PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (82)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Small cell carcinoma of the ovary, hypercalcemic type, displays frequent inactivating germline and somatic mutations in SMARCA4 
Nature genetics  2014;46(5):427-429.
Small cell carcinoma of the ovary of hypercalcemic type (SCCOHT) is an extremely rare, aggressive cancer affecting children and young women. We identified germline and somatic inactivating mutations in the SWI/SNF chromatin-remodeling gene SMARCA4 in 69% (9/13) of SCCOHT cases in addition to SMARCA4 protein loss in 82% (14/17) of SCCOHT tumors but in only 0.4% (2/485) of other primary ovarian tumors. These data implicate SMARCA4 in SCCOHT oncogenesis.
doi:10.1038/ng.2928
PMCID: PMC4332808  PMID: 24658001
2.  Characterization of X Chromosome Inactivation Using Integrated Analysis of Whole-Exome and mRNA Sequencing 
PLoS ONE  2014;9(12):e113036.
In females, X chromosome inactivation (XCI) is an epigenetic, gene dosage compensatory mechanism by inactivation of one copy of X in cells. Random XCI of one of the parental chromosomes results in an approximately equal proportion of cells expressing alleles from either the maternally or paternally inherited active X, and is defined by the XCI ratio. Skewed XCI ratio is suggestive of non-random inactivation, which can play an important role in X-linked genetic conditions. Current methods rely on indirect, semi-quantitative DNA methylation-based assay to estimate XCI ratio. Here we report a direct approach to estimate XCI ratio by integrated, family-trio based whole-exome and mRNA sequencing using phase-by-transmission of alleles coupled with allele-specific expression analysis. We applied this method to in silico data and to a clinical patient with mild cognitive impairment but no clear diagnosis or understanding molecular mechanism underlying the phenotype. Simulation showed that phased and unphased heterozygous allele expression can be used to estimate XCI ratio. Segregation analysis of the patient's exome uncovered a de novo, interstitial, 1.7 Mb deletion on Xp22.31 that originated on the paternally inherited X and previously been associated with heterogeneous, neurological phenotype. Phased, allelic expression data suggested an 83∶20 moderately skewed XCI that favored the expression of the maternally inherited, cytogenetically normal X and suggested that the deleterious affect of the de novo event on the paternal copy may be offset by skewed XCI that favors expression of the wild-type X. This study shows the utility of integrated sequencing approach in XCI ratio estimation.
doi:10.1371/journal.pone.0113036
PMCID: PMC4264736  PMID: 25503791
3.  Open-access synthetic spike-in mRNA-seq data for cancer gene fusions 
BMC Genomics  2014;15(1):824.
Background
Oncogenic fusion genes underlie the mechanism of several common cancers. Next-generation sequencing based RNA-seq analyses have revealed an increasing number of recurrent fusions in a variety of cancers. However, absence of a publicly available gene-fusion focused RNA-seq data impedes comparative assessment and collaborative development of novel gene fusions detection algorithms. We have generated nine synthetic poly-adenylated RNA transcripts that correspond to previously reported oncogenic gene fusions. These synthetic RNAs were spiked at known molarity over a wide range into total RNA prior to construction of next-generation sequencing mRNA libraries to generate RNA-seq data.
Results
Leveraging a priori knowledge about replicates and molarity of each synthetic fusion transcript, we demonstrate utility of this dataset to compare multiple gene fusion algorithms’ detection ability. In general, more fusions are detected at higher molarity, indicating that our constructs performed as expected. However, systematic detection differences are observed based on molarity or algorithm-specific characteristics. Fusion-sequence specific detection differences indicate that for applications where specific sequences are being investigated, additional constructs may be added to provide quantitative data that is specific for the sequence of interest.
Conclusions
To our knowledge, this is the first publicly available synthetic RNA-seq data that specifically leverages known cancer gene-fusions. The proposed method of designing multiple gene-fusion constructs over a wide range of molarity allows granular performance analyses of multiple fusion-detection algorithms. The community can leverage and augment this publicly available data to further collaborative development of analytical tools and performance assessment frameworks for gene fusions from next-generation sequencing data.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-824) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2164-15-824
PMCID: PMC4190330  PMID: 25266161
RNA-seq; Gene fusions; Cancer genomics
4.  High Density SNP Screen in A Large Multiplex Neural Tube Defect Family Refines Linkage to Loci at 7p21-Pter And 2q33.1-35 
BACKGROUND
Neural tube defects (NTDs) are considered complex with both genetic and environmental factors implicated. To date, no major causative genes have been identified in humans despite several investigations. The first genomewide screen in NTDs (Rampersaud et al. 2005) demonstrated evidence of linkage to chromosomes 7 and 10. This screen included forty-four multiplex families and consisted of 402 microsatellite markers spaced approximately 10 cM apart. Further investigation of the genomic screen data identified a single large multiplex family, pedigree 8776, as primarily driving the linkage results on chromosome 7.
METHODS
To investigate this family more thoroughly, a high-density single nucleotide polymorphism (SNP) screen was performed. Two-point and multipoint linkage analyses were performed using both parametric and nonparametric methods.
RESULTS
For both the microsatellite and SNP markers, linkage analysis suggested the involvement of a locus or loci proximal to the telomeric regions of chromosomes 2q and 7p, with both regions having nonparametric lod* scores of ~3.0, yielding very similar evidence in favor of linkage.
CONCLUSIONS
The regions of strongest evidence for linkage map proximal to the telomeres on these two chromosomes. In addition to mutations and/or variants in a major gene, these loci may harbor a microdeletion and/or translocation; potentially, polygenic factors may also be involved. This single family may be promising for narrowing the search for NTD susceptibility genes.
doi:10.1002/bdra.20272
PMCID: PMC4169147  PMID: 16933213
Neural tube defects (NTDs); spina bifida; genetic mapping; linkage; genome screen
5.  In vitro-differentiated neural cell cultures progress towards donor-identical brain tissue 
Human Molecular Genetics  2013;22(17):3534-3546.
