PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-20 (20)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Initial Assessment of the Pathogenic Mechanisms of the recently identified Alzheimer Risk Loci 
Annals of human genetics  2013;77(2):85-105.
SUMMARY
Recent genome wide association studies have identified CLU, CR1, ABCA7 BIN1, PICALM and MS4A6A/MS4A6E in addition to the long established APOE, as loci for Alzheimer’s disease. We have systematically examined each of these loci to assess whether common coding variability contributes to the risk of disease. We have also assessed the regional expression of all the genes in the brain and whether there is evidence of an eQTL explaining the risk. In agreement with other studies we find that coding variability may explain the ABCA7 association, but common coding variability does not explain any of the other loci. We were not able to show that any of the loci had eQTLs within the power of this study. Furthermore the regional expression of each of the loci did not match the pattern of brain regional distribution in Alzheimer pathology.
Although these results are mainly negative, they allow us to start defining more realistic alternative approaches to determine the role of all the genetic loci involved in Alzheimer’s disease.
doi:10.1111/ahg.12000
PMCID: PMC3578142  PMID: 23360175
Alzheimer’s disease; genetic risk; GWAS
2.  A coding variant in CR1 interacts with APOE-ɛ4 to influence cognitive decline 
Human Molecular Genetics  2012;21(10):2377-2388.
Complement receptor 1 (CR1) is an Alzheimer's disease (AD) susceptibility locus that also influences AD-related traits such as episodic memory decline and neuritic amyloid plaque deposition. We implemented a functional fine-mapping approach, leveraging intermediate phenotypes to identify functional variant(s) within the CR1 locus. Using 1709 subjects (697 deceased) from the Religious Orders Study and the Rush Memory and Aging Project, we tested 41 single-nucleotide polymorphisms (SNPs) within the linkage disequilibrium block containing the published CR1 AD SNP (rs6656401) for associations with episodic memory decline, and then examined the functional consequences of the top result. We report that a coding variant in the LHR-D (long homologous repeat D) region of the CR1 gene, rs4844609 (Ser1610Thr, minor allele frequency = 0.02), is associated with episodic memory decline and accounts for the known effect of the index SNP rs6656401 (D′ = 1, r2= 0.084) on this trait. Further, we demonstrate that the coding variant's effect is largely dependent on an interaction with APOE-ɛ4 and mediated by an increased burden of AD-related neuropathology. Finally, in our data, this coding variant is also associated with AD susceptibility (joint odds ratio = 1.4). Taken together, our analyses identify a CR1 coding variant that influences episodic memory decline; it is a variant known to alter the conformation of CR1 and points to LHR-D as the functional domain within the CR1 protein that mediates the effect on memory decline. We thus implicate C1q and MBL, which bind to LHR-D, as likely targets of the variant's effect and suggest that CR1 may be an important intermediate in the clearance of Aβ42 particles by C1q.
doi:10.1093/hmg/dds054
PMCID: PMC3335317  PMID: 22343410
3.  A genome-wide scan for common variants affecting the rate of age-related cognitive decline 
Neurobiology of Aging  2011;33(5):1017.e1-1017.e15.
Age-related cognitive decline is likely promoted by accumulated brain injury due to chronic conditions of aging, including neurodegenerative and vascular disease. Since common neuronal mechanisms may mediate the adaptation to diverse cerebral insults, we hypothesized that susceptibility for age-related cognitive decline may be due in part to a shared genetic network. We have therefore performed a genome-wide association study using a quantitative measure of global cognitive decline slope, based on repeated measures of 17 cognitive tests in 749 subjects from the Religious Orders Study. Top results were evaluated in three independent replication cohorts, consisting of 2,279 additional subjects with repeated cognitive testing. As expected, we find that the Alzheimer’s disease (AD) susceptibility locus, APOE, is strongly associated with rate of cognitive decline (PDISC=5.6×10−9; PJOINT=3.7×10−27). We additionally discover a variant, rs10808746, which shows consistent effects in the replication cohorts and modestly improved evidence of association in the joint analysis (PDISC=6.7×10−5; PREP=9.4×10−3; PJOINT=2.3×10−5). This variant influences the expression of two adjacent genes, PDE7A and MTFR1, which are potential regulators of inflammation and oxidative injury, respectively. Using aggregate measures of genetic risk, we find that known susceptibility loci for cardiovascular disease, type II diabetes, and inflammatory diseases are not significantly associated with cognitive decline in our cohort. Our results suggest that intermediate phenotypes, when coupled with larger sample sizes, may be a useful tool to dissect susceptibility loci for age-related cognitive decline and uncover shared molecular pathways with a role in neuronal injury.
