Search tips
Search criteria

Results 1-25 (28)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Antibody VH and VL recombination using phage and ribosome display technologies reveals distinct structural routes to affinity improvements with VH-VL interface residues providing important structural diversity 
mAbs  2013;6(1):236-245.
In vitro selection technologies are an important means of affinity maturing antibodies to generate the optimal therapeutic profile for a particular disease target. Here, we describe the isolation of a parent antibody, KENB061 using phage display and solution phase selections with soluble biotinylated human IL-1R1. KENB061 was affinity matured using phage display and targeted mutagenesis of VH and VL CDR3 using NNS randomization. Affinity matured VHCDR3 and VLCDR3 library blocks were recombined and selected using phage and ribosome display protocol. A direct comparison of the phage and ribosome display antibodies generated was made to determine their functional characteristics.
PMCID: PMC3929446  PMID: 24256948
antibody; IL-1R1; ribosome display; phage display; mutagenesis; recombination
3.  NAAG Peptidase Inhibitor Improves Motor Function and Reduces Cognitive Dysfunction in a Model of TBI with Secondary Hypoxia 
Brain research  2013;1515:98-107.
Immediately following traumatic brain injury (TBI) and TBI with hypoxia, there is a rapid and pathophysiological increase in extracellular glutamate, subsequent neuronal damage and ultimately diminished motor and cognitive function. N-acetyl-aspartyl glutamate (NAAG), a prevalent neuropeptide in the CNS, is co-released with glutamate, binds the presynaptic mGluR3 (group II metabotropic glutamate receptor) and suppresses glutamate release. However, the catalytic enzyme glutamate carboxypeptidase II (GCPII) rapidly hydrolyzes NAAG into NAA and glutamate. Inhibition of the GCPII enzyme with NAAG peptidase inhibitors reduces the concentration of glutamate both by increasing the duration of NAAG activity on mGluR3 and by reducing degradation into NAA and glutamate resulting in reduced cell death in models of TBI and TBI with hypoxia. In the following study, rats were administered the NAAG peptidase inhibitor PGI-02776 (10 mg/kg) 30 min following TBI combined with a hypoxic second insult. Over the two weeks following injury, PGI-02776 treated rats had significantly improved motor function as measured by increased duration on the rota-rod and a trend toward improved performance on the beam walk. Furthermore, two weeks post-injury, PGI-02776-treated animals had a significant decrease in latency to find the target platform in the Morris water maze as compared to vehicle-treated animals. These findings demonstrate that the application of NAAG peptidase inhibitors can reduce the deleterious motor and cognitive effects of TBI combined with a second hypoxic insult in the weeks following injury.
PMCID: PMC3672358  PMID: 23562458
Traumatic brain injury (TBI); Hypoxia; Excitotoxicity; N-acetylaspartylglutamate (NAAG); Behavior; Pre-clinical
4.  Bacillus anthracis Has Two Independent Bottlenecks That Are Dependent on the Portal of Entry in an Intranasal Model of Inhalational Infection 
Infection and Immunity  2013;81(12):4408-4420.
Bacillus anthracis can cause inhalational anthrax. Murine inhalational B. anthracis infections have two portals of entry, the nasal mucosa-associated lymphoid tissue (NALT) and the lumen of the lungs. Analysis of the dissemination from these sites is hindered because infections are asynchronous and asymptomatic until the hosts near death. To further understand and compare how B. anthracis disseminates from these two different environments, clonal analysis was employed using a library of equally virulent DNA-tagged clones of a luminescent Sterne strain. Luminescence was used to determine the origin of the infection and monitor the dissemination in vivo. The number of clones and their proportions in the portals of entry, lymph nodes draining the portals, and kidneys were analyzed. Clonal analysis indicated a bottleneck for both portals of entry, yet the extent and location of the reduction in represented clones differed between the routes. In NALT-based infections, all clones were found to germinate in the NALT, but they underwent a bottleneck as the infection spread to the cervical lymph node. However, lung-based infections underwent a bottleneck in a focal region of growth within the lung lumen and did not need to spread through the mediastinal lymph nodes to cause a systemic infection. Further, the average number of clones found in the kidney and the rate at which genetic drift was affecting the disseminated populations were significantly higher in lung-based infections. Collectively, the data suggested that differences in the host environment alter dissemination of B. anthracis depending on the site of initial colonization and growth.