Multiple research groups have observed neuropathological phenotypes and molecular symptoms in vitro using induced pluripotent stem cell (iPSC)-derived neural cell cultures (i.e. patient-specific neurons and glia). However, the global differences/similarities that may exist between in vitro neural cells and their tissue-derived counterparts remain largely unknown. In this study, we compared temporal series of iPSC-derived in vitro neural cell cultures to endogenous brain tissue from the same autopsy donor. Specifically, we utilized RNA sequencing (RNA-Seq) to evaluate the transcriptional progression of in vitro-differentiated neural cells (over a timecourse of 0, 35, 70, 105 and 140 days), and compared this with donor-identical temporal lobe tissue. We observed in vitro progression towards the reference brain tissue, and the following three results support this conclusion: (i) there was a significant increasing monotonic correlation between the days of our timecourse and the number of actively transcribed protein-coding genes and long intergenic non-coding RNAs (lincRNAs) (P < 0.05), consistent with the transcriptional complexity of the brain; (ii) there was an increase in CpG methylation after neural differentiation that resembled the epigenomic signature of the endogenous tissue; and (iii) there was a significant decreasing monotonic correlation between the days of our timecourse and the percent of in vitro to brain-tissue differences (P < 0.05) for tissue-specific protein-coding genes and all putative lincRNAs. Taken together, these results are consistent with in vitro neural development and physiological progression occurring predominantly by transcriptional activation of downregulated genes rather than deactivation of upregulated genes.
doi:10.1093/hmg/ddt208
PMCID: PMC3736871  PMID: 23666530
6.  The Role of Variation at AβPP, PSEN1, PSEN2, and MAPT in Late Onset Alzheimer’s Disease 
Gerrish, Amy | Russo, Giancarlo | Richards, Alexander | Moskvina, Valentina | Ivanov, Dobril | Harold, Denise | Sims, Rebecca | Abraham, Richard | Hollingworth, Paul | Chapman, Jade | Hamshere, Marian | Pahwa, Jaspreet Singh | Dowzell, Kimberley | Williams, Amy | Jones, Nicola | Thomas, Charlene | Stretton, Alexandra | Morgan, Angharad R. | Lovestone, Simon | Powell, John | Proitsi, Petroula | Lupton, Michelle K. | Brayne, Carol | Rubinsztein, David C. | Gill, Michael | Lawlor, Brian | Lynch, Aoibhinn | Morgan, Kevin | Brown, Kristelle S. | Passmore, Peter A. | Craig, David | McGuinness, Bernadette | Todd, Stephen | Johnston, Janet A. | Holmes, Clive | Mann, David | Smith, A. David | Love, Seth | Kehoe, Patrick G. | Hardy, John | Mead, Simon | Fox, Nick | Rossor, Martin | Collinge, John | Maier, Wolfgang | Jessen, Frank | Kölsch, Heike | Heun, Reinhard | Schürmann, Britta | van den Bussche, Hendrik | Heuser, Isabella | Kornhuber, Johannes | Wiltfang, Jens | Dichgans, Martin | Frölich, Lutz | Hampel, Harald | Hüll, Michael | Rujescu, Dan | Goate, Alison M. | Kauwe, John S. K. | Cruchaga, Carlos | Nowotny, Petra | Morris, John C. | Mayo, Kevin | Livingston, Gill | Bass, Nicholas J. | Gurling, Hugh | McQuillin, Andrew | Gwilliam, Rhian | Deloukas, Panagiotis | Davies, Gail | Harris, Sarah E. | Starr, John M. | Deary, Ian J. | Al-Chalabi, Ammar | Shaw, Christopher E. | Tsolaki, Magda | Singleton, Andrew B. | Guerreiro, Rita | Mühleisen, Thomas W. | Nöthen, Markus M. | Moebus, Susanne | Jöckel, Karl-Heinz | Klopp, Norman | Wichmann, H-Erich | Carrasquillo, Minerva M | Pankratz, V Shane | Younkin, Steven G. | Jones, Lesley | Holmans, Peter A. | O’Donovan, Michael C. | Owen, Michael J. | Williams, Julie
Rare mutations in AβPP, PSEN1, and PSEN2 cause uncommon early onset forms of Alzheimer’s disease (AD), and common variants in MAPT are associated with risk of other neurodegenerative disorders. We sought to establish whether common genetic variation in these genes confer risk to the common form of AD which occurs later in life (>65 years). We therefore tested single-nucleotide polymorphisms at these loci for association with late-onset AD (LOAD) in a large case-control sample consisting of 3,940 cases and 13,373 controls. Single-marker analysis did not identify any variants that reached genome-wide significance, a result which is supported by other recent genome-wide association studies. However, we did observe a significant association at the MAPT locus using a gene-wide approach (p = 0.009). We also observed suggestive association between AD and the marker rs9468, which defines the H1 haplotype, an extended haplotype that spans the MAPT gene and has previously been implicated in other neurodegenerative disorders including Parkinson’s disease, progressive supranuclear palsy, and corticobasal degeneration. In summary common variants at AβPP, PSEN1, and PSEN2 and MAPT are unlikely to make strong contributions to susceptibility for LOAD. However, the gene-wide effect observed at MAPT indicates a possible contribution to disease risk which requires further study.
doi:10.3233/JAD-2011-110824
PMCID: PMC4118466  PMID: 22027014
Alzheimer’s disease; amyloid-β protein precursor; genetics; human; MAPT protein; PSEN1 protein; PSEN2 protein
7.  An Assessment of Fixed Interval Timing in Free-Flying Honey Bees (Apis mellifera ligustica): An Analysis of Individual Performance 
PLoS ONE  2014;9(7):e101262.
Interval timing is a key element of foraging theory, models of predator avoidance, and competitive interactions. Although interval timing is well documented in vertebrate species, it is virtually unstudied in invertebrates. In the present experiment, we used free-flying honey bees (Apis mellifera ligustica) as a model for timing behaviors. Subjects were trained to enter a hole in an automated artificial flower to receive a nectar reinforcer (i.e. reward). Responses were continuously reinforced prior to exposure to either a fixed interval (FI) 15-sec, FI 30-sec, FI 60-sec, or FI 120-sec reinforcement schedule. We measured response rate and post-reinforcement pause within each fixed interval trial between reinforcers. Honey bees responded at higher frequencies earlier in the fixed interval suggesting subject responding did not come under traditional forms of temporal control. Response rates were lower during FI conditions compared to performance on continuous reinforcement schedules, and responding was more resistant to extinction when previously reinforced on FI schedules. However, no “scalloped” or “break-and-run” patterns of group or individual responses reinforced on FI schedules were observed; no traditional evidence of temporal control was found. Finally, longer FI schedules eventually caused all subjects to cease returning to the operant chamber indicating subjects did not tolerate the longer FI schedules.
doi:10.1371/journal.pone.0101262
PMCID: PMC4077790  PMID: 24983960
8.  Whole genome sequencing reveals potential targets for therapy in patients with refractory KRAS mutated metastatic colorectal cancer 
BMC Medical Genomics  2014;7:36.