doi:10.1016/j.neurobiolaging.2011.09.033
PMCID: PMC3307898  PMID: 22054870
4.  Plasma cytokine profiling in sibling pairs discordant for autism spectrum disorder 
Objective
Converging lines of evidence point to the existence of immune dysfunction in autism spectrum disorder (ASD), which could directly affect several key neurodevelopmental processes. Previous studies have shown higher cytokine levels in patients with autism compared with matched controls or subjects with other developmental disorders. In the current study, we used plasma-cytokine profiling for 25 discordant sibling pairs to evaluate whether these alterations occur within families with ASD.
Methods
Plasma-cytokine profiling was conducted using an array-based multiplex sandwich ELISA for simultaneous quantitative measurement of 40 unique targets. We also analyzed the correlations between cytokine levels and clinically relevant quantitative traits (Vineland Adaptive Behavior Scale in Autism (VABS) composite score, Social Responsiveness Scale (SRS) total T score, head circumference, and full intelligence quotient (IQ)). In addition, because of the high phenotypic heterogeneity of ASD, we defined four subgroups of subjects (those who were non-verbal, those with gastrointestinal issues, those with regressive autism, and those with a history of allergies), which encompass common and/or recurrent endophenotypes in ASD, and tested the cytokine levels in each group.
Results
None of the measured parameters showed significant differences between children with ASD and their related typically developing siblings. However, specific target levels did correlate with quantitative clinical traits, and these were significantly different when the ASD subgroups were analyzed. It is notable that these differences seem to be attributable to a predisposing immunogenetic background, as no other significant differences were noticed between discordant sibling pairs. Interleukin-1β appears to be the cytokine most involved in quantitative traits and clinical subgroups of ASD.
Conclusions
In the present study, we found a lack of significant differences in plasma-cytokine levels between children with ASD and in their related non-autistic siblings. Thus, our results support the evidence that the immune profiles of children with autism do not differ from their typically developing siblings. However, the significant association of cytokine levels with the quantitative traits and the clinical subgroups analyzed suggests that altered immune responses may affect core feature of ASD.
doi:10.1186/1742-2094-10-38
PMCID: PMC3616926  PMID: 23497090
5.  Genome reannotation of the lizard Anolis carolinensis based on 14 adult and embryonic deep transcriptomes 
BMC Genomics  2013;14:49.
Background
The green anole lizard, Anolis carolinensis, is a key species for both laboratory and field-based studies of evolutionary genetics, development, neurobiology, physiology, behavior, and ecology. As the first non-avian reptilian genome sequenced, A. carolinesis is also a prime reptilian model for comparison with other vertebrate genomes. The public databases of Ensembl and NCBI have provided a first generation gene annotation of the anole genome that relies primarily on sequence conservation with related species. A second generation annotation based on tissue-specific transcriptomes would provide a valuable resource for molecular studies.
Results
Here we provide an annotation of the A. carolinensis genome based on de novo assembly of deep transcriptomes of 14 adult and embryonic tissues. This revised annotation describes 59,373 transcripts, compared to 16,533 and 18,939 currently for Ensembl and NCBI, and 22,962 predicted protein-coding genes. A key improvement in this revised annotation is coverage of untranslated region (UTR) sequences, with 79% and 59% of transcripts containing 5’ and 3’ UTRs, respectively. Gaps in genome sequence from the current A. carolinensis build (Anocar2.0) are highlighted by our identification of 16,542 unmapped transcripts, representing 6,695 orthologues, with less than 70% genomic coverage.
