abundant serum CXCR3 ligand, CXCL10, in mice decreased the local production of CXCR3 ligands as well as Th1 cytokines expressed by local leukocytes, and lowered corresponding serum levels to reduce the severity of CYP-induced cystitis. The present study is among the first to demonstrate some of the cellular and molecular mechanisms of chemokines in cystitis and may represent new drug target for this disease.
PMCID: PMC2583981  PMID: 18957084
22.  CCL5 regulation of mucosal chlamydial immunity and infection 
BMC Microbiology  2008;8:136.
Following genital chlamydial infection, an early T helper type 1 (Th1)-associated immune response precedes the activation and recruitment of specific Th1 cells bearing distinct chemokine receptors, subsequently leading to the clearance of Chlamydia. We have shown that CCR5, a receptor for CCL5, is crucial for protective chlamydial immunity. Our laboratory and others have also demonstrated that CCL5 deficiencies found in man and animals can increase the susceptibility and progression of infectious diseases by modulating mucosal immunity. These findings suggest the CCR5-CCL5 axis is necessary for optimal chlamydial immunity. We hypothesized CCL5 is required for protective humoral and cellular immunity against Chlamydia.
The present study revealed that CCR5 and CCL5 mRNAs are elevated in the spleen, iliac lymph nodes (ILNs), and genital mucosa following Chlamydia muriduram challenge. Antibody (Ab)-mediated inhibition of CCL5 during genital chlamydial infection suppressed humoral and Th1 > Th2 cellular responses by splenic-, ILN-, and genital mucosa-derived lymphocytes. Antigen (Ag)-specific proliferative responses of CD4+ T cells from spleen, ILNs, and genital organs also declined after CCL5 inhibition.
The suppression of these responses correlated with delayed clearance of C. muriduram, which indicate chlamydial immunity is mediated by Th1 immune responses driven in part by CCL5. Taken together with other studies, the data show that CCL5 mediates the temporal recruitment and activation of leukocytes to mitigate chlamydial infection through enhancing adaptive mucosal humoral and cellular immunity.
PMCID: PMC2543025  PMID: 18700040
23.  CXCL10-Producing Mucosal CD4+ T Cells, NK Cells, and NKT Cells Are Associated with Chronic Colitis in IL-10−/− Mice, Which Can Be Abrogated by Anti-CXCL10 Antibody Inhibition 
We have shown previously that there is a temporal increase in the levels of CXCL10 and CXCR3 mRNA during spontaneous murine colitis. We now show that CXCL10 is significantly expressed by mucosal CD4+ T cells, natural killer (NK) cells, and NKT cells, but not by dendritic cells (DCs), during chronic murine colitis. CXCL10 blockade alleviated chronic colitis and attenuated the associated increase in serum amyloid A (SAA), interleukin-12 (IL-12)p40, tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), IL-1α, and IL-1β Levels as well as in the number of CD4+ T, NKT, and NK cells that express CXCL10 and CXCR3, compared with groups treated with control antibody (Ab). After CXCL10 blockade, the number of CXCR3+ DCs in the mesenteric lymph nodes (MLNs) and Peyer’s patches (PPs) were increased to levels found before the onset of colitis. In contrast, the numbers of splenic and intestinal lamina propria (LP) CXCR3+ DCs were reduced after anti-CXCL10 Ab treatment, compared with controls. Ex vivo antigen and CXCL10 stimulation of mucosal cells caused an increase in MHC class II, CD40, and CD86 as well as a decrease in CD30 ligand (CD30L) expression by DCs. This study provides insights into CXCL10 expression during inflammatory bowel disease (IBD) and the cellular and molecular mechanisms of CXCL10-mediated colitis. Our data also support the premise that CXCL10 blockade can attenuate chronic colitis by preventing the activation and recruitment of CXCR3+ leukocytes during IBD.
PMCID: PMC2435497  PMID: 18370870
24.  Hydrogen-bonding and π–π stacking inter­actions in tris­(1,10-phenanthroline-κ2 N,N′)nickel(II) bis­{[1-tert-butyl­imidazole-2(3H)-thione-κS]trichloridonickelate(II)} acetonitrile disolvate 
The asymmetric unit of the title complex, [Ni(C12H8N2)3][NiCl3(C7H12N2S)]2·2CH3CN, consists of one anion, one-half of a cation and one acetonitrile mol­ecule. The NiII atom in the [Ni(phen)3]2+ cation (phen is 1,10-phenanthroline) lies on an inversion centre in an octa­hedral environment, whereas in the [NiCl3(tm)]− anion [tm is 1-tert-butyl­imidazole-2(3H)-thione], the geometry is distorted tetra­hedral. In the crystal structure, inter­molecular C—H⋯Cl hydrogen bonds and π–π stacking inter­actions (centroid–centroid distance = 3.52 Å) lead to the formation of a three-dimensional framework. One of the methyl groups of the tert-butyl group of N-tert-butyl-2-thio­imidazole is disordered between two equally populated positions.
PMCID: PMC2961703  PMID: 21202789
25.  CXCL10+ T cells and NK cells assist in the recruitment and activation of CXCR3+ and CXCL11+ leukocytes during Mycobacteria-enhanced colitis 
BMC Immunology  2008;9:25.
The role of Mycobacteria in the etiology of Crohn's disease (CD) has been a contentious subject for many years. Recently, our laboratory showed that spontaneous colitis in IL-10-/- mice is driven in part by antigens (Ags) conserved in Mycobacteria. The present study dissects some of the common cellular and molecular mechanism that drive Mycobacteria-mediated and spontaneous colitis in IL-10-/- mice.
We show that serum from inflammatory bowel disease (IBD) patients contain significantly higher levels of Mycobacterium avium paratuberculosis-specific IgG1 and IgG2 antibodies (Abs), serum amyloid A (SAA) as well as CXCR3 ligands than serum from healthy donors. To study the cellular mechanisms of Mycobacteria-associated colitis, pathogen-free IL-10-/- mice were given heat-killed or live M. avium paratuberculosis. The numbers of mucosal T cells, neutrophils, NK/NKT cells that expressed TNFα, IFN-γ, and/or CXCL10 were significantly higher in mice that received live Mycobacteria than other groups. The numbers of mucosal CXCR3+, CXCL9+, CXCL11+ and/or IFN-γ+ dendritic cells (DCs) were also significantly higher in M. avium paratuberculosis-challenged mice, than compared to control mice.
The present study shows that CD and UC patients mount significant Mycobacteria-specific IgG1 > IgG2 and CXCR3 ligand responses. Several cellular mechanisms that drive spontaneous colitis also mediate Mycobacteria-enhanced colitis in IL-10-/- mice. Similar to IL-10-/- mice under conventional housing, we show that Mycobacteria-challenge IL-10-/- mice housed under otherwise pathogen-free conditions develop colitis that is driven by CXCR3- and CXCR3 ligand-expressing leukocytes, which underscores another important hallmark and molecular mechanism of colitis. Together, the data show that Mycobacteria-dependent host responses, namely CXCL10+ T cells and NK cells, assist in the recruitment and activation of CXCR3+ and CXCL11+ leukocytes to enhance colitis of susceptible hosts.
PMCID: PMC2443107  PMID: 18533024

Results 1-25 (33)