Search tips
Search criteria

Results 1-25 (90)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Genetic variation in prostaglandin synthesis and related pathways, NSAID use and colorectal cancer risk in the Colon Cancer Family Registry 
Carcinogenesis  2014;35(9):2121-2126.
This study comprehensively assessed whether variation in prostaglandin synthesis and related pathways influences CRC risk by examining associations between 192 SNPs and two functional VNTRs within 17 candidate genes.
Although use of non-steroidal anti-inflammatory drugs (NSAIDs) generally decreases colorectal cancer (CRC) risk, inherited genetic variation in inflammatory pathways may alter their potential as preventive agents. We investigated whether variation in prostaglandin synthesis and related pathways influences CRC risk in the Colon Cancer Family Registry by examining associations between 192 single nucleotide polymorphisms (SNPs) and two variable nucleotide tandem repeats (VNTRs) within 17 candidate genes and CRC risk. We further assessed interactions between these polymorphisms and NSAID use on CRC risk. Using a case-unaffected-sibling-control design, this study included 1621 primary invasive CRC cases and 2592 sibling controls among Caucasian men and women aged 18–90. After adjustment for multiple comparisons, two intronic SNPs were associated with rectal cancer risk: rs11571364 in ALOX12 [ORhet/hzv = 1.87, 95% confidence interval (CI) = 1.19–2.95, P = 0.03] and rs45525634 in PTGER2 (ORhet/hzv = 0.49, 95% CI = 0.29–0.82, P = 0.03). Additionally, there was an interaction between NSAID use and the intronic SNP rs2920421 in ALOX12 on risk of CRC (P = 0.03); among those with heterozygous genotypes, risk was reduced for current NSAID users compared with never or former users (ORhet = 0.60, 95% CI = 0.45–0.80), though not among those with homozygous wild-type or variant genotypes. The results of this study suggest that genetic variation in ALOX12 and PTGER2 may affect the risk of rectal cancer. In addition, this study suggests plausible interactions between NSAID use and variants in ALOX12 on CRC risk. These results may aid in the development of genetically targeted cancer prevention strategies with NSAIDs.
PMCID: PMC4146420  PMID: 24908683
2.  Gene-environment interaction involving recently identified colorectal cancer susceptibility loci 
Genome-wide association studies have identified several single nucleotide polymorphisms (SNPs) that are associated with risk of colorectal cancer (CRC). Prior research has evaluated the presence of gene-environment interaction involving the first 10 identified susceptibility loci, but little work has been conducted on interaction involving SNPs at recently identified susceptibility loci, including: rs10911251, rs6691170, rs6687758, rs11903757, rs10936599, rs647161, rs1321311, rs719725, rs1665650, rs3824999, rs7136702, rs11169552, rs59336, rs3217810, rs4925386, and rs2423279.
Data on 9160 cases and 9280 controls from the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) and Colon Cancer Family Registry (CCFR) were used to evaluate the presence of interaction involving the above-listed SNPs and sex, body mass index (BMI), alcohol consumption, smoking, aspirin use, post-menopausal hormone (PMH) use, as well as intake of dietary calcium, dietary fiber, dietary folate, red meat, processed meat, fruit, and vegetables. Interaction was evaluated using a fixed-effects meta-analysis of an efficient Empirical Bayes estimator, and permutation was used to account for multiple comparisons.
None of the permutation-adjusted p-values reached statistical significance.
The associations between recently identified genetic susceptibility loci and CRC are not strongly modified by sex, BMI, alcohol, smoking, aspirin, PMH use, and various dietary factors.
Results suggest no evidence of strong gene-environment interactions involving the recently identified 16 susceptibility loci for CRC taken one at a time.
PMCID: PMC4209726  PMID: 24994789
Colorectal Cancer; Gene-Environment Interaction; Polymorphism; Single Nucleotide; Genetic Predisposition to Disease; Diet
3.  Fine-mapping IGF1 and prostate cancer risk in African Americans: The Multiethnic Cohort Study 
Genetic variation at IGF1 has been linked to prostate cancer risk. However, the specific predisposing variants have not been identified. In this study, we fine-mapped the IGF1 locus for prostate cancer risk in African Americans.
We conducted targeted Roche GS-Junior 454 resequencing of a 156kb region of IGF1 in 80 African American aggressive prostate cancer cases. 334 IGF1 SNPs were examined for their association with prostate cancer risk in 1,000 African American prostate cancer cases and 991 controls. The top associated SNP in African Americans, rs148371593, was examined in an additional 3,465 prostate cancer cases and 3,425 controls of non-African American ancestry—European Americans, Japanese Americans, Latinos, and Native Hawaiians. The overall association of 334 IGF1 SNPs and prostate cancer risk was assessed using logistic kernel-machine methods. The association between each SNP and prostate cancer risk was evaluated through unconditional logistic regression. A false discovery rate threshold of q < 0.1 was used to determine statistical significance of associations.
We identified 8 novel IGF1 SNPs. The cumulative effect of the 334 IGF1 SNPs was not associated with prostate cancer risk (p=0.13) in African Americans. Twenty SNPs were nominally associated with prostate cancer at p<0.05. The top associated SNP among African Americans, rs148371593 (MAF=0.03; p=0.0014; q>0.1) did not reach our criterion of statistical significance. This polymorphism was rare in non-African Americans (MAF<0.003) and was not associated with prostate cancer risk (p=0.98).
Our findings do not support the role of IGF1 variants and prostate cancer risk among African Americans.
PMCID: PMC4409949  PMID: 24904019
4.  Estimating the heritability of colorectal cancer 
Human Molecular Genetics  2014;23(14):3898-3905.