Background
The outcome of patients with metastatic colorectal carcinoma (mCRC) following first line therapy is poor, with median survival of less than one year. The purpose of this study was to identify candidate therapeutically targetable somatic events in mCRC patient samples by whole genome sequencing (WGS), so as to obtain targeted treatment strategies for individual patients.
Methods
Four patients were recruited, all of whom had received > 2 prior therapy regimens. Percutaneous needle biopsies of metastases were performed with whole blood collection for the extraction of constitutional DNA. One tumor was not included in this study as the quality of tumor tissue was not sufficient for further analysis. WGS was performed using Illumina paired end chemistry on HiSeq2000 sequencing systems, which yielded coverage of greater than 30X for all samples. NGS data were processed and analyzed to detect somatic genomic alterations including point mutations, indels, copy number alterations, translocations and rearrangements.
Results
All 3 tumor samples had KRAS mutations, while 2 tumors contained mutations in the APC gene and the PIK3CA gene. Although we did not identify a TCF7L2-VTI1A translocation, we did detect a TCF7L2 mutation in one tumor. Among the other interesting mutated genes was INPPL1, an important gene involved in PI3 kinase signaling. Functional studies demonstrated that inhibition of INPPL1 reduced growth of CRC cells, suggesting that INPPL1 may promote growth in CRC.
Conclusions
Our study further supports potential molecularly defined therapeutic contexts that might provide insights into treatment strategies for refractory mCRC. New insights into the role of INPPL1 in colon tumor cell growth have also been identified. Continued development of appropriate targeted agents towards specific events may be warranted to help improve outcomes in CRC.
doi:10.1186/1755-8794-7-36
PMCID: PMC4074842  PMID: 24943349
Metastatic colorectal cancer; Whole genome sequencing; KRAS mutations
9.  Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease 
Escott-Price, Valentina | Bellenguez, Céline | Wang, Li-San | Choi, Seung-Hoan | Harold, Denise | Jones, Lesley | Holmans, Peter | Gerrish, Amy | Vedernikov, Alexey | Richards, Alexander | DeStefano, Anita L. | Lambert, Jean-Charles | Ibrahim-Verbaas, Carla A. | Naj, Adam C. | Sims, Rebecca | Jun, Gyungah | Bis, Joshua C. | Beecham, Gary W. | Grenier-Boley, Benjamin | Russo, Giancarlo | Thornton-Wells, Tricia A. | Denning, Nicola | Smith, Albert V. | Chouraki, Vincent | Thomas, Charlene | Ikram, M. Arfan | Zelenika, Diana | Vardarajan, Badri N. | Kamatani, Yoichiro | Lin, Chiao-Feng | Schmidt, Helena | Kunkle, Brian | Dunstan, Melanie L. | Vronskaya, Maria | Johnson, Andrew D. | Ruiz, Agustin | Bihoreau, Marie-Thérèse | Reitz, Christiane | Pasquier, Florence | Hollingworth, Paul | Hanon, Olivier | Fitzpatrick, Annette L. | Buxbaum, Joseph D. | Campion, Dominique | Crane, Paul K. | Baldwin, Clinton | Becker, Tim | Gudnason, Vilmundur | Cruchaga, Carlos | Craig, David | Amin, Najaf | Berr, Claudine | Lopez, Oscar L. | De Jager, Philip L. | Deramecourt, Vincent | Johnston, Janet A. | Evans, Denis | Lovestone, Simon | Letenneur, Luc | Hernández, Isabel | Rubinsztein, David C. | Eiriksdottir, Gudny | Sleegers, Kristel | Goate, Alison M. | Fiévet, Nathalie | Huentelman, Matthew J. | Gill, Michael | Brown, Kristelle | Kamboh, M. Ilyas | Keller, Lina | Barberger-Gateau, Pascale | McGuinness, Bernadette | Larson, Eric B. | Myers, Amanda J. | Dufouil, Carole | Todd, Stephen | Wallon, David | Love, Seth | Rogaeva, Ekaterina | Gallacher, John | George-Hyslop, Peter St | Clarimon, Jordi | Lleo, Alberto | Bayer, Anthony | Tsuang, Debby W. | Yu, Lei | Tsolaki, Magda | Bossù, Paola | Spalletta, Gianfranco | Proitsi, Petra | Collinge, John | Sorbi, Sandro | Garcia, Florentino Sanchez | Fox, Nick C. | Hardy, John | Naranjo, Maria Candida Deniz | Bosco, Paolo | Clarke, Robert | Brayne, Carol | Galimberti, Daniela | Scarpini, Elio | Bonuccelli, Ubaldo | Mancuso, Michelangelo | Siciliano, Gabriele | Moebus, Susanne | Mecocci, Patrizia | Zompo, Maria Del | Maier, Wolfgang | Hampel, Harald | Pilotto, Alberto | Frank-García, Ana | Panza, Francesco | Solfrizzi, Vincenzo | Caffarra, Paolo | Nacmias, Benedetta | Perry, William | Mayhaus, Manuel | Lannfelt, Lars | Hakonarson, Hakon | Pichler, Sabrina | Carrasquillo, Minerva M. | Ingelsson, Martin | Beekly, Duane | Alvarez, Victoria | Zou, Fanggeng | Valladares, Otto | Younkin, Steven G. | Coto, Eliecer | Hamilton-Nelson, Kara L. | Gu, Wei | Razquin, Cristina | Pastor, Pau | Mateo, Ignacio | Owen, Michael J. | Faber, Kelley M. | Jonsson, Palmi V. | Combarros, Onofre | O'Donovan, Michael C. | Cantwell, Laura B. | Soininen, Hilkka | Blacker, Deborah | Mead, Simon | Mosley, Thomas H. | Bennett, David A. | Harris, Tamara B. | Fratiglioni, Laura | Holmes, Clive | de Bruijn, Renee F. A. G. | Passmore, Peter | Montine, Thomas J. | Bettens, Karolien | Rotter, Jerome I. | Brice, Alexis | Morgan, Kevin | Foroud, Tatiana M. | Kukull, Walter A. | Hannequin, Didier | Powell, John F. | Nalls, Michael A. | Ritchie, Karen | Lunetta, Kathryn L. | Kauwe, John S. K. | Boerwinkle, Eric | Riemenschneider, Matthias | Boada, Mercè | Hiltunen, Mikko | Martin, Eden R. | Schmidt, Reinhold | Rujescu, Dan | Dartigues, Jean-François | Mayeux, Richard | Tzourio, Christophe | Hofman, Albert | Nöthen, Markus M. | Graff, Caroline | Psaty, Bruce M. | Haines, Jonathan L. | Lathrop, Mark | Pericak-Vance, Margaret A. | Launer, Lenore J. | Van Broeckhoven, Christine | Farrer, Lindsay A. | van Duijn, Cornelia M. | Ramirez, Alfredo | Seshadri, Sudha | Schellenberg, Gerard D. | Amouyel, Philippe | Williams, Julie
PLoS ONE  2014;9(6):e94661.
