PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Histone Deacetylase 2 in the Mouse Hippocampus: Attenuation of Age-Related Increase by Caloric Restriction 
Current Alzheimer research  2013;10(8):868-876.
The aging process in the hippocampus is associated with aberrant epigenetic marks, such as DNA methylation and histone tail alterations. Recent evidence suggests that caloric restriction (CR) can potentially delay the aging process, while upregulation of antioxidants may also have a beneficial effect in this respect. We have recently observed that CR attenuates age-related changes in the levels of the epigenetic molecules DNA methyltransferase 3a, 5-methylcytidine (5-mC) and 5-hydroxymethylcytosine in the mouse hippocampus while overexpression of the antioxidant Cu/Zn superoxide dismutase 1 (SOD1) does not. However, the impact of aging on the levels of histone-modifying enzymes such as histone deacetylase 2 (HDAC2) in the hippocampus has not been studied in much detail. Here, we investigated immunoreactivity (IR) of HDAC2 in three subregions of the hippocampus (dentate gyrus, CA3 and CA1-2) of mice taken from large cohorts of aging wild-type and transgenic mice overexpressing normal human SOD1, which were kept under normal diet or CR from weaning onwards. Independent from the genotype, aging (between 12 and 24 months) increased levels of HDAC2 IR in the hippocampus. Moreover, CR prevented this age-related increase, particularly in the CA3 and CA1-2 subregions, while SOD1 overexpression did not. Quantitative image analyses showed that HDAC2 IR correlated positively with 5-mC IR while these markers were shown to colocalize in the nucleus of hippocampal cells. Together with recent literature reports, these findings suggest that altered levels of epigenetic regulatory proteins including HDAC2 regulate age-related changes in the mouse hippocampus and that CR may prevent these age-related changes.
PMCID: PMC3966721  PMID: 24093534
Aging; epigenesis; histone deacetylase 2 (HDAC2); caloric restriction; hippocampus
2.  Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer’s disease patients 
Neurobiology of aging  2013;34(9):2091-2099.
Epigenetic dysregulation of gene expression is thought to be critically involved in the pathophysiology of Alzheimer’s disease (AD). Recent studies indicate that DNA methylation and DNA hydroxymethylation are 2 important epigenetic mechanisms that regulate gene expression in the aging brain. However, very little is known about the levels of markers of DNA methylation and hydroxymethylation in the brains of patients with AD, the cell-type specificity of putative AD-related alterations in these markers, as well as the link between epigenetic alterations and the gross pathology of AD. The present quantitative immunohistochemical study investigated the levels of the 2 most important markers of DNA methylation and hydroxymethylation, that is, 5-methylcytidine (5-mC) and 5-hydroxymethylcytidine (5-hmC), in the hippocampus of AD patients (n = 10) and compared these to non demented, age-matched controls (n = 10). In addition, the levels of 5-hmC in the hippocampus of a pair of monozygotic twins discordant for AD were assessed. The levels of 5-mC and 5-hmC were furthermore analyzed in a cell-type and hippocampal subregion–specific manner, and were correlated with amyloid plaque load and neurofibrillary tangle load. The results showed robust decreases in the hippocampal levels of 5-mC and 5-hmC in AD patients (19.6% and 20.2%, respectively). Similar results were obtained for the twin with AD when compared to the non-demented co-twin. Moreover, levels of 5-mC as well as the levels of 5-hmC showed a significant negative correlation with amyloid plaque load in the hippocampus (rp = −0.539, p = 0.021 for 5-mC and rp = −0.558, p = 0.016 for 5-hmC). These human postmortem results thus strengthen the notion that AD is associated with alterations in DNA methylation and hydroxymethylation, and provide a basis for further epigenetic studies identifying the exact genetic loci with aberrant epigenetic signatures.
doi:10.1016/j.neurobiolaging.2013.02.021
PMCID: PMC3955118  PMID: 23582657
Alzheimer’s disease; Epigenetics; DNA methylation; DNA hydroxymethylation; Amyloid
3.  Age-related increase in levels of 5-hydroxymethylcytosine in mouse hippocampus is prevented by caloric restriction 
Current Alzheimer research  2012;9(5):536-544.
Aberrations in epigenetic marks have been associated with aging of the brain while caloric restriction (CR) and upregulation of endogenous antioxidants have been suggested as tools to attenuate the aging process. We have recently observed age-related increases in levels of 5-methylcytidine (5-mC) and DNA methyltransferase 3a (Dnmt3a) in the mouse hippocampus. Most of those age-related changes in these epigenetic relevant markers were prevented by CR but not by transgenic overexpression of the endogenous antioxidant superoxide dismutase 1 (SOD1). As recent work has suggested a distinct role for hydroxymethylation in epigenetic regulation of gene expression in the brain, the current study investigated age-related changes of 5-hydroxymethylcytosine (5-hmC) in the mouse hippocampus, and furthermore tested whether CR and transgenic upregulation of SOD1 affected any age-related changes in 5-hmC. Immunohistochemical analyses of 5-hmC in 12- and 24-month-old wild-type and transgenic mice overexpressing SOD1, which were kept under either a control or a calorie restricted diet, revealed an increase of 5-hmC immunoreactivity occurring with aging in the hippocampal dentate gyrus, CA3 and CA1–2 regions. Moreover, CR, but not overexpression of SOD1, prevented the age-related increase in the CA3 region. These region-specific findings indicate that the aging process in mice is connected with epigenetic changes and suggest that the beneficial actions of CR may be mediated via epigenetic mechanisms such as methylation and hydroxymethylation of DNA.
PMCID: PMC3561726  PMID: 22272625
Aging; Epigenesis; Epigenetics; DNA hydroxymethylation; 5-hydroxymethylcytosine; Caloric restriction; Antioxidants; superoxide dismutase (SOD); Hippocampus
4.  Prevention of age-related changes in hippocampal levels of 5-methylcytidine by caloric restriction 
Neurobiology of Aging  2011;33(8):1672-1681.
Aberrant DNA methylation patterns have been linked to molecular and cellular alterations in the aging brain. Caloric restriction (CR) and upregulation of antioxidants have been proposed as interventions to prevent or delay age-related brain pathology. Previously, we have shown in large cohorts of aging mice, that age-related increases in DNA methyltransferase 3a (Dnmt3a) immunoreactivity in the mouse hippocampus were attenuated by CR, but not by overexpression of superoxide dismutase 1 (SOD1). Here, we investigated age-related alterations of 5-methylcytidine (5-mC), a marker of DNA methylation levels, in a hippocampal subregion-specific manner. Examination of 5-mC immunoreactivity in 12- and 24-month-old wild type (WT) mice on control diet, mice overexpressing SOD1 on control diet, wild type mice on CR, and SOD1 mice on CR, indicated an age-related increase in 5-mC immunoreactivity in the hippocampal dentate gyrus, CA3, and CA1–2 regions, which was prevented by CR but not by SOD1 overexpression. Moreover, positive correlations between 5-mC and Dnmt3a immunoreactivity were observed in the CA3 and CA1–2. These findings suggest a crucial role for DNA methylation in hippocampal aging and in the mediation of the beneficial effects of CR on aging.
doi:10.1016/j.neurobiolaging.2011.06.003
PMCID: PMC3355211  PMID: 21764481
Aging; Epigenesis; Epigenetics; DNA methylation; 5-methylcytidine (5-mC); Caloric restriction; Antioxidants; Superoxide dismutase (SOD); Hippocampus

Results 1-4 (4)