Conclusions
Incorporation of tissue-specific transcriptome sequence into the A. carolinensis genome annotation has markedly improved its utility for comparative and functional studies. Increased UTR coverage allows for more accurate predicted protein sequence and regulatory analysis. This revised annotation also provides an atlas of gene expression specific to adult and embryonic tissues.
doi:10.1186/1471-2164-14-49
PMCID: PMC3561122  PMID: 23343042
Annotation; Lizard; Anolis carolinensis; Transcriptome; Genome; RNA-Seq; Gene; Vertebrate; Embryo; Tissue-specific
6.  Analysis of Copy Number Variation in Alzheimer’s Disease in a Cohort of Clinically Characterized and Neuropathologically Verified Individuals 
PLoS ONE  2012;7(12):e50640.
Copy number variations (CNVs) are genomic regions that have added (duplications) or deleted (deletions) genetic material. They may overlap genes affecting their function and have been shown to be associated with disease. We previously investigated the role of CNVs in late-onset Alzheimer's disease (AD) and mild cognitive impairment using Alzheimer’s Disease Neuroimaging Initiative (ADNI) and National Institute of Aging-Late Onset AD/National Cell Repository for AD (NIA-LOAD/NCRAD) Family Study participants, and identified a number of genes overlapped by CNV calls. To confirm the findings and identify other potential candidate regions, we analyzed array data from a unique cohort of 1617 Caucasian participants (1022 AD cases and 595 controls) who were clinically characterized and whose diagnosis was neuropathologically verified. All DNA samples were extracted from brain tissue. CNV calls were generated and subjected to quality control (QC). 728 cases and 438 controls who passed all QC measures were included in case/control association analyses including candidate gene and genome-wide approaches. Rates of deletions and duplications did not significantly differ between cases and controls. Case-control association identified a number of previously reported regions (CHRFAM7A, RELN and DOPEY2) as well as a new gene (HLA-DRA). Meta-analysis of CHRFAM7A indicated a significant association of the gene with AD and/or MCI risk (P = 0.006, odds ratio = 3.986 (95% confidence interval 1.490–10.667)). A novel APP gene duplication was observed in one case sample. Further investigation of the identified genes in independent and larger samples is warranted.
doi:10.1371/journal.pone.0050640
PMCID: PMC3515604  PMID: 23227193
7.  Genome-wide association between DNA methylation and alternative splicing in an invertebrate 
BMC Genomics  2012;13:480.
Background
Gene bodies are the most evolutionarily conserved targets of DNA methylation in eukaryotes. However, the regulatory functions of gene body DNA methylation remain largely unknown. DNA methylation in insects appears to be primarily confined to exons. Two recent studies in Apis mellifera (honeybee) and Nasonia vitripennis (jewel wasp) analyzed transcription and DNA methylation data for one gene in each species to demonstrate that exon-specific DNA methylation may be associated with alternative splicing events. In this study we investigated the relationship between DNA methylation, alternative splicing, and cross-species gene conservation on a genome-wide scale using genome-wide transcription and DNA methylation data.
Results
We generated RNA deep sequencing data (RNA-seq) to measure genome-wide mRNA expression at the exon- and gene-level. We produced a de novo transcriptome from this RNA-seq data and computationally predicted splice variants for the honeybee genome. We found that exons that are included in transcription are higher methylated than exons that are skipped during transcription. We detected enrichment for alternative splicing among methylated genes compared to unmethylated genes using fisher’s exact test. We performed a statistical analysis to reveal that the presence of DNA methylation or alternative splicing are both factors associated with a longer gene length and a greater number of exons in genes. In concordance with this observation, a conservation analysis using BLAST revealed that each of these factors is also associated with higher cross-species gene conservation.