Background
Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 m genotypes from 25,580 Alzheimer's cases and 48,466 controls.
Principal Findings
In addition to earlier reported genes, we detected genome-wide significant loci on chromosomes 8 (TP53INP1, p = 1.4×10−6) and 14 (IGHV1-67 p = 7.9×10−8) which indexed novel susceptibility loci.
Significance
The additional genes identified in this study, have an array of functions previously implicated in Alzheimer's disease, including aspects of energy metabolism, protein degradation and the immune system and add further weight to these pathways as potential therapeutic targets in Alzheimer's disease.
doi:10.1371/journal.pone.0094661
PMCID: PMC4055488  PMID: 24922517
11.  Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease 
Lambert, Jean-Charles | Ibrahim-Verbaas, Carla A | Harold, Denise | Naj, Adam C | Sims, Rebecca | Bellenguez, Céline | Jun, Gyungah | DeStefano, Anita L | Bis, Joshua C | Beecham, Gary W | Grenier-Boley, Benjamin | Russo, Giancarlo | Thornton-Wells, Tricia A | Jones, Nicola | Smith, Albert V | Chouraki, Vincent | Thomas, Charlene | Ikram, M Arfan | Zelenika, Diana | Vardarajan, Badri N | Kamatani, Yoichiro | Lin, Chiao-Feng | Gerrish, Amy | Schmidt, Helena | Kunkle, Brian | Dunstan, Melanie L | Ruiz, Agustin | Bihoreau, Marie-Thérèse | Choi, Seung-Hoan | Reitz, Christiane | Pasquier, Florence | Hollingworth, Paul | Ramirez, Alfredo | Hanon, Olivier | Fitzpatrick, Annette L | Buxbaum, Joseph D | Campion, Dominique | Crane, Paul K | Baldwin, Clinton | Becker, Tim | Gudnason, Vilmundur | Cruchaga, Carlos | Craig, David | Amin, Najaf | Berr, Claudine | Lopez, Oscar L | De Jager, Philip L | Deramecourt, Vincent | Johnston, Janet A | Evans, Denis | Lovestone, Simon | Letenneur, Luc | Morón, Francisco J | Rubinsztein, David C | Eiriksdottir, Gudny | Sleegers, Kristel | Goate, Alison M | Fiévet, Nathalie | Huentelman, Matthew J | Gill, Michael | Brown, Kristelle | Kamboh, M Ilyas | Keller, Lina | Barberger-Gateau, Pascale | McGuinness, Bernadette | Larson, Eric B | Green, Robert | Myers, Amanda J | Dufouil, Carole | Todd, Stephen | Wallon, David | Love, Seth | Rogaeva, Ekaterina | Gallacher, John | St George-Hyslop, Peter | Clarimon, Jordi | Lleo, Alberto | Bayer, Anthony | Tsuang, Debby W | Yu, Lei | Tsolaki, Magda | Bossù, Paola | Spalletta, Gianfranco | Proitsi, Petroula | Collinge, John | Sorbi, Sandro | Sanchez-Garcia, Florentino | Fox, Nick C | Hardy, John | Deniz Naranjo, Maria Candida | Bosco, Paolo | Clarke, Robert | Brayne, Carol | Galimberti, Daniela | Mancuso, Michelangelo | Matthews, Fiona | Moebus, Susanne | Mecocci, Patrizia | Zompo, Maria Del | Maier, Wolfgang | Hampel, Harald | Pilotto, Alberto | Bullido, Maria | Panza, Francesco | Caffarra, Paolo | Nacmias, Benedetta | Gilbert, John R | Mayhaus, Manuel | Lannfelt, Lars | Hakonarson, Hakon | Pichler, Sabrina | Carrasquillo, Minerva M | Ingelsson, Martin | Beekly, Duane | Alvarez, Victoria | Zou, Fanggeng | Valladares, Otto | Younkin, Steven G | Coto, Eliecer | Hamilton-Nelson, Kara L | Gu, Wei | Razquin, Cristina | Pastor, Pau | Mateo, Ignacio | Owen, Michael J | Faber, Kelley M | Jonsson, Palmi V | Combarros, Onofre | O’Donovan, Michael C | Cantwell, Laura B | Soininen, Hilkka | Blacker, Deborah | Mead, Simon | Mosley, Thomas H | Bennett, David A | Harris, Tamara B | Fratiglioni, Laura | Holmes, Clive | de Bruijn, Renee F A G | Passmore, Peter | Montine, Thomas J | Bettens, Karolien | Rotter, Jerome I | Brice, Alexis | Morgan, Kevin | Foroud, Tatiana M | Kukull, Walter A | Hannequin, Didier | Powell, John F | Nalls, Michael A | Ritchie, Karen | Lunetta, Kathryn L | Kauwe, John S K | Boerwinkle, Eric | Riemenschneider, Matthias | Boada, Mercè | Hiltunen, Mikko | Martin, Eden R | Schmidt, Reinhold | Rujescu, Dan | Wang, Li-san | Dartigues, Jean-François | Mayeux, Richard | Tzourio, Christophe | Hofman, Albert | Nöthen, Markus M | Graff, Caroline | Psaty, Bruce M | Jones, Lesley | Haines, Jonathan L | Holmans, Peter A | Lathrop, Mark | Pericak-Vance, Margaret A | Launer, Lenore J | Farrer, Lindsay A | van Duijn, Cornelia M | Van Broeckhoven, Christine | Moskvina, Valentina | Seshadri, Sudha | Williams, Julie | Schellenberg, Gerard D | Amouyel, Philippe
Nature genetics  2013;45(12):1452-1458.