PMCID: PMC3837992  PMID: 24042112
5.  Monovalent IgG4 molecules 
mAbs  2013;5(3):406-417.
Antibodies have become the fastest growing class of biological therapeutics, in part due to their exquisite specificity and ability to modulate protein-protein interactions with a high biological potency. The relatively large size and bivalency of antibodies, however, limits their use as therapeutics in certain circumstances. Antibody fragments, such as single-chain variable fragments and antigen binding-fragments, have emerged as viable alternatives, but without further modifications these monovalent formats have reduced terminal serum half-lives because of their small size and lack of an Fc domain, which is required for FcRn-mediated recycling. Using rational engineering of the IgG4 Fc domain to disrupt key interactions at the CH3-CH3 interface, we identified a number of point mutations that abolish Fc dimerization and created half-antibodies, a novel monovalent antibody format that retains a monomeric Fc domain. Introduction of these mutations into an IgG1 framework also led to the creation of half-antibodies. These half-antibodies were shown to be soluble, thermodynamically stable and monomeric, characteristics that are favorable for use as therapeutic proteins. Despite significantly reduced FcRn binding in vitro, which suggests that avidity gains in a dimeric Fc are critical to optimal FcRn binding, this format demonstrated an increased terminal serum half-life compared with that expected for most alternative antibody fragments.
PMCID: PMC4169034  PMID: 23567207
Antibody engineering; monomeric Fc; half-antibody; half-life extension; FcRn
6.  In Trans Complementation of Lethal Factor Reveal Roles in Colonization and Dissemination in a Murine Mouse Model 
PLoS ONE  2014;9(4):e95950.
Lethal factor (LF) is a component of the B. anthracis exotoxin and critical for pathogenesis. The roles of LF in early anthrax pathogenesis, such as colonization and dissemination from the initial site of infection, are poorly understood. In mice models of infection, LF-deficient strains either have altered dissemination patterns or do not colonize, precluding analysis of the role of LF in colonization and dissemination from the portal of entry. Previous reports indicate rabbit and guinea pig models infected with LF-deficient strains have decreased virulence, yet the inability to use bioluminescent imaging techniques to track B. anthracis growth and dissemination in these hosts makes analysis of early pathogenesis challenging. In this study, the roles of LF early in infection were analyzed using bioluminescent signature tagged libraries of B. anthracis with varying ratios of LF-producing and LF-deficient clones. Populations where all clones produced LF and populations where only 40% of clones produce LF were equally virulent. The 40% LF-producing clones trans complimented the LF mutants and permitted them to colonize and disseminate. Decreases of the LF producing strains to 10% or 0.3% of the population led to increased host survival and decreased trans complementation of the LF mutants. A library with 10% LF producing clones could replicate and disseminate, but fewer clones disseminated and the mutant clones were less competitive than wild type. The inoculum with 0.3% LF producing clones could not colonize the host. This strongly suggests that between 10% and 0.3% of the population must produce LF in order to colonize. In total, these findings suggest that a threshold of LF must be produced in order for colonization and dissemination to occur in vivo. These observations suggest that LF has a major role in the early stages of colonization and dissemination.
PMCID: PMC3999102  PMID: 24763227
7.  NAAG Peptidase Inhibitor Reduces Cellular Damage in a Model of TBI with Secondary Hypoxia 
Brain research  2012;1469:144-152.
Traumatic brain injury (TBI) leads to a rapid and excessive glutamate elevation in the extracellular milieu, resulting in neuronal degeneration and astrocyte damage. Posttraumatic hypoxia is a clinically relevant secondary insult that increases the magnitude and duration of glutamate release following TBI. N-acetyl-aspartyl glutamate (NAAG), a prevalent neuropeptide in the CNS, suppresses presynaptic glutamate release by its action at the mGluR3 (a group II metabotropic glutamate receptor). However, extracellular NAAG is rapidly converted into NAA and glutamate by the catalytic enzyme glutamate carboxypeptidase II (GCPII) reducing presynaptic inhibition. We previously reported that the GCPII inhibitor ZJ-43 and its prodrug di-ester PGI-02776 reduce the deleterious effects of excessive extracellular glutamate when injected systemically within the first 30 minutes following injury. We now report that PGI-02776 (10 mg/kg) is neuroprotective when administered 30-minutes post-injury in a model of TBI plus 30 minutes of hypoxia (FiO2 = 11%). 24-hrs following TBI with hypoxia, significant increases in neuronal cell death in the CA1, CA2/3, CA3c, hilus and dentate gyrus were observed in the ipsilateral hippocampus. Additionally, there was a significant reduction in the number of astrocytes in the ipsilateral CA1, CA2/3 and in the CA3c/hilus/dentate gyrus. Administration of PGI-02776 immediately following the cessation of hypoxia significantly reduced neuronal and astrocytic cell death across all regions of the hippocampus. These findings indicate that NAAG peptidase inhibitors administered post-injury can significantly reduce the deleterious effects of TBI combined with a secondary hypoxic insult.