A sizable fraction of colorectal cancer (CRC) is expected to be explained by heritable factors, with heritability estimates ranging from 12 to 35% twin and family studies. Genome-wide association studies (GWAS) have successfully identified a number of common single-nucleotide polymorphisms (SNPs) associated with CRC risk. Although it has been shown that these CRC susceptibility SNPs only explain a small proportion of the genetic risk, it is not clear how much of the heritability these SNPs explain and how much is left to be detected by other, yet to be identified, common SNPs. Therefore, we estimated the heritability of CRC under different scenarios using Genome-Wide Complex Trait Analysis in the Genetics and Epidemiology of Colorectal Cancer Consortium including 8025 cases and 10 814 controls. We estimated that the heritability explained by known common CRC SNPs identified in GWAS was 0.65% (95% CI:0.3–1%; P = 1.11 × 10−16), whereas the heritability explained by all common SNPs was at least 7.42% (95% CI: 4.71–10.12%; P = 8.13 × 10−8), suggesting that many common variants associated with CRC risk remain to be detected. Comparing the heritability explained by the common variants with that from twin and family studies, a fraction of the heritability may be explained by other genetic variants, such as rare variants. In addition, our analysis showed that the gene × smoking interaction explained a significant proportion of the CRC variance (P = 1.26 × 10−2). In summary, our results suggest that known CRC SNPs only explain a small proportion of the heritability and more common SNPs have yet to be identified.
PMCID: PMC4065150  PMID: 24562164
5.  Impact of genetic polymorphisms on adenoma recurrence and toxicity in a COX2 inhibitor (celecoxib) trial: results from a pilot study 
Pharmacogenetics and genomics  2013;23(8):428-437.
Chemoprevention trials have shown that celecoxib reduces adenoma recurrence but can cause cardiovascular toxicity. In this pilot study, we evaluated associations between genetic variation in several candidate pathways (e.g. prostaglandin synthesis) and adenoma recurrence and cardiovascular and gastrointestinal toxicities.
Genotyping analysis was carried out on 117 Israeli colorectal adenoma patients who participated in the Prevention of Colorectal Sporadic Adenomatous Polyps trial. Reassessment followed after 3 years on celecoxib and after 2 years from termination of treatment with celecoxib. Efficacy (absence of colorectal adenomas) was measured by colonoscopy at years 1, 3, and 5. Toxicities were assessed by investigators during celecoxib treatment and by self-report post-treatment. A linkage disequilibrium-based selection algorithm (r2 ≥ 0.90, MAF ≥ 4%) identified 255 tagSNPs in 25 analyzed candidate genes. Genotyping was performed by using Illumina GoldenGate technology.
Multiple genetic variants were associated with adenoma recurrence and toxicity. Genetic variability in COX1, COX2, and ALOX12/15 genes played a role in adenoma recurrence, particularly among patients on placebo. More gene variants (especially variants in PGES, CRP, SRC, and GPX3) were associated with increased risk for cardiovascular toxicity and symptoms, compared with gastrointestinal toxicity and symptoms. The increased risk for cardiovascular toxicity/symptoms associated with the SRC gene variants (rs6017996, rs6018256, rs6018257) ranged from 6.61 (95% confidence interval 1.66–26.36, P < 0.01) to 10.71 (95% confidence interval 1.96–58.60, P < 0.01).
Genetic polymorphisms in multiple inflammation-related genes appear to interact with celecoxib on adenoma recurrence and its attendant toxicity, particularly cardiovascular toxicity/symptoms. Larger studies validating these pharmacogenetic relationships are needed.
PMCID: PMC4435676  PMID: 23778325
colorectal adenoma; colorectal cancer; cyclooxygenase-2 inhibitor; polymorphism; toxicity
6.  Polymorphisms in WNT6 and WNT10A and Colorectal Adenoma Risk 
Nutrition and cancer  2011;63(4):558-564.
The WNT/β-catenin signaling pathway upregulates transcription of genes involved in cell proliferation and cancer progression; it has been implicated in colorectal adenoma formation. To date, no studies have examined polymorphisms in WNT genes or WNT gene–environment interactions in relation to adenoma risk. Within a colonoscopy-based case-control study of 628 adenoma cases and 516 polyp-free controls, we analyzed two tagSNPs in WNT6 (rs6747776 G > C, rs6754599 G > C) and WNT10A (rs7349332 G > A, rs10177996 A > G). The WNT6 rs6747776 homozygous minor allele (CC) was associated with increased risk of colorectal adenoma (OR = 2.75, 95% CI: 1.03–7.31). We observed a statistically significant interaction between WNT6 rs6747776 and the proportion of calories from total fat (P-int = 0.02), where the highest risk was observed among those with minor alleles and lowest fat intake. We also detected a marginally significant (0.05 < P ≤ 0.10) interaction with fish intake (P-int = 0.09). Additionally, a marginally significant interaction was observed between proportion of calories from saturated fat and the WNT10A rs7349332 polymorphism. Our results suggest that genetic variability in the WNT pathway may play a role in colorectal adenoma formation or may partly mediate the increased risk of colorectal cancer associated with fat intake.
PMCID: PMC4429790  PMID: 21547848
7.  Pleiotropic effects of genetic risk variants for other cancers on colorectal cancer risk: PAGE, GECCO, and CCFR Consortia 
Gut  2013;63(5):800-807.
Genome-wide association studies (GWAS) have identified a large number of single nucleotide polymorphisms (SNPs) associated with a wide array of cancer sites. Several of these variants demonstrate associations with multiple cancers, suggesting pleiotropic effects and shared biological mechanisms across some cancers. We hypothesized that SNPs previously associated with other cancers may additionally be associated with colorectal cancer. In a large-scale study, we examined 171 SNPs previously associated with 18 different cancers for their associations with colorectal cancer.
We examined 13,338 colorectal cancer cases and 40,967 controls from three consortia: Population Architecture using Genetics and Epidemiology (PAGE), Genetic Epidemiology of Colorectal Cancer (GECCO), and the Colon Cancer Family Registry (CCFR). Study-specific logistic regression results, adjusted for age, sex, principal components of genetic ancestry, and/or study specific factors (as relevant) were combined using fixed-effect meta-analyses to evaluate the association between each SNP and colorectal cancer risk. A Bonferroni-corrected p-value of 2.92×10−4 was used to determine statistical significance of the associations.
Two correlated SNPs— rs10090154 and rs4242382—in Region 1 of chromosome 8q24, a prostate cancer susceptibility region, demonstrated statistically significant associations with colorectal cancer risk. The most significant association was observed with rs4242382 (meta-analysis OR=1.12; 95% CI: 1.07–1.18; P=1.74×10−5), which also demonstrated similar associations across racial/ethnic populations and anatomical sub-sites.