Eleven susceptibility loci for late-onset Alzheimer’s disease (LOAD) were identified by previous studies; however, a large portion of the genetic risk for this disease remains unexplained. We conducted a large, two-stage meta-analysis of genome-wide association studies (GWAS) in individuals of European ancestry. In stage 1, we used genotyped and imputed data (7,055,881 SNPs) to perform meta-analysis on 4 previously published GWAS data sets consisting of 17,008 Alzheimer’s disease cases and 37,154 controls. In stage 2,11,632 SNPs were genotyped and tested for association in an independent set of 8,572 Alzheimer’s disease cases and 11,312 controls. In addition to the APOE locus (encoding apolipoprotein E), 19 loci reached genome-wide significance (P < 5 × 10−8) in the combined stage 1 and stage 2 analysis, of which 11 are newly associated with Alzheimer’s disease.
doi:10.1038/ng.2802
PMCID: PMC3896259  PMID: 24162737
12.  Profiles of Extracellular miRNA in Cerebrospinal Fluid and Serum from Patients with Alzheimer's and Parkinson's Diseases Correlate with Disease Status and Features of Pathology 
PLoS ONE  2014;9(5):e94839.
The discovery and reliable detection of markers for neurodegenerative diseases have been complicated by the inaccessibility of the diseased tissue- such as the inability to biopsy or test tissue from the central nervous system directly. RNAs originating from hard to access tissues, such as neurons within the brain and spinal cord, have the potential to get to the periphery where they can be detected non-invasively. The formation and extracellular release of microvesicles and RNA binding proteins have been found to carry RNA from cells of the central nervous system to the periphery and protect the RNA from degradation. Extracellular miRNAs detectable in peripheral circulation can provide information about cellular changes associated with human health and disease. In order to associate miRNA signals present in cell-free peripheral biofluids with neurodegenerative disease status of patients with Alzheimer's and Parkinson's diseases, we assessed the miRNA content in cerebrospinal fluid and serum from postmortem subjects with full neuropathology evaluations. We profiled the miRNA content from 69 patients with Alzheimer's disease, 67 with Parkinson's disease and 78 neurologically normal controls using next generation small RNA sequencing (NGS). We report the average abundance of each detected miRNA in cerebrospinal fluid and in serum and describe 13 novel miRNAs that were identified. We correlated changes in miRNA expression with aspects of disease severity such as Braak stage, dementia status, plaque and tangle densities, and the presence and severity of Lewy body pathology. Many of the differentially expressed miRNAs detected in peripheral cell-free cerebrospinal fluid and serum were previously reported in the literature to be deregulated in brain tissue from patients with neurodegenerative disease. These data indicate that extracellular miRNAs detectable in the cerebrospinal fluid and serum are reflective of cell-based changes in pathology and can be used to assess disease progression and therapeutic efficacy.
doi:10.1371/journal.pone.0094839
PMCID: PMC4010405  PMID: 24797360
13.  Genomic View of Bipolar Disorder Revealed by Whole Genome Sequencing in a Genetic Isolate 
PLoS Genetics  2014;10(3):e1004229.
Bipolar disorder is a common, heritable mental illness characterized by recurrent episodes of mania and depression. Despite considerable effort to elucidate the genetic underpinnings of bipolar disorder, causative genetic risk factors remain elusive. We conducted a comprehensive genomic analysis of bipolar disorder in a large Old Order Amish pedigree. Microsatellite genotypes and high-density SNP-array genotypes of 388 family members were combined with whole genome sequence data for 50 of these subjects, comprising 18 parent-child trios. This study design permitted evaluation of candidate variants within the context of haplotype structure by resolving the phase in sequenced parent-child trios and by imputation of variants into multiple unsequenced siblings. Non-parametric and parametric linkage analysis of the entire pedigree as well as on smaller clusters of families identified several nominally significant linkage peaks, each of which included dozens of predicted deleterious variants. Close inspection of exonic and regulatory variants in genes under the linkage peaks using family-based association tests revealed additional credible candidate genes for functional studies and further replication in population-based cohorts. However, despite the in-depth genomic characterization of this unique, large and multigenerational pedigree from a genetic isolate, there was no convergence of evidence implicating a particular set of risk loci or common pathways. The striking haplotype and locus heterogeneity we observed has profound implications for the design of studies of bipolar and other related disorders.
Author Summary
Bipolar disorder is a common, heritable mental illness characterized by recurrent episodes of mania and depression. Despite considerable efforts genetic studies have yet to reveal the precise genetic underpinnings of the disorder. In this study we have analyzed a large extended pedigree of Old Order Amish that segregates bipolar disorder. Our study design integrates both dense genotype and whole-genome sequence data. In a combined linkage and association analysis we identify five chromosomal regions with nominally significant or suggestive evidence for linkage, several of which constitute replication of earlier linkage findings for bipolar disorder in non-Amish families. Association analysis of genetic variants in each of the linkage regions yielded a number of plausible candidate genes for bipolar disorder. The striking genetic heterogeneity we observed in this genetic isolate has profound implications for the study of bipolar disorder in the general population.
doi:10.1371/journal.pgen.1004229
PMCID: PMC3953017  PMID: 24625924
14.  Integrated Genomic Characterization Reveals Novel, Therapeutically Relevant Drug Targets in FGFR and EGFR Pathways in Sporadic Intrahepatic Cholangiocarcinoma 
PLoS Genetics  2014;10(2):e1004135.
Advanced cholangiocarcinoma continues to harbor a difficult prognosis and therapeutic options have been limited. During the course of a clinical trial of whole genomic sequencing seeking druggable targets, we examined six patients with advanced cholangiocarcinoma. Integrated genome-wide and whole transcriptome sequence analyses were performed on tumors from six patients with advanced, sporadic intrahepatic cholangiocarcinoma (SIC) to identify potential therapeutically actionable events. Among the somatic events captured in our analysis, we uncovered two novel therapeutically relevant genomic contexts that when acted upon, resulted in preliminary evidence of anti-tumor activity. Genome-wide structural analysis of sequence data revealed recurrent translocation events involving the FGFR2 locus in three of six assessed patients. These observations and supporting evidence triggered the use of FGFR inhibitors in these patients. In one example, preliminary anti-tumor activity of pazopanib (in vitro FGFR2 IC50≈350 nM) was noted in a patient with an FGFR2-TACC3 fusion. After progression on pazopanib, the same patient also had stable disease on ponatinib, a pan-FGFR inhibitor (in vitro, FGFR2 IC50≈8 nM). In an independent non-FGFR2 translocation patient, exome and transcriptome analysis revealed an allele specific somatic nonsense mutation (E384X) in ERRFI1, a direct negative regulator of EGFR activation. Rapid and robust disease regression was noted in this ERRFI1 inactivated tumor when treated with erlotinib, an EGFR kinase inhibitor. FGFR2 fusions and ERRFI mutations may represent novel targets in sporadic intrahepatic cholangiocarcinoma and trials should be characterized in larger cohorts of patients with these aberrations.