PMCID: PMC3424068  PMID: 22750589
Traumatic brain injury (TBI); Hypoxia; Hippocampus; Neuronal degeneration; Glutamate; N-acetylaspartylglutamate (NAAG); astrocyte
8.  Pneumocystis jirovecii Pneumonia in Tropical and Low and Middle Income Countries: A Systematic Review and Meta-Regression 
PLoS ONE  2013;8(8):e69969.
Pneumocystis jirovecii pneumonia (PCP), the commonest opportunistic infection in HIV-infected patients in the developed world, is less commonly described in tropical and low and middle income countries (LMIC). We sought to investigate predictors of PCP in these settings.
Systematic review and meta-regression.
Meta-regression of predictors of PCP diagnosis (33 studies). Qualitative and quantitative assessment of recorded CD4 counts, receipt of prophylaxis and antiretrovirals, sensitivity and specificity of clinical signs and symptoms for PCP, co-infection with other pathogens, and case fatality (117 studies).
The most significant predictor of PCP was per capita Gross Domestic Product, which showed strong linear association with odds of PCP diagnosis (p<0.0001). This was not explained by study design or diagnostic quality. Geographical area, population age, study setting and year of study also contributed to risk of PCP. Co-infection was common (444 episodes/1425 PCP cases), frequently with virulent organisms. The predictive value of symptoms, signs or simple tests in LMIC settings for diagnosis of PCP was poor. Case fatality was >30%; treatment was largely appropriate. Prophylaxis appeared to reduce the risk for development of PCP, however 24% of children with PCP were receiving prophylaxis. CD4 counts at presentation with PCP were usually <200×103/ml.
There is a positive relationship between GDP and risk of PCP diagnosis. Although failure to diagnose infection in poorer countries may contribute to this, we also hypothesise that poverty exposes at-risk patients to a wide range of infections and that the relatively non-pathogenic P. jirovecii is therefore under-represented. As LMIC develop economically they eliminate the conditions underlying transmission of virulent infection: P. jirovecii, ubiquitous in all settings, then becomes a greater relative threat.
PMCID: PMC3732248  PMID: 23936365
9.  Blood Neutrophil Counts in HIV-Infected Patients with Pulmonary Tuberculosis: Association with Sputum Mycobacterial Load 
PLoS ONE  2013;8(7):e67956.
Increasing evidence suggests that neutrophils play a role in the host response to Mycobacterium tuberculosis. We determined whether neutrophil counts in peripheral blood are associated with tuberculosis (TB) and with mycobacterial load in sputum in HIV-infected patients.
Methodology/Principal Findings
Adults enrolling in an antiretroviral treatment (ART) clinic in a Cape Town township were screened for TB regardless of symptoms. Paired sputum samples were examined using liquid culture, fluorescence microscopy, and the Xpert MTB/RIF assay. Absolute neutrophil counts (ANC) were measured in blood samples. Of 602 HIV-infected patients screened, 523 produced one or more sputum samples and had complete results available for analysis. Among these 523 patients, the median CD4 count was 169×109/L (IQR, 96–232) and median ANC was 2.6×109/L (IQR, 1.9–3.6). Culture-positive pulmonary tuberculosis was diagnosed in 89 patients. Patients with TB had a median ANC of 3.4×109/L (IQR, 2.4–5.1) compared to 2.5×109/L (IQR, 1.8–3.4) among those who were culture negative (p<0.0001). In multivariable analyses, having pulmonary TB was associated with an adjusted risk ratio (aRR) of 2.6 (95%CI, 1.5–4.5) for having an ANC level that exceeded the median value (ANC ≥2.6×109/L; p = 0.0006) and an aRR of 6.8 (95%CI, 2.3–20.4) for having neutrophilia defined by a neutrophil count exceeding the upper limit of the normal range (ANC >7.5×109/L; p = 0.0005). Patients were then classified into four mutually exclusive groups with increasing sputum mycobacterial load as defined by the results of culture, Xpert MTB/RIF and sputum smear microscopy. Multivariable analyses demonstrated that increasing sputum mycobacterial load was positively associated with blood ANC ≥2.6×109/L and with neutrophilia.