This is the first study to clearly demonstrate Region 1 of chromosome 8q24 as a susceptibility locus for colorectal cancer, thus adding colorectal cancer to the list of cancer sites linked to this particular multi-cancer risk region at 8q24.
PMCID: PMC3918490  PMID: 23935004
colorectal cancer; pleiotropy; genome-wide association study; single nucleotide polymorphism
8.  No association between germline variation in catechol-O-methyltransferase and colorectal cancer survival in postmenopausal women 
Menopause (New York, N.Y.)  2014;21(4):415-420.
Sex-steroid hormones play a role in colorectal cancer (CRC) development, but little is known about their influence on tumor progression and metastasis. Because catechol-O-methyltransferase activity (COMT; 22q11.21) is an important component of estrogen-mediated carcinogenesis, we hypothesized that germline variation in COMT may be associated with CRC survival.
We identified 10 single-nucleotide polymorphisms (SNPs) that tagged variation across both isoforms of COMT in 2,458 women with CRC from the Nurses’ Health Study (NHS), Postmenopausal Hormones Supplementary Study to the Colon Cancer Family Registry (PMH-CCFR), VITamins And Lifestyle (VITAL) Study, and Women’s Health Initiative (WHI). All four studies participate in the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO).
Over a median follow-up of 7 years across all studies, there were 799 deaths, including 566 from CRC. Accounting for multiple comparisons, no associations between the SNPs and CRC-specific or overall survival reached statistical significance, including the well-characterized Val108/158Met polymorphism (rs4680; hazard ratio per minor allele [HR], 1.04; 95% confidence interval [CI], 0.92–1.17 for CRC-specific survival and 1.01; 0.90–1.14 for overall survival).
In this large study of women with CRC, we found no evidence that common inherited variation in COMT is associated with survival-time after diagnosis.
PMCID: PMC3865220  PMID: 23880798
9.  A Genome-wide Association Study of Early-onset Breast Cancer Identifies PFKM as a Novel Breast Cancer Gene and Supports a Common Genetic Spectrum for Breast Cancer at Any Age 
Ahsan, Habibul | Halpern, Jerry | Kibriya, Muhammad G | Pierce, Brandon L | Tong, Lin | Gamazon, Eric | McGuire, Valerie | Felberg, Anna | Shi, Jianxin | Jasmine, Farzana | Roy, Shantanu | Brutus, Rachelle | Argos, Maria | Melkonian, Stephanie | Chang-Claude, Jenny | Andrulis, Irene | Hopper, John L | John, Esther M. | Malone, Kathi | Ursin, Giske | Gammon, Marilie D | Thomas, Duncan C | Seminara, Daniela | Casey, Graham | Knight, Julia A | Southey, Melissa C | Giles, Graham G | Santella, Regina M | Lee, Eunjung | Conti, David | Duggan, David | Gallinger, Steve | Haile, Robert | Jenkins, Mark | Lindor, Noralane M | Newcomb, Polly | Michailidou, Kyriaki | Apicella, Carmel | Park, Daniel J | Peto, Julian | Fletcher, Olivia | Silva, Isabel dos Santos | Lathrop, Mark | Hunter, David J | Chanock, Stephen J | Meindl, Alfons | Schmutzler, Rita K | Müller-Myhsok, Bertram | Lochmann, Magdalena | Beckmann, Lars | Hein, Rebecca | Makalic, Enes | Schmidt, Daniel F | Bui, Quang Minh | Stone, Jennifer | Flesch-Janys, Dieter | Dahmen, Norbert | Nevanlinna, Heli | Aittomäki, Kristiina | Blomqvist, Carl | Hall, Per | Czene, Kamila | Irwanto, Astrid | Liu, Jianjun | Rahman, Nazneen | Turnbull, Clare | Dunning, Alison M. | Pharoah, Paul | Waisfisz, Quinten | Meijers-Heijboer, Hanne | Uitterlinden, Andre G. | Rivadeneira, Fernando | Nicolae, Dan | Easton, Douglas F | Cox, Nancy J | Whittemore, Alice S
Early-onset breast cancer (EOBC) causes substantial loss of life and productivity, creating a major burden among women worldwide. We analyzed 1,265,548 Hapmap3 SNPs among a discovery set of 3,523 EOBC incident case and 2,702 population control women aged <=51 years. The SNPs with smallest P-values were examined in a replication set of 3,470 EOBC case and 5,475 control women. We also tested EOBC association with 19,684 genes by annotating each gene with putative functional SNPs, and then combining their P-values to obtain a gene-based P-value. We examined the gene with smallest P-value for replication in 1,145 breast cancer case and 1,142 control women. The combined discovery and replication sets identified 72 new SNPs associated with EOBC (P<4×10−8) located in six genomic regions previously reported to contain SNPs associated largely with later-onset breast cancer (LOBC). SNP rs2229882 and 10 other SNPs on chromosome 5q11.2 remained associated (P<6×10−4) after adjustment for the strongest published SNPs in the region. Thirty-two of the 82 currently known LOBC SNPs were associated with EOBC (P<0.05). Low power is likely responsible for the remaining 50 unassociated known LOBC SNPs. The gene-based analysis identified an association between breast cancer and the phosphofructokinase-muscle (PFKM) gene on chromosome 12q13.11 that met the genomewide gene-based threshold of 2.5×10−6. In conclusion, EOBC and LOBC appear to have similar genetic etiologies; the 5q11.2 region may contain multiple distinct breast cancer loci; and the PFKM gene region is worthy of further investigation. These findings should enhance our understanding of the etiology of breast cancer.
PMCID: PMC3990360  PMID: 24493630
10.  Pleiotropic and Sex-Specific Effects of Cancer GWAS SNPs on Melanoma Risk in the Population Architecture Using Genomics and Epidemiology (PAGE) Study 
PLoS ONE  2015;10(3):e0120491.
Several regions of the genome show pleiotropic associations with multiple cancers. We sought to evaluate whether 181 single-nucleotide polymorphisms previously associated with various cancers in genome-wide association studies were also associated with melanoma risk.