Author Summary
Cholangiocarcinoma is a cancer that affects the bile ducts. Unfortunately, many patients diagnosed with cholangiocarcinoma have disease that cannot be treated with surgery or has spread to other parts of the body, thus severely limiting treatment options. New advances in drug treatment have enabled treatment of these cancers with “targeted therapy” that exploits an error in the normal functioning of a tumor cell, compared to other cells in the body, thus allowing only tumor cells to be killed by the drug. We sought to identify changes in the genetic material of cholangiocarcinoma patient tumors in order to identify potential errors in cellular functioning by utilizing cutting edge genetic sequencing technology. We identified three patient tumors possessing an FGFR2 gene that was aberrantly fused to another gene. Two of these patients were able to receive targeted therapy for FGFR2 with resulting tumor shrinkage. A fourth tumor contained an error in a gene that controls a very important cellular mechanism in cancer, termed epidermal growth factor pathway (EGFR). This patient received therapy targeting this mechanism and also demonstrated response to treatment. Thus, we have been able to utilize cutting edge technology with targeted drug treatment to personalize medical treatment for cancer in cholangiocarcinoma patients.
doi:10.1371/journal.pgen.1004135
PMCID: PMC3923676  PMID: 24550739
15.  Whole Genome Analyses of a Well-Differentiated Liposarcoma Reveals Novel SYT1 and DDR2 Rearrangements 
PLoS ONE  2014;9(2):e87113.
Liposarcoma is the most common soft tissue sarcoma, but little is known about the genomic basis of this disease. Given the low cell content of this tumor type, we utilized flow cytometry to isolate the diploid normal and aneuploid tumor populations from a well-differentiated liposarcoma prior to array comparative genomic hybridization and whole genome sequencing. This work revealed massive highly focal amplifications throughout the aneuploid tumor genome including MDM2, a gene that has previously been found to be amplified in well-differentiated liposarcoma. Structural analysis revealed massive rearrangement of chromosome 12 and 11 gene fusions, some of which may be part of double minute chromosomes commonly present in well-differentiated liposarcoma. We identified a hotspot of genomic instability localized to a region of chromosome 12 that includes a highly conserved, putative L1 retrotransposon element, LOC100507498 which resides within a gene cluster (NAV3, SYT1, PAWR) where 6 of the 11 fusion events occurred. Interestingly, a potential gene fusion was also identified in amplified DDR2, which is a potential therapeutic target of kinase inhibitors such as dastinib, that are not routinely used in the treatment of patients with liposarcoma. Furthermore, 7 somatic, damaging single nucleotide variants have also been identified, including D125N in the PTPRQ protein. In conclusion, this work is the first to report the entire genome of a well-differentiated liposarcoma with novel chromosomal rearrangements associated with amplification of therapeutically targetable genes such as MDM2 and DDR2.
doi:10.1371/journal.pone.0087113
PMCID: PMC3914808  PMID: 24505276
16.  Supporting Diversity in Science through Social Networking 
PLoS Biology  2013;11(12):e1001740.
In this Community Page, we learn how a scientific community leverages social networking tools to connect a group of dispersed scientific researchers in Ciencia Puerto Rico; this effort fosters innovative research and educational collaborations and changes the way scientists interact with the public.
doi:10.1371/journal.pbio.1001740
PMCID: PMC3876968  PMID: 24391467
17.  Increased extracellular pressure provides a novel adjuvant stimulus for enhancement of conventional dendritic cell maturation strategies 
Biochemical and biophysical research communications  2009;387(1):10.1016/j.bbrc.2009.07.010.
Dendritic cell (DC)-based vaccine strategies have gained increasing popularity in recent years. Methods for ex vivo generation of immunocompetent mature DCs still require optimization. DCs have been shown to phenotypically mature under elevated pressure. We compared the effects of pressure on DC maturation with LPS- and cytokine-stimulation. Human monocyte-derived immature or LPS- and cytokine-matured DCs were exposed to ambient or 40mmHg increased pressure for 12-hrs., then assessed for expression of CD80, CD86, CD40, MHC-I/II, and inflammatory cytokine production. DCs were also evaluated for capacity to stimulate T-cell proliferation by co-culture with allogeneic lymphocytes. Pressure significantly increased cytokine production and expression of all surface molecules on immature DC other than MHC-I and CD40. Pressure/LPS-treated DCs displayed further upregulation of MHC-I, CD40, and IL-12p70. Cytokine-matured DCs appeared less responsive to pressure. T-cell proliferation correlated with MHC expression. Results suggest mechanical stimulation of DCs may provide a useful adjuvant to TLR-agonist maturation strategies.
doi:10.1016/j.bbrc.2009.07.010
PMCID: PMC3837574  PMID: 19580785
dendritic cell; maturation; vaccine; pressure; mechanotransduction
18.  Isoform-specific modulation of pressure-stimulated cancer cell proliferation and adhesion by alpha-actinin 
American journal of surgery  2011;202(5):10.1016/j.amjsurg.2011.06.019.
Introduction
Intratumoral pressure may stimulate cancer proliferation while intravascular pressure promotes metastatic adhesion. α-actinin proteins facilitate focal adhesion formation and link focal adhesion complexes to the cytoskeleton. We hypothesized that α-actinin is the mechanotransducer that mediates the effects of pressure on cancer cell proliferation and adhesion.
Methods
We treated SW620 colon cancer cells with specific siRNA to reduce α-actinin-1 and/or α-actinin-4, the two key epithelial isoforms. Proliferation was measured in adherent cells by MTT assay after 24 hours at ambient or 40 mmHg increased pressure. For comparison, we evaluated the effects of 30 minutes of ambient or 15 mmHg increased pressure on adhesion of suspended SW620 cells. Because the transcription factor NF-kB influences proliferation, we used co-immunoprecipitation to evaluate NF-kB-α-actinin association and a lentiviral reporter assay for NF-kB activity.