Increased blood neutrophil counts were independently associated with pulmonary TB and sputum mycobacterial burden in this HIV-infected patient group. This observation supports the growing body of literature regarding the potential role for neutrophils in the host response to TB.
PMCID: PMC3706476  PMID: 23874476
10.  The KineSpring® Knee Implant System: an implantable joint-unloading prosthesis for treatment of medial knee osteoarthritis 
Symptomatic medial compartment knee osteoarthritis (OA) is the leading cause of musculoskeletal pain and disability in adults. Therapies intended to unload the medial knee compartment have yielded unsatisfactory results due to low patient compliance with conservative treatments and high complication rates with surgical options. There is no widely available joint-unloading treatment for medial knee OA that offers clinically important symptom alleviation, low complication risk, and high patient acceptance. The KineSpring® Knee Implant System (Moximed, Inc, Hayward, CA, USA) is a first-of-its-kind, implantable, extra-articular, extra-capsular prosthesis intended to alleviate knee OA-related symptoms by reducing medial knee compartment loading while overcoming the limitations of traditional joint-unloading therapies. Preclinical and clinical studies have demonstrated excellent prosthesis durability, substantial reductions in medial compartment and total joint loads, and clinically important improvements in OA-related pain and function. The purpose of this report is to describe the KineSpring System, including implant characteristics, principles of operation, indications for use, patient selection criteria, surgical technique, postoperative care, preclinical testing, and clinical experience. The KineSpring System has potential to bridge the gap between ineffective conservative treatments and irreversible surgical interventions for medial compartment knee OA.
PMCID: PMC3663478  PMID: 23717052
KineSpring; knee; medial; osteoarthritis; prosthesis
11.  A novel assay of antimycobacterial activity and phagocytosis by human neutrophils 
Despite abundant evidence that neutrophils arrive early at sites of mycobacterial disease and phagocytose organisms, techniques to assay phagocytosis or killing of mycobacteria by these cells are lacking. Existing assays for measuring the antimycobacterial activity of human leukocytes require cell lysis which introduces new bioactive substances and may be incomplete. They are also time-consuming and carry multiple risks of inaccuracy due to serial dilution and organism clumping. Flow cytometric techniques for measuring phagocytosis of mycobacteria by human cells have failed to adequately address the effects of organism clumping, quenching agents and culture conditions on readouts.
Here we present a novel in-tube bioluminescence-based assay of antimycobacterial activity by human neutrophils. The assay yields intuitive results, with improving restriction of mycobacterial bioluminescence as the ratio of cells to organisms increases. We show that lysis of human cells is not required to measure luminescence accurately.
We also present a phagocytosis assay in which we have minimised the impact of mycobacterial clumping, investigated the effect of various opsonisation techniques and established the correct usage of trypan blue to identify surface-bound organisms without counting dead cells. The same multiplicity of infection and serum conditions are optimal to demonstrate both internalisation and restriction of mycobacterial growth.
PMCID: PMC3608034  PMID: 23332400
Tuberculosis; Granulocytes; Bio-luminescence; Flow cytometry
12.  Chemistry and Behavioral Studies Identify Chiral Cyclopropanes as Selective α4β2-Nicotinic Acetylcholine Receptor Partial Agonists Exhibiting an Antidepressant Profile 
Journal of Medicinal Chemistry  2012;55(2):717-724.
Despite their discovery in the early 20th century and intensive study over the last twenty years, nicotinic acetylcholine receptors (nAChRs) are still far from being well understood. Only a few chemical entities targeting nAChRs are currently undergoing clinical trials, and even fewer have reached the marketplace. In our efforts to discover novel and truly selective nAChR ligands, we designed and synthesized a series of chiral cyclopropane-containing α4β2-specific ligands that display low nanomolar binding affinities and excellent subtype selectivity, while acting as partial agonists at α4β2-nAChRs. Their favorable antidepressant-like properties were demonstrated in the classical mouse forced swim test. Preliminary ADMET studies and broad screening towards other common neurotransmitter receptors were also carried out to further evaluate their safety profile and eliminate their potential off-target activity. These highly potent cyclopropane ligands possess superior subtype selectivity compared to other α4β2-nAChR agonists reported to date, including the marketed drug varenicline, and therefore may fully satisfy the crucial prerequisite for avoiding adverse side effects. These novel chemical entities could potentially be advanced to the clinic as new drug candidates for treating depression.