We evaluated 2,131 melanoma cases and 20,353 controls from three studies in the Population Architecture using Genomics and Epidemiology (PAGE) study (EAGLE-BioVU, MEC, WHI) and two collaborating studies (HPFS, NHS). Overall and sex-stratified analyses were performed across studies.
We observed statistically significant associations with melanoma for two lung cancer SNPs in the TERT-CLPTM1L locus (Bonferroni-corrected p<2.8x10-4), replicating known pleiotropic effects at this locus. In sex-stratified analyses, we also observed a potential male-specific association between prostate cancer risk variant rs12418451 and melanoma risk (OR=1.22, p=8.0x10-4). No other variants in our study were associated with melanoma after multiple comparisons adjustment (p>2.8e-4).
We provide confirmatory evidence of pleiotropic associations with melanoma for two SNPs previously associated with lung cancer, and provide suggestive evidence for a male-specific association with melanoma for prostate cancer variant rs12418451. This SNP is located near TPCN2, an ion transport gene containing SNPs which have been previously associated with hair pigmentation but not melanoma risk. Previous evidence provides biological plausibility for this association, and suggests a complex interplay between ion transport, pigmentation, and melanoma risk that may vary by sex. If confirmed, these pleiotropic relationships may help elucidate shared molecular pathways between cancers and related phenotypes.
PMCID: PMC4366224  PMID: 25789475
11.  HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials 
Swerdlow, Daniel I | Preiss, David | Kuchenbaecker, Karoline B | Holmes, Michael V | Engmann, Jorgen E L | Shah, Tina | Sofat, Reecha | Stender, Stefan | Johnson, Paul C D | Scott, Robert A | Leusink, Maarten | Verweij, Niek | Sharp, Stephen J | Guo, Yiran | Giambartolomei, Claudia | Chung, Christina | Peasey, Anne | Amuzu, Antoinette | Li, KaWah | Palmen, Jutta | Howard, Philip | Cooper, Jackie A | Drenos, Fotios | Li, Yun R | Lowe, Gordon | Gallacher, John | Stewart, Marlene C W | Tzoulaki, Ioanna | Buxbaum, Sarah G | van der A, Daphne L | Forouhi, Nita G | Onland-Moret, N Charlotte | van der Schouw, Yvonne T | Schnabel, Renate B | Hubacek, Jaroslav A | Kubinova, Ruzena | Baceviciene, Migle | Tamosiunas, Abdonas | Pajak, Andrzej | Topor-Madry, Romanvan | Stepaniak, Urszula | Malyutina, Sofia | Baldassarre, Damiano | Sennblad, Bengt | Tremoli, Elena | de Faire, Ulf | Veglia, Fabrizio | Ford, Ian | Jukema, J Wouter | Westendorp, Rudi G J | de Borst, Gert Jan | de Jong, Pim A | Algra, Ale | Spiering, Wilko | der Zee, Anke H Maitland-van | Klungel, Olaf H | de Boer, Anthonius | Doevendans, Pieter A | Eaton, Charles B | Robinson, Jennifer G | Duggan, David | Kjekshus, John | Downs, John R | Gotto, Antonio M | Keech, Anthony C | Marchioli, Roberto | Tognoni, Gianni | Sever, Peter S | Poulter, Neil R | Waters, David D | Pedersen, Terje R | Amarenco, Pierre | Nakamura, Haruo | McMurray, John J V | Lewsey, James D | Chasman, Daniel I | Ridker, Paul M | Maggioni, Aldo P | Tavazzi, Luigi | Ray, Kausik K | Seshasai, Sreenivasa Rao Kondapally | Manson, JoAnn E | Price, Jackie F | Whincup, Peter H | Morris, Richard W | Lawlor, Debbie A | Smith, George Davey | Ben-Shlomo, Yoav | Schreiner, Pamela J | Fornage, Myriam | Siscovick, David S | Cushman, Mary | Kumari, Meena | Wareham, Nick J | Verschuren, W M Monique | Redline, Susan | Patel, Sanjay R | Whittaker, John C | Hamsten, Anders | Delaney, Joseph A | Dale, Caroline | Gaunt, Tom R | Wong, Andrew | Kuh, Diana | Hardy, Rebecca | Kathiresan, Sekar | Castillo, Berta A | van der Harst, Pim | Brunner, Eric J | Tybjaerg-Hansen, Anne | Marmot, Michael G | Krauss, Ronald M | Tsai, Michael | Coresh, Josef | Hoogeveen, Ronald C | Psaty, Bruce M | Lange, Leslie A | Hakonarson, Hakon | Dudbridge, Frank | Humphries, Steve E | Talmud, Philippa J | Kivimäki, Mika | Timpson, Nicholas J | Langenberg, Claudia | Asselbergs, Folkert W | Voevoda, Mikhail | Bobak, Martin | Pikhart, Hynek | Wilson, James G | Reiner, Alex P | Keating, Brendan J | Hingorani, Aroon D | Sattar, Naveed
Lancet  2015;385(9965):351-361.
Statins increase the risk of new-onset type 2 diabetes mellitus. We aimed to assess whether this increase in risk is a consequence of inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the intended drug target.
We used single nucleotide polymorphisms in the HMGCR gene, rs17238484 (for the main analysis) and rs12916 (for a subsidiary analysis) as proxies for HMGCR inhibition by statins. We examined associations of these variants with plasma lipid, glucose, and insulin concentrations; bodyweight; waist circumference; and prevalent and incident type 2 diabetes. Study-specific effect estimates per copy of each LDL-lowering allele were pooled by meta-analysis. These findings were compared with a meta-analysis of new-onset type 2 diabetes and bodyweight change data from randomised trials of statin drugs. The effects of statins in each randomised trial were assessed using meta-analysis.
