Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Dendritic Morphology of Pyramidal Neurons in the Chimpanzee Neocortex: Regional Specializations and Comparison to Humans 
Cerebral Cortex (New York, NY)  2012;23(10):2429-2436.
The primate cerebral cortex is characterized by regional variation in the structure of pyramidal neurons, with more complex dendritic arbors and greater spine density observed in prefrontal compared with sensory and motor cortices. Although there are several investigations in humans and other primates, virtually nothing is known about regional variation in the morphology of pyramidal neurons in the cerebral cortex of great apes, humans' closest living relatives. The current study uses the rapid Golgi stain to quantify the dendritic structure of layer III pyramidal neurons in 4 areas of the chimpanzee cerebral cortex: Primary somatosensory (area 3b), primary motor (area 4), prestriate visual (area 18), and prefrontal (area 10) cortex. Consistent with previous studies in humans and macaque monkeys, pyramidal neurons in the prefrontal cortex of chimpanzees exhibit greater dendritic complexity than those in other cortical regions, suggesting that prefrontal cortical evolution in primates is characterized by increased potential for integrative connectivity. Compared with chimpanzees, the pyramidal neurons of humans had significantly longer and more branched dendritic arbors in all cortical regions.
PMCID: PMC3767963  PMID: 22875862
area 10; dendrites; evolution; Golgi; primate cerebral cortex
2.  Comparative neuronal morphology of the cerebellar cortex in afrotherians, carnivores, cetartiodactyls, and primates 
Although the basic morphological characteristics of neurons in the cerebellar cortex have been documented in several species, virtually nothing is known about the quantitative morphological characteristics of these neurons across different taxa. To that end, the present study investigated cerebellar neuronal morphology among eight different, large-brained mammalian species comprising a broad phylogenetic range: afrotherians (African elephant, Florida manatee), carnivores (Siberian tiger, clouded leopard), cetartiodactyls (humpback whale, giraffe) and primates (human, common chimpanzee). Specifically, several neuron types (e.g., stellate, basket, Lugaro, Golgi, and granule neurons; N = 317) of the cerebellar cortex were stained with a modified rapid Golgi technique and quantified on a computer-assisted microscopy system. There was a 64-fold variation in brain mass across species in our sample (from clouded leopard to the elephant) and a 103-fold variation in cerebellar volume. Most dendritic measures tended to increase with cerebellar volume. The cerebellar cortex in these species exhibited the trilaminate pattern common to all mammals. Morphologically, neuron types in the cerebellar cortex were generally consistent with those described in primates (Fox et al., 1967) and rodents (Palay and Chan-Palay, 1974), although there was substantial quantitative variation across species. In particular, Lugaro neurons in the elephant appeared to be disproportionately larger than those in other species. To explore potential quantitative differences in dendritic measures across species, MARSplines analyses were used to evaluate whether species could be differentiated from each other based on dendritic characteristics alone. Results of these analyses indicated that there were significant differences among all species in dendritic measures.
PMCID: PMC4005950  PMID: 24795574
dendrite; morphometry; Golgi method; brain evolution; cerebellum
4.  Biochemical specificity of von Economo neurons in hominoids 
Von Economo neurons (VENs) are defined by their thin, elongated cell body and long dendrites projecting from apical and basal ends. These distinctive neurons are mostly present in anterior cingulate (ACC) and fronto-insular (FI) cortex, with particularly high densities in cetaceans, elephants, and hominoid primates (i.e., humans and apes). This distribution suggests that VENs contribute to specializations of neural circuits in species that share both large brain size and complex social cognition, possibly representing an adaptation to rapidly relay socially-relevant information over long distances across the brain. Recent evidence indicates that unique patterns of protein expression may also characterize VENs, particularly involving molecules that are known to regulate gut and immune function. In this study, we used quantitative stereologic methods to examine the expression of three such proteins that are localized in VENs – activating-transcription factor 3 (ATF3), interleukin 4 receptor (IL4Rα) and neuromedin B (NMB). We quantified immunoreactivity against these proteins in different morphological classes of ACC layer V neurons of hominoids. Among the different neuron types analyzed (pyramidal, VEN, fork, enveloping, and other multipolar), VENs showed the greatest percentage that displayed immunostaining. Additionally, a higher proportion of VENs in humans were immunoreactive to ATF3, IL4Rα, and NMB than in other apes. No other ACC layer V neuron type displayed a significant species difference in the percentage of immunoreactive neurons. These findings demonstrate that phylogenetic variation exists in the protein expression profile of VENs, suggesting that humans might have evolved biochemical specializations for enhanced interoceptive sensitivity.
PMCID: PMC3004764  PMID: 21140465
brain; evolution; ape; human; neuron

Results 1-4 (4)