Conclusions
This study constitutes the first genome-wide analysis exhibiting a positive relationship between exon-level DNA methylation and mRNA expression in the honeybee. Our finding that methylated genes are enriched for alternative splicing suggests that, in invertebrates, exon-level DNA methylation may play a role in the construction of splice variants by positively influencing exon inclusion during transcription. The results from our cross-species homology analysis suggest that DNA methylation and alternative splicing are genetic mechanisms whose utilization could contribute to a longer gene length and a slower rate of gene evolution.
doi:10.1186/1471-2164-13-480
PMCID: PMC3526459  PMID: 22978521
8.  Tonic Premarin dose-dependently enhances memory, affects neurotrophin protein levels and alters gene expression in middle-aged rats 
Neurobiology of aging  2009;32(4):680-697.
Premarin™ is the most commonly prescribed estrogenic component of hormone therapy, given since 1942. The current study is the first examining cognitive effects of tonic Premarin treatment in an animal model. Middle-aged ovariectomized (Ovx) rats received vehicle or one of three doses of Premarin (12, 24 or 36 μg daily). Rats were tested on a spatial working and reference memory maze battery. Both Medium- and High- dose Premarin enhanced memory retention, while Low-dose Premarin impaired learning and memory retention. Correlations with serum hormone levels showed that as the ratio of estrone:17β-estradiol increased, animals tended to show better working memory performance. Taken together with the dissociation of dose-specific estrogenic profiles, results suggest that higher levels of estrone, in the presence of 17β-estradiol concentrations higher than that of Ovx levels, may be beneficial for memory. Moreover, Premarin exerted dose and brain-region specific effects on BDNF and NGF protein levels, with most marked changes in cingulate and perirhinal cortices. Hippocampal gene expression profiling demonstrated significant Premarin-induced transcriptional changes in genes linked to plasticity and cognition. These findings indicate that Premarin can impact memory and the brain, and that dosing should be recognized as a clinically relevant factor possibly affecting the direction and efficacy of cognitive outcome.
doi:10.1016/j.neurobiolaging.2009.09.005
PMCID: PMC3016463  PMID: 19883953
Premarin; estrogen; hormone replacement; working memory; spatial memory; neurotrophins; gene expression
9.  CR1 is associated with amyloid plaque burden and age-related cognitive decline 
Annals of neurology  2011;69(3):560-569.
OBJECTIVE
Recently, genome-wide association studies have identified three new susceptibility loci for Alzheimer’s disease (AD), CLU, CR1, and PICALM. We leveraged available neuropsychological and autopsy data from two cohort studies to investigate whether these loci are associated with cognitive decline and AD neuropathology.
METHODS
The Religious Orders Study (ROS) and Rush Memory and Aging Project (MAP) are longitudinal studies that enroll non-demented subjects and include annual clinical evaluations and brain donation at death. We evaluated CR1 (rs6656401), CLU (rs11136000) and PICALM (rs7110631) in 1666 subjects. We evaluated associations between genotypes and rate of change in cognitive function as well as AD-related pathology. Lastly, we used pathway analysis to determine if relationships between SNPs and cognitive decline were mediated through AD pathology.
RESULTS
Among our study cohort, the mean years of follow-up was 7.8 for ROS and 4.3 for MAP. Only the CR1 locus was associated with both global cognitive decline (p=0.011) and global AD pathology (p=0.025). More specifically, the locus affects the deposition of neuritic amyloid plaque (p=0.009). In a mediation analysis, controlling for amyloid pathology strongly attenuated the effect of the CR1 locus on cognitive decline.
INTERPRETATION
We found that common variation at the CR1 locus has a broad impact on cognition and that this effect is largely mediated by an individual’s amyloid plaque burden. We therefore highlight one functional consequence of the CR1 susceptibility allele and generalize the role of this locus to cognitive aging in the general population.
doi:10.1002/ana.22277
PMCID: PMC3066288  PMID: 21391232
10.  ASSOCIATION BETWEEN GAB2 HAPLOTYPE AND HIGHER GLUCOSE METABOLISM IN ALZHEIMER'S DISEASE-AFFECTED BRAIN REGIONS IN COGNITIVELY NORMAL APOEε4 CARRIERS 
NeuroImage  2010;54(3):1896-1902.
