Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Serum calcium and risk of gastrointestinal cancer in the Swedish AMORIS study 
BMC Public Health  2013;13:663.
Observational studies have indicated that high calcium intake may prevent colorectal cancer, but as for randomized trials the results are inconclusive. Meanwhile, limited data on the link between serum calcium and cancer risk is available. We investigated the relation between serum calcium and risk of different gastrointestinal cancers in a prospective study.
A cohort based on 492,044 subjects with baseline information on calcium (mmol/L) and albumin (g/L) was selected from the Swedish Apolipoprotein MOrtality RISk (AMORIS) study. Multivariable Cox proportional hazard models were used to analyse associations between standardised levels, quartiles and age/sex-specific categories of serum calcium and risk of oesophageal, stomach, colon, rectal cancer and also colorectal cancer combined, while taking into account serum albumin and other comorbidities.
During 12 years of follow-up, we identified 323 incident oesophageal cancers, 782 stomach cancers, 2519 colon cancers, and 1495 rectal cancers. A positive association was found between albumin-adjusted serum calcium and risk of oesophageal [HR: 4.82 (95% CI: 2.07 – 11.19) for high compared to normal age-specific calcium levels] and colon cancer [e.g. HR: 1.07 (95% CI: 1.00 – 1.14) for every SD increase of calcium] as well as colorectal cancer [e.g. HR: 1.06 (95% CI: 1.02-1.11) for every SD increase of calcium] in women. In men there were similar but weaker non-statistically significant trends.
The positive relation between serum calcium, oesophageal cancer and colorectal cancer calls for further studies including calcium regulators to evaluate whether there is a true link between calcium metabolism and development of gastrointestinal cancer.
PMCID: PMC3729677  PMID: 23866097
Gastrointestinal cancer; Calcium; Albumin
2.  Inorganic phosphate and the risk of cancer in the Swedish AMORIS study 
BMC Cancer  2013;13:257.
Both dietary and serum levels of inorganic phosphate (Pi) have been linked to development of cancer in experimental studies. This is the first population-based study investigating the relation between serum Pi and risk of cancer in humans.
From the Swedish Apolipoprotein Mortality Risk (AMORIS) study, we selected all participants (> 20 years old) with baseline measurements of serum Pi, calcium, alkaline phosphatase, glucose, and creatinine (n = 397,292). Multivariable Cox proportional hazards regression analyses were used to assess serum Pi in relation to overall cancer risk. Similar analyses were performed for specific cancer sites.
We found a higher overall cancer risk with increasing Pi levels in men ( HR: 1.02 (95% CI: 1.00-1.04) for every SD increase in Pi), and a negative association in women (HR: 0.97 (95% CI: 0.96-0.99) for every SD increase in Pi). Further analyses for specific cancer sites showed a positive link between Pi quartiles and the risk of cancer of the pancreas, lung, thyroid gland and bone in men, and cancer of the oesophagus, lung, and nonmelanoma skin cancer in women. Conversely, the risks for developing breast and endometrial cancer as well as other endocrine cancer in both men and women were lower in those with higher Pi levels.
Abnormal Pi levels are related to development of cancer. Furthermore, the in verse association between Pi levels and risk of breast, endometrial and other endocrine cancers may indicate the role of hormonal factors in the relation between Pi metabolism and cancer.
PMCID: PMC3664604  PMID: 23706176
Cancer; Inorganic phosphate; Prospective cohort study
3.  Iron metabolism and risk of cancer in the Swedish AMORIS study 
Cancer Causes & Control  2013;24(7):1393-1402.
Pre-clinical studies have shown that iron can be carcinogenic, but few population-based studies investigated the association between markers of the iron metabolism and risk of cancer while taking into account inflammation. We assessed the link between serum iron (SI), total-iron binding capacity (TIBC), and risk of cancer by levels of C-reactive protein (CRP) in a large population-based study (n = 220,642).
From the Swedish Apolipoprotein Mortality Risk (AMORIS) study, we selected all participants (>20 years old) with baseline measurements of serum SI, TIBC, and CRP. Multivariate Cox proportional hazards regression was carried out for standardized and quartile values of SI and TIBC. Similar analyses were performed for specific cancers (pancreatic, colon, liver, respiratory, kidney, prostate, stomach, and breast cancer). To avoid reverse causation, we excluded those with follow-up <3 years.