Results
40 mmHg increased pressure increased SW620 proliferation 41±6% (n=10;p<0.05) vs. ambient pressure controls. Reducing α-actinin-1 and α-actinin-4 together or α-actinin-4 alone blocked this effect, but reducing α-actinin-1 alone did not (n=6;p<0.05). We observed a 72±11% increase in NF-kB activity (n=6;p<0.05), and increased association between NF-kB and α-actinin-4 in adherent cells under pressure. NF-kB and α-actinin-1 did not co-immunoprecipitate. However, reducing α-actinin-4 did not prevent pressure-induced NF-kB activation (n=8).
Conclusions
α-actinin-4 may mediate pressure stimulation of proliferation within large rapidly growing tumors, perhaps by binding transcription factors such as NFkB. α-actinins may be important targets to inhibit cancer proliferation and metastasis.
doi:10.1016/j.amjsurg.2011.06.019
PMCID: PMC3837569  PMID: 21906716
19.  A Pilot Study Using Next-Generation Sequencing in Advanced Cancers: Feasibility and Challenges 
PLoS ONE  2013;8(10):e76438.
Purpose
New anticancer agents that target a single cell surface receptor, up-regulated or amplified gene product, or mutated gene, have met with some success in treating advanced cancers. However, patients' tumors still eventually progress on these therapies. If it were possible to identify a larger number of targetable vulnerabilities in an individual's tumor, multiple targets could be exploited with the use of specific therapeutic agents, thus possibly giving the patient viable therapeutic alternatives.
Experimental Design
In this exploratory study, we used next-generation sequencing technologies (NGS) including whole genome sequencing (WGS), and where feasible, whole transcriptome sequencing (WTS) to identify genomic events and associated expression changes in advanced cancer patients.
Results
WGS on paired tumor and normal samples from nine advanced cancer patients and WTS on six of these patients' tumors was completed. One patient's treatment was based on targets and pathways identified by NGS and the patient had a short-lived PET/CT response with a significant reduction in his tumor-related pain. To design treatment plans based on information garnered from NGS, several challenges were encountered: NGS reporting delays, communication of results to out-of-state participants and their treating oncologists, and chain of custody handling for fresh biopsy samples for Clinical Laboratory Improvement Amendments (CLIA) target validation.
Conclusion
While the initial effort was a slower process than anticipated due to a variety of issues, we demonstrate the feasibility of using NGS in advanced cancer patients so that treatments for patients with progressing tumors may be improved.
doi:10.1371/journal.pone.0076438
PMCID: PMC3813699  PMID: 24204627
20.  Long insert whole genome sequencing for copy number variant and translocation detection 
Nucleic Acids Research  2013;42(2):e8.
As next-generation sequencing continues to have an expanding presence in the clinic, the identification of the most cost-effective and robust strategy for identifying copy number changes and translocations in tumor genomes is needed. We hypothesized that performing shallow whole genome sequencing (WGS) of 900–1000-bp inserts (long insert WGS, LI-WGS) improves our ability to detect these events, compared with shallow WGS of 300–400-bp inserts. A priori analyses show that LI-WGS requires less sequencing compared with short insert WGS to achieve a target physical coverage, and that LI-WGS requires less sequence coverage to detect a heterozygous event with a power of 0.99. We thus developed an LI-WGS library preparation protocol based off of Illumina’s WGS library preparation protocol and illustrate the feasibility of performing LI-WGS. We additionally applied LI-WGS to three separate tumor/normal DNA pairs collected from patients diagnosed with different cancers to demonstrate our application of LI-WGS on actual patient samples for identification of somatic copy number alterations and translocations. With the evolution of sequencing technologies and bioinformatics analyses, we show that modifications to current approaches may improve our ability to interrogate cancer genomes.
doi:10.1093/nar/gkt865
PMCID: PMC3902897  PMID: 24071583
21.  Germline Mutations in HOXB13 and Prostate-Cancer Risk 
The New England journal of medicine  2012;366(2):141-149.
BACKGROUND
Family history is a significant risk factor for prostate cancer, although the molecular basis for this association is poorly understood. Linkage studies have implicated chromosome 17q21-22 as a possible location of a prostate-cancer susceptibility gene.
METHODS
We screened more than 200 genes in the 17q21-22 region by sequencing germline DNA from 94 unrelated patients with prostate cancer from families selected for linkage to the candidate region. We tested family members, additional case subjects, and control subjects to characterize the frequency of the identified mutations.
RESULTS
Probands from four families were discovered to have a rare but recurrent mutation (G84E) in HOXB13 (rs138213197), a homeobox transcription factor gene that is important in prostate development. All 18 men with prostate cancer and available DNA in these four families carried the mutation. The carrier rate of the G84E mutation was increased by a factor of approximately 20 in 5083 unrelated subjects of European descent who had prostate cancer, with the mutation found in 72 subjects (1.4%), as compared with 1 in 1401 control subjects (0.1%) (P = 8.5×10−7). The mutation was significantly more common in men with early-onset, familial prostate cancer (3.1%) than in those with late-onset, nonfamilial prostate cancer (0.6%) (P = 2.0×10−6).
CONCLUSIONS
The novel HOXB13 G84E variant is associated with a significantly increased risk of hereditary prostate cancer. Although the variant accounts for a small fraction of all prostate cancers, this finding has implications for prostate-cancer risk assessment and may provide new mechanistic insights into this common cancer. (Funded by the National Institutes of Health and others.)
doi:10.1056/NEJMoa1110000
PMCID: PMC3779870  PMID: 22236224
22.  Genome-wide Association Study of Alzheimer’s disease with Psychotic Symptoms 
Molecular psychiatry  2011;17(12):1316-1327.