In a genome-wide association study (GWAS) of late-onset Alzheimer's disease (AD), we found an association between common haplotypes of the GAB2 gene and AD risk in carriers of the apolipoprotein E (APOE) ε4 allele, the major late-onset AD susceptibility gene. We previously proposed the use of fluorodeoxyglucose positron emission tomography (FDG-PET) measurements as a quantitative presymptomatic endophenotype, more closely related to disease risk than the clinical syndrome itself, to help evaluate putative genetic and non-genetic modifiers of AD risk. In this study, we examined the relationship between the presence or absence of the relatively protective GAB2 haplotype and PET measurements of regional-to-whole brain FDG uptake in several AD-affected brain regions in 158 cognitively normal late-middle-aged APOEε4 homozygotes, heterozygotes, and non-carriers. GAB2 haplotypes were characterized using Affymetrix Genome-Wide Human SNP 6.0 Array data from each of these subjects. As predicted, the possibly protective GAB2 haplotype was associated with higher regional-to-whole brain FDG uptake in AD-affected brain regions in APOEε4 carriers. While additional studies are needed, this study supports the association between the possibly protective GAB2 haplotype and the risk of late-onset AD in APOEε4 carriers. It also supports the use of brain-imaging endophenotypes to help assess possible modifiers of AD risk.
doi:10.1016/j.neuroimage.2010.09.066
PMCID: PMC3010232  PMID: 20888920
Alzheimer's disease; fluorodeoxyglucose positron emission tomography
11.  IDENTIFICATION OF GENETIC VARIANTS USING BARCODED MULTIPLEXED SEQUENCING 
Nature methods  2008;5(10):887-893.
We developed a generalized framework for multiplexed resequencing of targeted regions of the human genome on the Illumina Genome Analyzer using degenerate indexed DNA sequence barcodes ligated to fragmented DNA prior to sequencing. Using this method, the DNA of multiple HapMap individuals was simultaneously sequenced at several ENCODE (ENCyclopedia of DNA Elements) regions. We then evaluated the use of Bayes factors for discovering and genotyping polymorphisms from aligned sequenced reads. If we required that predicted polymorphisms be either previously identified by dbSNP or be visually evident upon reinspection of archived ENCODE traces, we observed a false-positive rate of 11.3% using strict thresholds (Ks>1,000) for predicting variants and 69.6% for lax thresholds (Ks>10). Conversely, false-negative rates ranged from 10.8% to 90.8%, with those at stricter cut-offs occurring at lower coverage (< 10 aligned reads). These results suggest that >90% of genetic variants are discoverable using multiplexed sequencing provided sufficient coverage at the polymorphic base.
doi:10.1038/nmeth.1251
PMCID: PMC3171277  PMID: 18794863
12.  Association of CR1, CLU and PICALM with Alzheimer's disease in a cohort of clinically characterized and neuropathologically verified individuals 
Human Molecular Genetics  2010;19(16):3295-3301.
In this study, we assess 34 of the most replicated genetic associations for Alzheimer's disease (AD) using data generated on Affymetrix SNP 6.0 arrays and imputed at over 5.7 million markers from a unique cohort of over 1600 neuropathologically defined AD cases and controls (1019 cases and 591 controls). Testing the top genes from the AlzGene meta-analysis, we confirm the well-known association with APOE single nucleotide polymorphisms (SNPs), the CLU, PICALM and CR1 SNPs recently implicated in unusually large data sets, and previously implicated CST3 and ACE SNPs. In the cases of CLU, PICALM and CR1, as well as in APOE, the odds ratios we find are slightly larger than those previously reported in clinical samples, consistent with what we believe to be more accurate classification of disease in the clinically characterized and neuropathologically confirmed AD cases and controls.