We found a positive association between standardized TIBC and overall cancer [HR 1.03 (95 % CI 1.01–1.05)]. No statistically significant association was found between SI and cancer risk except for postmenopausal breast cancer [HR for standardized SI 1.09 (95 % CI 1.02–1.15)]. The association between TIBC and specific cancer was only statistically significant for colon cancer [i.e., HR for standardized TIBC: 1.17 (95 % CI 1.08–1.28)]. A borderline interaction between SI and levels of CRP was observed only in stomach cancer.
As opposed to pre-clinical findings for serum iron and cancer, this population-based epidemiological study showed an inverse relation between iron metabolism and cancer risk. Minimal role of inflammatory markers observed warrants further study focusing on developments of specific cancers.
PMCID: PMC3675271  PMID: 23649231
Cancer; C-reactive protein; Iron; Iron-binding capacity; Sweden
4.  Serum Glucose and Fructosamine in Relation to Risk of Cancer 
PLoS ONE  2013;8(1):e54944.
Impaired glucose metabolism has been linked with increased cancer risk, but the association between serum glucose and cancer risk remains unclear. We used repeated measurements of glucose and fructosamine to get more insight into the association between the glucose metabolism and risk of cancer.
We selected 11,998 persons (>20 years old) with four prospectively collected serum glucose and fructosamine measurements from the Apolipoprotein Mortality Risk (AMORIS) study. Multivariate Cox proportional hazards regression was used to assess standardized log of overall mean glucose and fructosamine in relation to cancer risk. Similar analyses were performed for tertiles of glucose and fructosamine and for different types of cancer.
A positive trend was observed between standardized log overall mean glucose and overall cancer risk (HR = 1.08; 95% CI: 1.02–1.14). Including standardized log fructosamine in the model resulted in a stronger association between glucose and cancer risk and aninverse association between fructosamine and cancer risk (HR = 1.17; 95% CI: 1.08–1.26 and HR: 0.89; 95% CI: 0.82–0.96, respectively). Cancer risks were highest among those in the highest tertile of glucose and lowest tertile of fructosamine. Similar findings were observed for prostate, lung, and colorectal cancer while none observed for breast cancer.
The contrasting effect between glucose, fructosamine, and cancer risk suggests the existence of distinct groups among those with impaired glucose metabolism, resulting in different cancer risks based on individual metabolic profiles. Further studies are needed to clarify whether glucose is a proxy of other lifestyle-related or metabolic factors.
PMCID: PMC3556075  PMID: 23372798
5.  Serum Lipids and the Risk of Gastrointestinal Malignancies in the Swedish AMORIS Study 
Journal of Cancer Epidemiology  2012;2012:792034.
Background. Metabolic syndrome has been linked to an increased cancer risk, but the role of dyslipidaemia in gastrointestinal malignancies is unclear. We aimed to assess the risk of oesophageal, stomach, colon, and rectal cancers using serum levels of lipid components. Methods. From the Swedish Apolipoprotein Mortality Risk (AMORIS) study, we selected 540,309 participants (> 20 years old) with baseline measurements of total cholesterol (TC), triglycerides (TG), and glucose of whom 84,774 had baseline LDL cholesterol (LDL), HDL cholesterol (HDL), apolipoprotein B (apoB), and apolipoprotein A-I (apoA-I). Multivariate Cox proportional hazards regression was used to assess glucose and lipid components in relation to oesophageal, stomach, colon, and rectal cancer risk. Results. An increased risk of oesophageal cancer was observed in persons with high TG (e.g. HR: 2.29 (95% CI: 1.42–3.68) for the 4th quartile compared to the 1st) and low LDL, LDL/HDL ratio, TC/HDL ratio, log (TG/HDL), and apoB/apoA-I ratio. High glucose and TG were linked with an increased colon cancer risk, while high TC levels were associated with an increased rectal cancer risk. Conclusion. The persistent link between TC and rectal cancer risk as well as between TG and oesophageal and colon cancer risk in normoglycaemic individuals may imply their substantiality in gastrointestinal carcinogenesis.
PMCID: PMC3437288  PMID: 22969802

Results 1-5 (5)