PMCID: PMC3292870  PMID: 22171543
13.  Discovery of Isoxazole Analogs of Sazetidine-A as Selective α4β2-Nicotinic Acetylcholine Receptor (nAChR) Partial Agonists for the Treatment of Depression 
Journal of medicinal chemistry  2011;54(20):7280-7288.
Depression, a common neurological condition, is one of the leading causes of disability and suicide worldwide. Standard treatment targeting monoamine transporters selective for the neurotransmitters serotonin and noradrenalin are not able to help many patients that are poor responders. This study advances the development of sazetidine-A analogs that interact with α4β2-nAChR as partial agonists and that possess favorable antidepressant profiles. The resulting compounds that are highly selective for the α4β2 subtype of nAChR over α3β4-nAChRs are partial agonists at the α4β2 subtype and have excellent antidepressant behavioral profiles as measured by the mouse forced swim test. Preliminary ADMET studies for one promising ligand revealed an excellent plasma protein binding (PPB) profile, low CYP450 related metabolism, and low cardiovascular toxicity, suggesting it is a promising lead as well as a drug candidate to be advanced through the drug discovery pipeline.
PMCID: PMC3197876  PMID: 21905669
14.  Post-injury Administration of NAAG Peptidase Inhibitor Prodrug, PGI-02776, in Experimental TBI 
Brain research  2011;1395:62-73.
Traumatic brain injury (TBI) leads to a rapid and excessive increase in glutamate concentration in the extracellular milieu, which is strongly associated with excitotoxicity and neuronal degeneration. N-acetylaspartylglutamate (NAAG), a prevalent peptide neurotransmitter in the vertebrate nervous system, is released along with glutamate and suppresses glutamate release by actions at pre-synaptic metabotropic glutamate autoreceptors. Extracellular NAAG is hydrolyzed to N-acetylaspartate and glutamate by peptidase activity. In the present study PGI-02776, a newly designed di-ester prodrug of the urea-based NAAG peptidase inhibitor ZJ-43, was tested for neuroprotective potential when administered intraperitoneal 30 min after lateral fluid percussion TBI in the rat. Stereological quantification of hippocampal CA2-3 degenerating neurons at 24 hrs post injury revealed that 10 mg/kg PGI-02776 significantly decreased the number of degenerating neurons (p<0.05). Both average latency analysis of Morris water maze performance as well as assessment of 24-hour memory retention revealed significant differences between sham-TBI and TBI-saline. In contrast, no significant difference was found between sham-TBI and PGI-02776 treated groups in either analysis indicating an improvement in cognitive performance with PGI-02776 treatment. Histological analysis on day 16 post-injury revealed significant cell death in injured animals regardless of treatment. In vitro NAAG peptidase inhibition studies demonstrated that the parent compound (ZJ-43) exhibited potent inhibitory activity while the mono-ester (PGI-02749) and di-ester (PGI-02776) prodrug compounds exhibited moderate and weak levels of inhibitory activity, respectively. Pharmacokinetic assays in uninjured animals found that the di-ester (PGI-02776) crossed the blood-brain barrier. PGI-02776 was also readily hydrolyzed to both the mono-ester (PGI-02749) and the parent compound (ZJ-43) in both blood and brain. Overall, these findings suggest that post-injury treatment with the ZJ-43 prodrug PGI-02776 reduces both acute neuronal pathology and longer term cognitive deficits associated with TBI.
PMCID: PMC3105192  PMID: 21565332
Traumatic brain injury (TBI); Glutamate; N-acetylaspartylglutamate (NAAG); Hippocampus; Morris water maze
15.  Immunological alterations mediated by adenosine during host-microbial interactions 
Immunologic Research  2011;50(1):69-77.