doi:10.1093/hmg/ddq221
PMCID: PMC2908469  PMID: 20534741
13.  Reduced Posterior Cingulate Mitochondrial Activity in Expired Young Adult Carriers of the APOE ε4 Allele, the Major Late-Onset Alzheimer's Susceptibility Gene 
In vivoPET imaging studies of young-adult carriers of the apolipoprotein E ε4 allele (APOEε4), the major Alzheimer's disease (AD) susceptibility gene, have demonstrated declines in glucose metabolism in brain areas later vulnerable to AD, such as posterior cingulate cortex, decades before the possible onset of symptoms. We have previously shown in postmortem studies that such metabolic declines in AD are associated with brain regional mitochondrial dysfunction. To determine whether young adult at-risk individuals demonstrate similar mitochondrial functional decline, we histochemically assessed postmortem tissues from the posterior cingulate cortex of young-adult carriers and noncarriers of APOEε4. At-risk ε4 carriers had lower mitochondrial cytochrome oxidase activity than noncarriers in posterior cingulate cortex, particularly within the superficial cortical lamina, a pattern similar to that seen in AD patients. Except for one 34 year-old ε4 homozygote, the ε4 carriers did not have increased soluble amyloid-β, histologic amyloid-β, or tau pathology in this same region. This functional biomarker may prove useful in early detection and tracking of AD and indicates that mitochondrial mechanisms may contribute to the predisposition to AD before any evidence of amyloid or tau pathology.
doi:10.3233/JAD-2010-100129
PMCID: PMC3124564  PMID: 20847408
Alzheimer's etiology; bioenergetics; biomarkers; cytochrome c oxidase; differential vulnerability; neocortex
14.  Evidence for an association between KIBRA and late-onset Alzheimer’s disease 
Neurobiology of aging  2008;31(6):901-909.
We recently reported evidence for an association between the individual variation in normal human episodic memory and a common variant of the KIBRA gene, KIBRA rs17070145 (T-allele). Since memory impairment is a cardinal clinical feature of Alzheimer’s disease (AD), we investigated the possibility of an association between the KIBRA gene and AD using data from neuronal gene expression, brain imaging studies, and genetic association tests. KIBRA was significantly over-expressed and 3 of its 4 known binding partners under-expressed in AD-affected hippocampal, posterior cingulate and temporal cortex regions (p<0.010, corrected) in a study of laser capture microdissected neurons. Using positron emission tomography in a cohort of cognitively normal, late-middle-aged persons genotyped for KIBRA rs17070145, KIBRA T non-carriers exhibited lower glucose metabolism than did carriers in posterior cingulate and precuneus brain regions (P<0.001, uncorrected). Lastly, non-carriers of the KIBRA rs17070145 T-allele had increased risk of late-onset AD in an association study of 702 neuropathologically verified expired subjects (p=0.034; OR=1.29) and in a combined analysis of 1026 additional living and expired subjects (p=0.039; OR=1.26). Our findings suggest that KIBRA is associated with both individual variation in normal episodic memory and predisposition to AD.
doi:10.1016/j.neurobiolaging.2008.07.014
PMCID: PMC2913703  PMID: 18789830
genetics; imaging; expression profiling; memory
15.  Hypometabolism in Alzheimer's-Affected Brain Regions in Cognitively Normal Latinos Carrying the Apolipoprotein E ε4 Allele 
Archives of neurology  2010;67(4):462-468.
Objective
The extent to which the apolipoprotein E (APOE) ε4 allele is a susceptibility gene for late-onset Alzheimer's disease (AD) in Latino individuals continues to be clarified. In this study, fluorodeoxyglucose positron emission tomography (PET) was used to investigate whether regional reductions in the cerebral metabolic rate for glucose (CMRgl) previously found in cognitively normal late-middle-aged APOE ε4 carriers extends to members of the Latino Mexican-American community.
Methods
A brain mapping algorithm (SPM5) was used to compare cross-sectional regional CMRgl in Latino APOE ε4 carriers versus noncarriers.
Subjects
11 APOE ε4 carriers and 16 noncarriers from Arizona's Latino community (mean age 54.6±6.4 years) matched for sex, mean age and educational level, and who were predominantly of self-designated Mexican origin.