Data were available for up to 223 463 individuals from 43 genetic studies. Each additional rs17238484-G allele was associated with a mean 0·06 mmol/L (95% CI 0·05–0·07) lower LDL cholesterol and higher body weight (0·30 kg, 0·18–0·43), waist circumference (0·32 cm, 0·16–0·47), plasma insulin concentration (1·62%, 0·53–2·72), and plasma glucose concentration (0·23%, 0·02–0·44). The rs12916 SNP had similar effects on LDL cholesterol, bodyweight, and waist circumference. The rs17238484-G allele seemed to be associated with higher risk of type 2 diabetes (odds ratio [OR] per allele 1·02, 95% CI 1·00–1·05); the rs12916-T allele association was consistent (1·06, 1·03–1·09). In 129 170 individuals in randomised trials, statins lowered LDL cholesterol by 0·92 mmol/L (95% CI 0·18–1·67) at 1-year of follow-up, increased bodyweight by 0·24 kg (95% CI 0·10–0·38 in all trials; 0·33 kg, 95% CI 0·24–0·42 in placebo or standard care controlled trials and −0·15 kg, 95% CI −0·39 to 0·08 in intensive-dose vs moderate-dose trials) at a mean of 4·2 years (range 1·9–6·7) of follow-up, and increased the odds of new-onset type 2 diabetes (OR 1·12, 95% CI 1·06–1·18 in all trials; 1·11, 95% CI 1·03–1·20 in placebo or standard care controlled trials and 1·12, 95% CI 1·04–1·22 in intensive-dose vs moderate dose trials).
The increased risk of type 2 diabetes noted with statins is at least partially explained by HMGCR inhibition.
The funding sources are cited at the end of the paper.
PMCID: PMC4322187  PMID: 25262344
13.  The identification of trans-associations between prostate cancer GWAS SNPs and RNA expression differences in tumor-adjacent stroma 
Oncotarget  2015;6(3):1865-1873.
Here we tested the hypothesis that SNPs associated with prostate cancer risk, might differentially affect RNA expression in prostate cancer stroma. The most significant 35 SNP loci were selected from Genome Wide Association (GWA) studies of ~40,000 patients. We also selected 4030 transcripts previously associated with prostate cancer diagnosis and prognosis. eQTL analysis was carried out by a modified BAYES method to analyze the associations between the risk variants and expressed transcripts jointly in a single model. We observed 47 significant associations between eight risk variants and the expression patterns of 46 genes. This is the first study to identify associations between multiple SNPs and multiple in trans gene expression differences in cancer stroma. Potentially, a combination of SNPs and associated expression differences in prostate stroma may increase the power of risk assessment for individuals, and for cancer progression.
PMCID: PMC4359337  PMID: 25638161
SNPs; eQTL; prostate cancer
14.  No evidence of interaction between known lipid-associated genetic variants and smoking in the multi-ethnic PAGE population 
Human genetics  2013;132(12):1427-1431.
Genome-wide association studies (GWAS) have identified many variants that influence high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and/or triglycerides. However, environmental modifiers, such as smoking, of these known genotype–phenotype associations are just recently emerging in the literature. We have tested for interactions between smoking and 49 GWAS-identified variants in over 41,000 racially/ethnically diverse samples with lipid levels from the Population Architecture Using Genomics and Epidemiology (PAGE) study. Despite their biological plausibility, we were unable to detect significant SNP × smoking interactions.
PMCID: PMC3895337  PMID: 24100633
15.  COX-1 (PTGS1) and COX-2 (PTGS2) polymorphisms, NSAID interactions, and risk of colon and rectal cancer in two independent populations 
Cancer causes & control : CCC  2013;24(12):2059-2075.
Nonsteroidal anti-inflammatory drugs (NSAIDs) target the prostaglandin H synthase enzymes, cyclooxygenase (COX)-1 and -2, and reduce colorectal cancer risk. Genetic variation in the genes encoding these enzymes may be associated with changes in colon and rectal cancer risk and in NSAID efficacy.
We genotyped candidate polymorphisms and tagSNPs in PTGS1 (COX-1) and PTGS2 (COX-2) in a population-based case-control study (Diet, Activity and Lifestyle Study, DALS) of colon cancer (n=1470 cases/1837 controls) and rectal cancer (n=583/775), and independently among cases and controls from the Colon Cancer Family Registry (CCFR; colon n= 959/1535, rectal n= 505/839).
In PTGS2, a functional polymorphism (−765G>C; rs20417) was associated with a 2-fold increased rectal cancer risk (p=0.05) in the DALS study. This association replicated with a significant nearly 5-fold increased risk of rectal cancer in the CCFR study (ORCC vs GG=4.88; 95%CI=1.54–15.45; ORGC vs GG=1.36; 95%CI: 0.95–1.94). Genotype-NSAID interactions were observed in the DALS study for PTGS1 and rectal cancer risk, and for PTGS2 and colon cancer risk, but were no longer significant after correcting for multiple comparisons and did not replicate in the CCFR. No significant associations between PTGS1 polymorphisms and colon or rectal cancer risk were observed.
These findings suggest that polymorphisms in PTGS2 may be associated with rectal cancer risk and impact the protective effects of NSAIDs.
PMCID: PMC3913564  PMID: 24022467
colorectal cancer; PTGS; COX; genetic association; NSAID; aspirin; polymorphism
16.  Genetic Predictors of Circulating 25-Hydroxyvitamin D and Risk of Colorectal Cancer 
Experimental evidence has demonstrated an anti-neoplastic role for vitamin D in the colon and higher circulating 25-hydroxyvitamin D (25[OH]D) levels are consistently associated with a lower risk of colorectal cancer (CRC). Genome-wide association studies have identified loci associated with levels of circulating 25(OH)D. The identified SNPs from four gene regions, collectively explain approximately 5% of the variance in circulating 25(OH)D.
We investigated whether six polymorphisms in GC, CYP2R1, CYP24A1 and DHCR7/NADSYN1, genes previously shown to be associated with circulating 25(OH)D levels, were associated with CRC risk in 10,061 cases and 12,768 controls drawn from 13 studies included in the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) and Colon Cancer Family Registry (CCFR). We performed a meta-analysis of crude and multivariate-adjusted logistic regression models to calculate odds ratios and associated confidence intervals for SNPs individually, SNPs simultaneously, and for a vitamin D additive genetic risk score (GRS).
We did not observe a statistically significant association between the 25(OH)D associated SNPs and CRC marginally, conditionally, or as a GRS, or for colon or rectal cancer separately or combined.