Adenosine accumulates in inflammation and ischemia but it is more than an end-product of ATP catabolism. Signaling through different receptors with distinct, cell-specific cytoplasmic pathways, adenosine is now recognized as an inducible switch that regulates the immune system. By acting through the A2AAR, adenosine shapes T cell function, largely by conferring an anti-inflammatory tone on effector Th cells (Teff) and natural killer (NK)T cells. In contrast, both the A2AAR and A2BAR are expressed by antigen-presenting cells (APC) which have been shown to regulate innate responses and the transition to adaptive immunity. There is also emerging evidence that adenosine production is one mechanism that allows some pathogens as well as neoplasms to evade host defenses. This review discusses the immunoregulatory functions of adenosine and some of the interactions it may have in regulating host–microbial interactions.
PMCID: PMC3361322  PMID: 21479929
Adenosine; Adenosine receptor; Lymphocyte; Dendritic cell; Macrophage; Immune evasion
16.  Cellular and Physiological Effects of Anthrax Exotoxin and Its Relevance to Disease 
Bacillus anthracis, the causative agent of anthrax, secretes a tri-partite exotoxin that exerts pleiotropic effects on the host. The purification of the exotoxin components, protective antigen, lethal factor, and edema factor allowed the rapid characterization of their physiologic effects on the host. As molecular biology matured, interest focused on the molecular mechanisms and cellular alterations induced by intoxication. Only recently have researchers begun to connect molecular and cellular knowledge back to the broader physiological effects of the exotoxin. This review focuses on the progress that has been made bridging molecular knowledge back to the exotoxin’s physiological effects on the host.
PMCID: PMC3417473  PMID: 22919667
lethal toxin; edema toxin; B. anthracis; immunology; cardiovascular
17.  Therapeutics for cognitive aging 
Annals of the New York Academy of Sciences  2010;1191(Suppl 1):E1-15.
This review summarizes the scientific talks presented at the conference “Therapeutics for Cognitive Aging,” hosted by the New York Academy of Sciences and the Alzheimer’s Drug Discovery Foundation on May 15, 2009. Attended by scientists from industry and academia, as well as by a number of lay people—approximately 200 in all—the conference specifically tackled the many aspects of developing therapeutic interventions for cognitive impairment. Discussion also focused on how to define cognitive aging and whether it should be considered a treatable, tractable disease.
PMCID: PMC3107251  PMID: 20392284
18.  In vitro potency, pharmacokinetic profiles and pharmacological activity of optimized anti-IL-21R antibodies in a mouse model of lupus 
mAbs  2010;2(3):335-346.
Using phage display, we generated a panel of optimized neutralizing antibodies against the human and mouse receptors for interleukin 21 (IL-21), a cytokine that is implicated in the pathogenesis of many types of autoimmune disease. Two antibodies, Ab-01 and Ab-02, which differed by only four amino acids in VL CDR3, showed potent inhibition of human and mouse IL-21R in cell-based assays and were evaluated for their pharmacological and pharmacodynamic properties. Ab-01, but not Ab-02, significantly reduced a biomarker of disease (anti-dsDNA antibodies) and IgG deposits in the kidney in the MRL-Faslpr mouse model of lupus, suggesting that anti-IL-21R antibodies may prove useful in the treatment of lupus. Ab-01 also had a consistently higher exposure (AUC0-∞) than Ab-02 following a single dose in rodents or cynomolgus monkeys (2–3-fold or 4–7-fold, respectively). Our data demonstrate that small differences in CDR3 sequences of optimized antibodies can lead to profound differences in in vitro and in vivo properties, including differences in pharmacological activity and pharmacokinetic profiles. The lack of persistent activity of Ab-02 in the MRL-Faslpr mouse lupus model may have been a consequence of faster elimination, reduced potency in blocking the effects of mouse IL-21R, and more potent/earlier onset of the anti-product response relative to Ab-01.
PMCID: PMC2881259  PMID: 20424514
affinity maturation; phage display; monoclonal antibody; autoimmunity; lupus; IL-21; IL-21R; pharmacokinetics; anti-product antibodies
19.  The ESR in HIV: A Neglected Parameter? 
AIDS (London, England)  2010;24(18):2773-2775.
PMCID: PMC2978672  PMID: 20827163
20.  pdx-1 function is specifically required in embryonic β cells to generate appropriate numbers of endocrine cell types and maintain glucose homeostasis 
Developmental biology  2007;314(2):406-417.