Psychotic symptoms occur in approximately 40% of subjects with Alzheimer’s disease (AD) and are associated with more rapid cognitive decline and increased functional deficits. They show heritability up to 61% and have been proposed as a marker for a disease subtype suitable for gene mapping efforts. We undertook a combined analysis of three genome-wide association studies (GWAS) to identify loci that a) increase susceptibility to an AD and subsequent psychotic symptoms; or b) modify risk of psychotic symptoms in the presence of neurodegeneration caused by AD. 1299 AD cases with psychosis (AD+P), 735 AD cases without psychosis (AD-P) and 5659 controls were drawn from GERAD1, the NIA-LOAD family study and the University of Pittsburgh ADRC GWAS. Unobserved genotypes were imputed to provide data on > 1.8 million SNPs. Analyses in each dataset were completed comparing a) AD+P to AD-P cases, and b) AD+P cases with controls (GERAD1, ADRC only). Aside from the APOE locus, the strongest evidence for association was observed in an intergenic region on chromosome 4 (rs753129; ‘AD+PvAD-P’ P=2.85 × 10−7; ‘AD+PvControls’ P=1.11 × 10−4). SNPs upstream of SLC2A9 (rs6834555, P=3.0×10−7) and within VSNL1 (rs4038131, P=5.9×10−7) showed strongest evidence for association with AD+P when compared to controls. These findings warrant further investigation in larger, appropriately powered samples in which the presence of psychotic symptoms in AD has been well characterised.
doi:10.1038/mp.2011.125
PMCID: PMC3272435  PMID: 22005930
Alzheimer’s disease; psychosis; behavioural symptoms; genome-wide association study; genetic
23.  A multi-centre study of ACE and the risk of late-onset Alzheimer’s disease 
A key pathological feature of late-onset Alzheimer’s disease (LOAD) is the abnormal extracellular accumulation of the amyloid beta (Aβ) peptide. Thus altered Aβ degradation could be a major contributor to the development of LOAD. Variants in the gene encoding the Aβ-degrading enzyme, angiotensin-1 converting enzyme (ACE) therefore represent plausible candidates for association with LOAD pathology and risk. Following Alzgene meta-analyses of all published case-control studies, the ACE variants rs4291 and rs1800764 showed significant association with LOAD risk. Furthermore ACE haplotypes are associated with both plasma ACE levels and LOAD risk. We tested three ACE variants (rs4291, rs4343 and rs1800764) for association with LOAD in ten Caucasian case-control populations (n=8,212). No association was found using multiple logistic models (all p>0.09). We found no population heterogeneity (all p>0.38) or evidence for association with LOAD risk following meta-analysis of the ten populations for rs4343 (OR=1.00), rs4291 (OR=0.97) or rs1800764 (OR=0.99). Although we found no haplotypic association in our complete dataset (p=0.51), a significant global haplotypic p-value was observed in one population (p=0.007) due to an association of the H3 haplotype (OR=0.72, p=0.02) and a trend towards an association of H4 (OR=1.38, p=0.09) and H7 (OR=2.07, p=0.08) although these did not survive Bonferroni correction. Previously reported associations of ACE variants with LOAD will be diminished following this study. At best, ACE variants have modest effect sizes, which are likely part of a complex interaction between genetic, phenotypic and pharmacological effects that would be undetected in traditional case-control studies.
doi:10.3233/JAD-2011-101914
PMCID: PMC3655234  PMID: 21297258
Alzheimer Disease; Late Onset; Angiotensin-1 Converting Enzyme; Haplotype; Heterogeneity; Meta-Analysis
24.  Identification of somatic mutations in cancer through Bayesian-based analysis of sequenced genome pairs 
BMC Genomics  2013;14:302.
Background
The field of cancer genomics has rapidly adopted next-generation sequencing (NGS) in order to study and characterize malignant tumors with unprecedented resolution. In particular for cancer, one is often trying to identify somatic mutations – changes specific to a tumor and not within an individual’s germline. However, false positive and false negative detections often result from lack of sufficient variant evidence, contamination of the biopsy by stromal tissue, sequencing errors, and the erroneous classification of germline variation as tumor-specific.
Results
We have developed a generalized Bayesian analysis framework for matched tumor/normal samples with the purpose of identifying tumor-specific alterations such as single nucleotide mutations, small insertions/deletions, and structural variation. We describe our methodology, and discuss its application to other types of paired-tissue analysis such as the detection of loss of heterozygosity as well as allelic imbalance. We also demonstrate the high level of sensitivity and specificity in discovering simulated somatic mutations, for various combinations of a) genomic coverage and b) emulated heterogeneity.
Conclusion
We present a Java-based implementation of our methods named Seurat, which is made available for free academic use. We have demonstrated and reported on the discovery of different types of somatic change by applying Seurat to an experimentally-derived cancer dataset using our methods; and have discussed considerations and practices regarding the accurate detection of somatic events in cancer genomes. Seurat is available at https://sites.google.com/site/seuratsomatic.
doi:10.1186/1471-2164-14-302
PMCID: PMC3751438  PMID: 23642077
Cancer genomics; Next generation sequencing; Somatic mutation detection
25.  Ex vivo IL-12-Priming during CD8+ T Cell Activation Dramatically Improves Adoptive T Cell Transfer Anti-Tumor Efficacy in a Lymphodepleted Host 
Background
Clinical application of adoptive T cell therapy (ACT) has been hindered by an inability to generate adequate numbers of non-tolerized, functionally active tumor-specific T cells which can persist in vivo. In order to address this, we evaluated the impact of IL-12 signaling during tumor-specific CD8+ T cell priming in terms of persistence and anti-tumor efficacy using an established B16 melanoma tumor adoptive therapy model.
Study Design
B6 mice were injected subcutaneously with B16 melanoma tumor cells. On day 12 of tumor growth, mice were preconditioned with cyclophosphamide (4mg dose, i.p.), and one day later, treated by adoptive transfer of tumor-specific pmel-1 CD8+ T cells primed ex vivo 3 days earlier with (i) both IL-12 and antigen (hGP10025–33 peptide) or (ii) antigen only. Tumors were measured biweekly and infused donor T cells were analyzed for persistence, localization to the tumor, phenotype, and effector function.
Results
Adoptive transfer of tumor-specific CD8+ T cells primed with IL-12 was significantly more effective in reducing tumor burden in mice preconditioned with cyclophosphamide compared with transfer of T cells primed without IL-12. This enhanced anti-tumor response was associated with increased frequencies of infused T cells in the periphery and tumor as well as elevated expression of effector molecules including granzyme B and interferon-γ (IFNγ).
Conclusions
Our findings demonstrate that ex vivo priming of tumor-specific CD8+ T cells with IL-12 dramatically improves their in vivo persistence and therapeutic ability upon transfer to tumor-bearing mice. These findings can be directly applied as novel clinical trial strategies.
doi:10.1016/j.jamcollsurg.2011.12.034
PMCID: PMC3429131  PMID: 22360982

Results 1-25 (82)