Our findings do not support an association between SNPs associated with circulating 25(OH)D and risk of CRC. Additional work is warranted to investigate the complex relationship between 25(OH)D and CRC risk.
There was no association observed between genetic markers of circulating 25(OH)D and CRC. These genetic markers account for a small proportion of the variance in 25(OH)D.
PMCID: PMC3818310  PMID: 23983240
17.  Genetic Variation in the Inflammation and Innate Immunity Pathways and Colorectal Cancer Risk 
It is widely accepted that chronic inflammation plays a role in the etiology of colorectal cancer. Using a two-stage design, we examined the associations between colorectal cancer and common variation in 37 key genes in the inflammation and innate immunity pathways.
In the discovery stage, 2,322 discordant sibships (2,535 cases, 3,915 sibling controls) from the Colorectal Cancer Family Registry were genotyped for over 600 tagSNPs and 99 SNPs were selected for further examination based on strength of association. In the second stage, 351 SNPs tagging gene regions covered by the 99 SNPs were tested in 4,783 Multiethnic Cohort subjects (2,153 cases, 2,630 controls).
The association between rs9858822 in the PPARG gene and colorectal cancer was statistically significant at the end of the second stage (odds ratio per allele = 1.36, Bonferroni-adjusted P = 0.045), based on the “effective” number of markers in Stage 2 (n = 306). The risk allele C was common (frequency 0.3) in African Americans but rare (frequency < 0.03) in whites, Japanese Americans, Latinos and Native Hawaiians. No statistically significant heterogeneity of effects across race/ethnicity, BMI levels, regular aspirin use or pack-years of smoking was detected for this SNP. Suggestive associations were also observed for several SNPs in close vicinity to rs9858822.
Our results provide new evidence of association between PPARG variants and colorectal cancer risk.
Further replication in independent samples is warranted.
PMCID: PMC3836607  PMID: 24045924
pathway approach; inflammation; colorectal cancer; minority population; immunity
18.  OPG and sRANKL serum levels and incident hip fracture in postmenopausal Caucasian women in the Women's Health Initiative Observational Study 
Bone  2013;56(2):10.1016/j.bone.2013.05.018.
The osteoprotogerin/receptor activator of NF-kappa β/receptor activator of NF-kappa β ligand (OPG/RANK/RANKL) pathway plays a critical role in bone remodeling. This study investigated associations between serum levels of OPG, soluble RANKL (sRANKL), and the ratio of OPG/sRANKL to risk of incident hip fracture.
A nested case–control study was conducted among postmenopausal, Caucasian women aged 50–79 at baseline (1993–1998), followed for hip fracture through March 2005 in the Women's Health Initiative Observational Study. 400 incident hip fracture cases were selected and individually matched to 400 controls with noprior fracture or incident hip fracture. Matching factors were baseline age, enrollment date and hormone therapy (HT) exposure. Baseline serum OPG and sRANKL levels were measured using high sensitivity ELISA. Odds ratios were computed for quartiles of each biomarker adjusting for matching factors and hip fracture risk factors.
Serum OPG was significantly associated with older age, low physical activity and poorer physical function in control women. sRANKL was inversely associated with total calcium intake in control women, but not associated with age or other fracture risk factors. The odds ratio for hip fracture comparing the highest to lowest quartiles of OPG was 2.28 (95% confidence interval (CI), 1.45–3.61) after adjusting for the matching variables (p-value for linear trend <0.001), and 1.87 (95% CI, 1.15–3.04; p for linear trend = 0.02) after adjusting for self-rated health status, physical activity and physical functioning. No significant associations between sRANKL or the ratio of OPG/sRANKL and hip fracture risk were observed.
Serum OPG levels were independently associated with a nearly twofold increased risk of hip fracture in postmenopausal women.
PMCID: PMC3832355  PMID: 23735608
RANKL; Osteoprotogerin; Hip fracture; Osteoporosis; Postmenopausal women
19.  Post genome-wide association study challenges for lipid traits: describing age as a modifier of gene-lipid associations in the Population Architecture using Genomics and Epidemiology (PAGE) study 
Annals of human genetics  2013;77(5):416-425.
Numerous common genetic variants that influence plasma high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) distributions have been identified via genome-wide association studies (GWAS). However, whether or not these associations are age dependent has largely been overlooked. We conducted an association study and meta-analysis in more than 22,000 European Americans between 49 previously identified GWAS variants and the three lipid traits, stratified by age (males: <50 or ≥50 years of age; females: pre- or post-menopausal). For each variant, a test of heterogeneity was performed between the two age strata and significant Phet values were used as evidence of age-specific genetic effects. We identified seven associations in females and eight in males that displayed suggestive heterogeneity by age (Phet<0.05). The association between rs174547 (FADS1) and LDL-C in males displayed the most evidence for heterogeneity between age groups (Phet=1.74E-03, I2=89.8), with a significant association in older males (P=1.39E-06) but not younger males (P=0.99). However, none of the suggestive modifying effects survived adjustment for multiple testing, highlighting the challenges of identifying modifiers of modest SNP-trait associations despite large sample sizes.