The pdx1 gene is essential for pancreatic organogenesis in humans and mice; pdx1 mutations have been identified in human diabetic patients. Specific inactivation of pdx1 in adult β cells revealed that this gene is required for maintenance of mature β cell function. In the following study, a Cre-lox strategy was used to remove pdx1 function specifically from embryonic β cells beginning at late-gestation, prior to islet formation. Animals in which pdx1 is lost in insulin-producing cells during embryogenesis had elevated blood glucose levels at birth and were overtly diabetic by weaning. Neonatal and adult mutant islets showed a dramatic reduction in the number of insulin+ cells and an increase in both glucagon+ and somatostatin+ cells. Lineage tracing revealed that excess glucagon+ and somatostatin+ cells did not arise by interconversion of endocrine cell types. Examination of mutant islets revealed a decrease in proliferation of insulin-producing cells just before birth and a concomitant increase in proliferation of glucagon-producing cells. We propose that pdx1 is required for proliferation and function of the β cells generated at late gestation, and that one function of normal β cells is to inhibit the proliferation of other islet cell types, resulting in the appropriate numbers of the different endocrine cell types.
PMCID: PMC2269701  PMID: 18155690
pancreas; islet; diabetes; Cre-lox; lineage tracing
21.  Purification and Characterization of the FeII- and α-Ketoglutarate-Dependent Xanthine Hydroxylase from Aspergillus nidulans† 
Biochemistry  2007;46(18):5293-5304.
His6-tagged xanthine/α-ketoglutarate (αKG) dioxygenase (XanA) of Aspergillus nidulans was purified from both the fungal mycelium and recombinant Escherichia coli cells, and the properties of the two forms of the protein were compared. Evidence was obtained for both N- and O-linked glycosylation on the fungus-derived XanA, which aggregates into an apparent dodecamer, while bacteria-derived XanA is free of glycosylation and behaves as a monomer. Immunological methods identify phosphothreonine in both forms of XanA, with phosphoserine also detected in the bacteria-derived protein. Mass spectrometric analysis confirms glycosylation and phosphorylation of the fungus-derived sample, which also undergoes extensive truncation at its amino terminus. Despite the major differences in properties of these proteins, their kinetic parameters are similar (kcat 30-70 s-1, Km of αKG 31-50 μM, Km of xanthine ∼45 μM, and pH optima at 7.0 to 7.4). The enzyme exhibits no significant isotope effect when using 8-2H-xanthine; however, it demonstrates a two-fold solvent deuterium isotope effect. CuII and ZnII potently inhibit the FeII-specific enzyme, whereas CoII, MnII, and NiII are weaker inhibitors. NaCl decreases the kcat and increases the Km of both αKG and xanthine. The αKG cosubstrate can be substituted by α-ketoadipate (9-fold decrease in kcat and 5-fold increase in the Km compared to the normal α-keto acid), while the αKG analogue N-oxalylglycine is a competitive inhibitor (Ki 0.12 μM). No alternative purines effectively substitute for xanthine as a substrate, and only one purine analogue (6,8-dihydroxypurine) results in significant inhibition. Quenching of the endogenous fluorescence of the two enzyme forms by xanthine, αKG, and DHP was used to characterize their binding properties. A XanA homology model was generated on the basis of the structure of the related enzyme TauD (PDB code 1OS7) and provided insights into the sites of posttranslational modification and substrate binding. These studies represent the first biochemical characterization of purified xanthine/αKG dioxygenase.
PMCID: PMC2525507  PMID: 17429948
22.  Predictive gene lists for breast cancer prognosis: A topographic visualisation study 
The controversy surrounding the non-uniqueness of predictive gene lists (PGL) of small selected subsets of genes from very large potential candidates as available in DNA microarray experiments is now widely acknowledged [1]. Many of these studies have focused on constructing discriminative semi-parametric models and as such are also subject to the issue of random correlations of sparse model selection in high dimensional spaces. In this work we outline a different approach based around an unsupervised patient-specific nonlinear topographic projection in predictive gene lists.
We construct nonlinear topographic projection maps based on inter-patient gene-list relative dissimilarities. The Neuroscale, the Stochastic Neighbor Embedding(SNE) and the Locally Linear Embedding(LLE) techniques have been used to construct two-dimensional projective visualisation plots of 70 dimensional PGLs per patient, classifiers are also constructed to identify the prognosis indicator of each patient using the resulting projections from those visualisation techniques and investigate whether a-posteriori two prognosis groups are separable on the evidence of the gene lists.