Results
Participant groups had similar distributions for age, gender, education, family history of dementia, clinical ratings and neuropsychological test scores. Latino APOE ε4 carriers had lower CMRgl than the noncarriers in posterior cingulate, precuneus and parietal regions previously found to be preferentially affected in AD patients and cognitively normal non-Latino APOE ε4 carriers. Additionally, the Latino APOE ε4 carriers had lower CMRgl in middle and anterior cingulate cortex, hippocampus and thalamus.
Conclusions
This study provides support for the relationship between APOE ε4 and risk of AD in Latinos. It illustrates the role of PET as a presymptomatic endophenotype for the assessment of AD risk factors, and supports the inclusion of Latino APOE ε4 carriers in proof-of-concept studies using FDG PET to evaluate promising presymptomatic treatments in cognitively normal carriers of this common AD susceptibility gene.
doi:10.1001/archneurol.2010.30
PMCID: PMC2943432  PMID: 20385913
16.  Voxelwise genome-wide association study (vGWAS) 
NeuroImage  2010;53(3):1160-1174.
The structure of the human brain is highly heritable, and is thought to be influenced by many common genetic variants, many of which are currently unknown. Recent advances in neuroimaging and genetics have allowed collection of both highly detailed structural brain scans and genome-wide genotype information. This wealth of information presents a new opportunity to find the genes influencing brain structure. Here we explore the relation between 448,293 single nucleotide polymorphisms in each of 31,622 voxels of the entire brain across 740 elderly subjects (mean age±s.d.: 75.52±6.82 years; 438 male) including subjects with Alzheimer's disease, Mild Cognitive Impairment, and healthy elderly controls from the Alzheimer's Disease Neuroimaging Initiative (ADNI). We used tensor-based morphometry to measure individual differences in brain structure at the voxel level relative to a study-specific template based on healthy elderly subjects. We then conducted a genome-wide association at each voxel to identify genetic variants of interest. By studying only the most associated variant at each voxel, we developed a novel method to address the multiple comparisons problem and computational burden associated with the unprecedented amount of data. No variant survived the strict significance criterion, but several genes worthy of further exploration were identified, including CSMD2 and CADPS2. These genes have high relevance to brain structure. This is the first voxelwise genome wide association study to our knowledge, and offers a novel method to discover genetic influences on brain structure.
doi:10.1016/j.neuroimage.2010.02.032
PMCID: PMC2900429  PMID: 20171287
17.  Genome-Wide Analysis Reveals Novel Genes Influencing Temporal Lobe Structure with Relevance to Neurodegeneration in Alzheimer’s Disease 
NeuroImage  2010;51(2):542-554.
In a genome-wide association study of structural brain degeneration, we mapped the 3D profile of temporal lobe volume differences in 742 brain MRI scans of Alzheimer’s disease patients, mildly impaired, and healthy elderly subjects. After searching 546,314 genomic markers, 2 single nucleotide polymorphisms (SNPs) were associated with bilateral temporal lobe volume (P < 5×10−7). One SNP, rs10845840, is located in the GRIN2B gene which encodes the N-Methyl-D-Aspartate (NMDA) glutamate receptor NR2B subunit. This protein - involved in learning and memory, and excitotoxic cell death - has age-dependent prevalence in the synapse and is already a therapeutic target in Alzheimer’s disease. Risk alleles for lower temporal lobe volume at this SNP were significantly over-represented in AD and MCI subjects versus controls (odds ratio = 1.273; P = 0.039) and were associated with the mini-mental state exam (MMSE; t = −2.114; P = 0.035) demonstrating a negative effect on global cognitive function. Voxelwise maps of genetic association of this SNP with regional brain volumes, revealed intense temporal lobe effects (FDR correction at q = 0.05; critical P = 0.0257). This study uses large-scale brain mapping for gene discovery with implications for Alzheimer’s disease.
doi:10.1016/j.neuroimage.2010.02.068
PMCID: PMC2856746  PMID: 20197096
18.  GRM7 variants confer susceptibility to age-related hearing impairment 
Human Molecular Genetics  2008;18(4):785-796.