PMCID: PMC3796061  PMID: 23808484
PAGE; modifier; age; lipids; genetic association
20.  Loci influencing blood pressure identified using a cardiovascular gene-centric array 
Ganesh, Santhi K. | Tragante, Vinicius | Guo, Wei | Guo, Yiran | Lanktree, Matthew B. | Smith, Erin N. | Johnson, Toby | Castillo, Berta Almoguera | Barnard, John | Baumert, Jens | Chang, Yen-Pei Christy | Elbers, Clara C. | Farrall, Martin | Fischer, Mary E. | Franceschini, Nora | Gaunt, Tom R. | Gho, Johannes M.I.H. | Gieger, Christian | Gong, Yan | Isaacs, Aaron | Kleber, Marcus E. | Leach, Irene Mateo | McDonough, Caitrin W. | Meijs, Matthijs F.L. | Mellander, Olle | Molony, Cliona M. | Nolte, Ilja M. | Padmanabhan, Sandosh | Price, Tom S. | Rajagopalan, Ramakrishnan | Shaffer, Jonathan | Shah, Sonia | Shen, Haiqing | Soranzo, Nicole | van der Most, Peter J. | Van Iperen, Erik P.A. | Van Setten, Jessica | Vonk, Judith M. | Zhang, Li | Beitelshees, Amber L. | Berenson, Gerald S. | Bhatt, Deepak L. | Boer, Jolanda M.A. | Boerwinkle, Eric | Burkley, Ben | Burt, Amber | Chakravarti, Aravinda | Chen, Wei | Cooper-DeHoff, Rhonda M. | Curtis, Sean P. | Dreisbach, Albert | Duggan, David | Ehret, Georg B. | Fabsitz, Richard R. | Fornage, Myriam | Fox, Ervin | Furlong, Clement E. | Gansevoort, Ron T. | Hofker, Marten H. | Hovingh, G. Kees | Kirkland, Susan A. | Kottke-Marchant, Kandice | Kutlar, Abdullah | LaCroix, Andrea Z. | Langaee, Taimour Y. | Li, Yun R. | Lin, Honghuang | Liu, Kiang | Maiwald, Steffi | Malik, Rainer | Murugesan, Gurunathan | Newton-Cheh, Christopher | O'Connell, Jeffery R. | Onland-Moret, N. Charlotte | Ouwehand, Willem H. | Palmas, Walter | Penninx, Brenda W. | Pepine, Carl J. | Pettinger, Mary | Polak, Joseph F. | Ramachandran, Vasan S. | Ranchalis, Jane | Redline, Susan | Ridker, Paul M. | Rose, Lynda M. | Scharnag, Hubert | Schork, Nicholas J. | Shimbo, Daichi | Shuldiner, Alan R. | Srinivasan, Sathanur R. | Stolk, Ronald P. | Taylor, Herman A. | Thorand, Barbara | Trip, Mieke D. | van Duijn, Cornelia M. | Verschuren, W. Monique | Wijmenga, Cisca | Winkelmann, Bernhard R. | Wyatt, Sharon | Young, J. Hunter | Boehm, Bernhard O. | Caulfield, Mark J. | Chasman, Daniel I. | Davidson, Karina W. | Doevendans, Pieter A. | FitzGerald, Garret A. | Gums, John G. | Hakonarson, Hakon | Hillege, Hans L. | Illig, Thomas | Jarvik, Gail P. | Johnson, Julie A. | Kastelein, John J.P. | Koenig, Wolfgang | März, Winfried | Mitchell, Braxton D. | Murray, Sarah S. | Oldehinkel, Albertine J. | Rader, Daniel J. | Reilly, Muredach P. | Reiner, Alex P. | Schadt, Eric E. | Silverstein, Roy L. | Snieder, Harold | Stanton, Alice V. | Uitterlinden, André G. | van der Harst, Pim | van der Schouw, Yvonne T. | Samani, Nilesh J. | Johnson, Andrew D. | Munroe, Patricia B. | de Bakker, Paul I.W. | Zhu, Xiaofeng | Levy, Daniel | Keating, Brendan J. | Asselbergs, Folkert W.
Human Molecular Genetics  2013;22(16):3394-3395.
PMCID: PMC3888295
21.  Identification of Novel Variants in Colorectal Cancer Families by High-Throughput Exome Sequencing 
Colorectal cancer (CRC) in densely affected families without Lynch Syndrome may be due to mutations in undiscovered genetic loci. Familial linkage analyses have yielded disparate results; the use of exome sequencing in coding regions may identify novel segregating variants.
We completed exome sequencing on 40 affected cases from 16 multi-case pedigrees to identify novel loci. Variants shared among all sequenced cases within each family were identified and filtered to exclude common variants and single nucleotide variants (SNVs) predicted to be benign.
We identified 32 nonsense or splice-site SNVs, 375 missense SNVs, 1,394 synonymous or non-coding SNVs, and 50 indels in the 16 families. Of particular interest are two validated and replicated missense variants in CENPE and KIF23, which are both located within previously reported CRC linkage regions, on chromosomes 1 and 15, respectively.
Whole-exome sequencing identified DNA variants in multiple genes. Additional sequencing of these genes in additional samples will further elucidate the role of variants in these regions in colorectal cancer susceptibility.
Exome sequencing of familial CRC cases can identify novel rare variants that may influence disease risk.
PMCID: PMC3704223  PMID: 23637064
colorectal cancer; familial and hereditary cancers; exome sequencing; rare variants; family study design
22.  Integrated Analysis of Genome-wide Copy Number Alterations and Gene Expression in MSS, CIMP-negative Colon Cancer 
Genes, chromosomes & cancer  2013;52(5):450-466.
Microsatellite stable (MSS), CpG island methylator phenotype (CIMP)-negative colorectal tumors, the most prevalent molecular subtype of colorectal cancer, are associated with extensive copy number alteration (CNA) events and aneuploidy. We report on the identification of characteristic recurrent CNA (with frequency >25%) events and associated gene expression profiles for a total of 40 paired tumor and adjacent normal colon tissues using genome-wide microarrays. We observed recurrent CNAs, namely gains at 1q, 7p, 7q, 8p12-11, 8q, 12p13, 13q, 20p, 20q, Xp, and Xq and losses at 1p36, 1p31, 1p21, 4p15-12, 4q12-35, 5q21-22, 6q26, 8p, 14q, 15q11-12, 17p, 18p, 18q, 21q21-22, and 22q. Within these genomic regions we identified 356 genes with significant differential expression (P<0.0001 and ±1.5 fold change) in the tumor compared to adjacent normal tissue. Gene ontology and pathway analyses indicated that many of these genes were involved in functional mechanisms that regulate cell cycle, cell death, and metabolism. An amplicon present in >70% of the tumor samples at 20q11-20q13 contained several cancer-related genes (AHCY, POFUT1, RPN2, TH1L and PRPF6) that were up-regulated and demonstrated a significant linear correlation (P<0.05) for gene dosage and gene expression. Copy number loss at 8p, a CNA associated with adenocarcinoma and poor prognosis, was observed in >50% of the tumor samples and demonstrated a significant linear correlation for gene dosage and gene expression for two potential tumor suppressor genes, MTUS1 (8p22) and PPP2CB (8p12). The results from our integration analysis illustrate the complex relationship between genomic alterations and gene expression in colon cancer.