A literature-proposed predictive gene list for breast cancer is benchmarked against a separate gene list using the above methods. Generalisation ability is investigated by using the mapping capability of Neuroscale to visualise the follow-up study, but based on the projections derived from the original dataset.
The results indicate that small subsets of patient-specific PGLs have insufficient prognostic dissimilarity to permit a distinction between two prognosis patients. Uncertainty and diversity across multiple gene expressions prevents unambiguous or even confident patient grouping. Comparative projections across different PGLs provide similar results.
The random correlation effect to an arbitrary outcome induced by small subset selection from very high dimensional interrelated gene expression profiles leads to an outcome with associated uncertainty. This continuum and uncertainty precludes any attempts at constructing discriminative classifiers.
However a patient's gene expression profile could possibly be used in treatment planning, based on knowledge of other patients' responses.
We conclude that many of the patients involved in such medical studies are intrinsically unclassifiable on the basis of provided PGL evidence. This additional category of 'unclassifiable' should be accommodated within medical decision support systems if serious errors and unnecessary adjuvant therapy are to be avoided.
PMCID: PMC2375896  PMID: 18419801
23.  On the purification and preliminary crystallographic analysis of isoquinoline 1-oxidoreductase from Brevundimonas diminuta 7 
Crystallization of isoquinoline 1-oxidoreductase from B. diminuta was achieved using two different crystallization buffers. Streak-seeding and cross-linking were essential to obtain well diffracting crystals. Suitable cryo-conditions were found and a structure solution was obtained by molecular replacement.
Isoquinoline 1-oxidoreductase (IOR) from Brevundimonas diminuta is a mononuclear molybdoenzyme of the xanthine-dehydrogenase family of proteins and catalyzes the conversion of isoquinoline to isoquinoline-1-one. Its primary sequence and behaviour, specifically in its substrate specificity and lipophilicity, differ from other members of the family. A crystal structure of the enzyme is expected to provide an explanation for these differences. This paper describes the crystallization and preliminary X-ray diffraction experiments as well as an optimized purification protocol for IOR. Crystallization of IOR was achieved using two different crystallization buffers. Streak-seeding and cross-linking were essential to obtain well diffracting crystals. Suitable cryo-conditions were found and a structure solution was obtained by molecular replacement. However, phases need to be improved in order to obtain a more interpretable electron-density map.
PMCID: PMC1952400  PMID: 16508115
isoquinoline 1-oxidoreductase; xanthine oxidase/xanthine dehydrogenase; oxidoreductases; molybdenum enzymes; molybdopterin; Brevundimonas diminuta
24.  Characterization of Candidate Live Oral Salmonella typhi Vaccine Strains Harboring Defined Mutations in aroA, aroC, and htrA 
Infection and Immunity  1999;67(2):700-707.
The properties of two candidate Salmonella typhi-based live oral typhoid vaccine strains, BRD691 (S. typhi Ty2 harboring mutations in aroA and aroC) and BRD1116 (S. typhi Ty2 harboring mutations in aroA, aroC, and htrA), were compared in a number of in vitro and in vivo assays. BRD1116 exhibited an increased susceptibility to oxidative stress compared with BRD691, but both strains were equally resistant to heat shock. Both strains showed a similar ability to invade Caco-2 and HT-29 epithelial cells and U937 macrophage-like cells, but BRD1116 was less efficient at surviving in epithelial cells than BRD691. BRD1116 and BRD691 were equally susceptible to intracellular killing within U937 cells. Similar findings were demonstrated in vivo, with BRD1116 being less able to survive and translocate to secondary sites of infection when inoculated into the lumen of human intestinal xenografts in SCID mice. However, translocation of BRD1116 to spleens and livers in SCID mice occurred as efficiently as that of BRD691 when inoculated intraperitonally. The ability of BRD1116 to increase the secretion of interleukin-8 following infection of HT-29 epithelial cells was comparable to that of BRD691. Therefore, loss of the HtrA protease in S. typhi does not seem to alter its ability to invade epithelial cells or macrophages or to induce proinflammatory cytokines such as IL-8 but significantly reduces intracellular survival in human intestinal epithelial cells in vitro and in vivo.
PMCID: PMC96376  PMID: 9916080
25.  Editorial: Structured abstracts 
PMCID: PMC495796  PMID: 16811185

Results 1-25 (28)