Age-related hearing impairment (ARHI), or presbycusis, is the most prevalent sensory impairment in the elderly. ARHI is a complex disease caused by an interaction between environmental and genetic factors. Here we describe the results of the first whole genome association study for ARHI. The study was performed using 846 cases and 846 controls selected from 3434 individuals collected by eight centers in six European countries. DNA pools for cases and controls were allelotyped on the Affymetrix 500K GeneChip® for each center separately. The 252 top-ranked single nucleotide polymorphisms (SNPs) identified in a non-Finnish European sample group (1332 samples) and the 177 top-ranked SNPs from a Finnish sample group (360 samples) were confirmed using individual genotyping. Subsequently, the 23 most interesting SNPs were individually genotyped in an independent European replication group (138 samples). This resulted in the identification of a highly significant and replicated SNP located in GRM7, the gene encoding metabotropic glutamate receptor type 7. Also in the Finnish sample group, two GRM7 SNPs were significant, albeit in a different region of the gene. As the Finnish are genetically distinct from the rest of the European population, this may be due to allelic heterogeneity. We performed histochemical studies in human and mouse and showed that mGluR7 is expressed in hair cells and in spiral ganglion cells of the inner ear. Together these data indicate that common alleles of GRM7 contribute to an individual's risk of developing ARHI, possibly through a mechanism of altered susceptibility to glutamate excitotoxicity.
doi:10.1093/hmg/ddn402
PMCID: PMC2638831  PMID: 19047183
19.  Peripheral Delivery of a ROCK Inhibitor Improves Learning and Working Memory 
Behavioral neuroscience  2009;123(1):218-223.
Previously, utilizing a series of genome-wide association, brain imaging and gene expression studies we implicated the KIBRA gene and the RhoA/ROCK pathway in hippocampal-mediated human memory. Here we show that peripheral administration of the ROCK inhibitor hydroxyfasudil improves spatial learning and working memory in the rodent model. This study supports the action of ROCK on learning and memory, suggests the potential value of ROCK inhibition for the promotion of cognition in humans and highlights the powerful potential of unbiased genome-wide association studies to inform potential novel uses for existing pharmaceuticals.
doi:10.1037/a0014260
PMCID: PMC2701389  PMID: 19170447
learning; memory; ROCK; fasudil; aging
20.  SNiPer: Improved SNP genotype calling for Affymetrix 10K GeneChip microarray data 
BMC Genomics  2005;6:149.
Background
High throughput microarray-based single nucleotide polymorphism (SNP) genotyping has revolutionized the way genome-wide linkage scans and association analyses are performed. One of the key features of the array-based GeneChip® Mapping 10K Array from Affymetrix is the automated SNP calling algorithm. The Affymetrix algorithm was trained on a database of ethnically diverse DNA samples to create SNP call zones that are used as static models to make genotype calls for experimental data. We describe here the implementation of clustering algorithms on large training datasets resulting in improved SNP call rates on the 10K GeneChip.
Results
A database of 948 individuals genotyped on the GeneChip® Mapping 10K 2.0 Array was used to identify 822 SNPs that were called consistently less than 75% of the time. These SNPs represent on average 8.25% of the total SNPs on each chromosome with chromosome 19, the most gene-rich chromosome, containing the highest proportion of poor performers (18.7%). To remedy this, we created SNiPer, a new application which uses two clustering algorithms to yield increased call rates and equivalent concordance to Affymetrix called genotypes. We include a training set for these algorithms based on individual genotypes for 705 samples. SNiPer has the capability to be retrained for lab-specific training sets. SNiPer is freely available for download at .
Conclusion
The correct calling of poor performing SNPs may prove to be key in future linkage studies performed on the 10K GeneChip. It would prove particularly invaluable for those diseases that map to chromosome 19, known to contain a high proportion of poorly performing SNPs. Our results illustrate that SNiPer can be used to increase call rates on the 10K GeneChip® without sacrificing accuracy, thereby increasing the amount of valid data generated.
doi:10.1186/1471-2164-6-149
PMCID: PMC1280925  PMID: 16262895

Results 1-20 (20)