PMCID: PMC4019504  PMID: 23341073
23.  Are the common genetic variants associated with colorectal cancer risk for DNA mismatch repair gene mutation carriers? 
Genome-wide association studies have identified at least 15 independent common genetic variants associated with colorectal cancer (CRC) risk. The aim of this study was to investigate whether 11 of these variants are associated with CRC risk for carriers of germline mutations in DNA mismatch repair (MMR) genes.
A total of 927 MMR gene mutation carriers (360 MLH1, 442 MSH2, 85 MSH6 and 40 PMS2) from 315 families enrolled in the Colon Cancer Family Registry, were genotyped for the SNPs: rs16892766 (8q23.3), rs6983267 (8q24.21), rs719725 (9p24), rs10795668 (10p14), rs3802842 (11q23.1), rs4444235 (14q22.2), rs4779584 (15q13.3), rs9929218 (16q22.1), rs4939827 (18q21.1), rs10411210 (19q13.1) and rs961253 (20p12.3). We used a weighted Cox regression to estimate CRC risk for homozygous and heterozygous carriers of the risk allele compared with homozygous non-carriers as well as for an additive per allele model (on the log scale).
Over a total of 40,978 person-years observation, 426 (46%) carriers were diagnosed with CRC at a mean age of 44.3 years. For all carriers combined, we found no evidence of an association between CRC risk and the total number of risk alleles (hazard ratio [HR] per risk allele=0.97, 95% confidence interval [CI]=0.88–1.07, p=0.52).
We found no evidence that the SNPs associated with CRC in the general population are modifiers of the risk for MMR gene mutation carriers overall, and therefore any evidence of proven clinical utility in Lynch syndrome.
PMCID: PMC3625445  PMID: 23434150
genetic variant; colorectal cancer; Lynch syndrome; mismatch repair
24.  Genetic Variation in the Lipoxygenase Pathway and Risk of Colorectal Neoplasia 
Genes, chromosomes & cancer  2013;52(5):437-449.
Arachidonate lipoxygenase (ALOX) enzymes metabolize arachidonic acid to generate potent inflammatory mediators and play an important role in inflammation-associated diseases. We investigated associations between colorectal cancer risk and polymorphisms in ALOX5, FLAP, ALOX12, and ALOX15, and their interactions with non-steroidal anti-inflammatory drug (NSAID) use. We genotyped fifty tagSNPs, one candidate SNP, and two functional promoter variable nucleotide tandem repeat (VNTR) polymorphisms in three US population-based case-control studies of colon cancer (1424 cases/1780 controls), rectal cancer (583 cases/775 controls), and colorectal adenomas (485 cases/578 controls). Individuals with variant genotypes of the ALOX5 VNTR had decreased risk of rectal cancer, with the strongest association seen for individuals with one or more alleles of >5 repeats (wildtype=5, OR>5/≥5=0.42, 95% CI 0.20-0.92; p=0.01). Four SNPs in FLAP (rs17239025), ALOX 12 (rs2073438), and ALOX15 (rs4796535 and rs2619112) were associated with rectal cancer risk at p≤0.05. One SNP in FLAP (rs12429692) was associated with adenoma risk. A false discovery rate (FDR) was applied to account for false positives due to multiple testing; the ALOX15 associations were noteworthy at 25% FDR. Colorectal neoplasia risk appeared to be modified by NSAID use in individuals with variant alleles in FLAP and ALOX15. One noteworthy interaction (25% FDR) was observed for rectal cancer. Genetic variability in arachidonate lipoxygenases may affect risk of colorectal neoplasia, particularly for rectal cancer. Additionally, genetic variability in FLAP and ALOX15 may modify the protective effect of NSAID use against colorectal neoplasia.
PMCID: PMC3698944  PMID: 23404351
25.  Genome-Wide Diet-Gene Interaction Analyses for Risk of Colorectal Cancer 
PLoS Genetics  2014;10(4):e1004228.
Dietary factors, including meat, fruits, vegetables and fiber, are associated with colorectal cancer; however, there is limited information as to whether these dietary factors interact with genetic variants to modify risk of colorectal cancer. We tested interactions between these dietary factors and approximately 2.7 million genetic variants for colorectal cancer risk among 9,287 cases and 9,117 controls from ten studies. We used logistic regression to investigate multiplicative gene-diet interactions, as well as our recently developed Cocktail method that involves a screening step based on marginal associations and gene-diet correlations and a testing step for multiplicative interactions, while correcting for multiple testing using weighted hypothesis testing. Per quartile increment in the intake of red and processed meat were associated with statistically significant increased risks of colorectal cancer and vegetable, fruit and fiber intake with lower risks. From the case-control analysis, we detected a significant interaction between rs4143094 (10p14/near GATA3) and processed meat consumption (OR = 1.17; p = 8.7E-09), which was consistently observed across studies (p heterogeneity = 0.78). The risk of colorectal cancer associated with processed meat was increased among individuals with the rs4143094-TG and -TT genotypes (OR = 1.20 and OR = 1.39, respectively) and null among those with the GG genotype (OR = 1.03). Our results identify a novel gene-diet interaction with processed meat for colorectal cancer, highlighting that diet may modify the effect of genetic variants on disease risk, which may have important implications for prevention.
Author Summary
High intake of red and processed meat and low intake of fruits, vegetables and fiber are associated with a higher risk of colorectal cancer. We investigate if the effect of these dietary factors on colorectal cancer risk is modified by common genetic variants across the genome (total of about 2.7 million genetic variants), also known as gene-diet interactions. We included over 9,000 colorectal cancer cases and 9,000 controls that were not diagnosed with colorectal cancer. Our results provide strong evidence for a gene-diet interaction and colorectal cancer risk between a genetic variant (rs4143094) on chromosome 10p14 near the gene GATA3 and processed meat consumption (p = 8.7E-09). This genetic locus may have interesting biological significance given its location in the genome. Our results suggest that genetic variants may interact with diet and in combination affect colorectal cancer risk, which may have important implications for personalized cancer care and provide novel insights into prevention strategies.
PMCID: PMC3990510  PMID: 24743840

Results 1-25 (90)