Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  The IRG Mouse: A Two-Color Fluorescent Reporter for Assessing Cre-Mediated Recombination and Imaging Complex Cellular Relationships In Situ 
Genesis (New York, N.y. : 2000)  2008;46(6):308-317.
The Cre-loxP system is widely used for making conditional alterations to the mouse genome. Cre-mediated recombination is frequently monitored using reporter lines in which Cre expression activates a reporter gene driven by a ubiquitous promoter. Given the distinct advantages of fluorescent reporters, we developed a transgenic reporter line, termed IRG, in which DsRed-Express, a red fluorescent protein (RFP) is expressed ubiquitously prior to Cre-mediated recombination and an enhanced green fluorescent protein (EGFP) following recombination. Besides their utility for monitoring Cre-mediated recombination, we show that in IRG mice red and green native fluorescence can be imaged simultaneously in thick tissue sections by confocal microscopy allowing for complex reconstructions to be created that are suitable for analysis of neuronal morphologies as well as neurovascular interactions in brain. IRG mice should provide a versatile tool for analyzing complex cellular relationships in both neural and nonneural tissues.†
PMCID: PMC2928670  PMID: 18543298
Cre recombinase; loxP; conditional gene activation; DsRed-express; red fluorescent protein; enhanced green fluorescent protein; transgenic mice
2.  Cortical Development in the Presenilin-1 Null Mutant Mouse Fails After Splitting of the Preplate and is Not Due to a Failure of Reelin-Dependent Signaling 
Cortical development is disrupted in presenilin-1 null mutant (Psen1−/−) mice. Prior studies have commented on similarities between Psen1−/− and reeler mice. Reelin induces phosphorylation of Dab1 and activates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Psen1 is known to modulate PI3K/Akt signaling and both known reelin receptors (apoER2 and VLDLR) are substrates for Psen1 associated γ-secretase activity. The purpose of this study was to determine whether reelin signaling is disrupted in Psen1−/− mice. We show that while Dab1 is hypophosphorylated late in cortical development in Psen1−/− mice, it is normally phosphorylated at earlier ages and reelin signaling is intact in Psen1−/− primary neuronal cultures. γ-secretase activity was also not required for reelin induced phosphorylation of Dab1. Unlike reeler mice the preplate splits in Psen1−/− brain. Thus cortical development in Psen1−/− mice fails only after splitting of the preplate and is not due to an intrinsic failure of reelin signaling.
PMCID: PMC2566957  PMID: 18729224
presenilin-1; reelin; gamma-secretase; cortical lamination

Results 1-2 (2)