PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Vamping: Stereology-based automated quantification of fluorescent puncta size and density 
Journal of Neuroscience Methods  2012;209(1):97-105.
The size of dendritic spines and postsynaptic densities (PSDs) is well-known to be correlated with molecular and functional characteristics of the synapse. Thus, the development of microscopy methods that allow high throughput quantification and measurement of PSDs is a contemporary need in the field of neurobiology. While the gold standard for measurement of sub-micrometer structures remains electron microscopy (EM), this method is exceedingly laborious and therefore not always feasible. Immunohistochemistry (IHC) is a much faster technique for identifying biological structures such as PSDs, but the fluorescent images resulting from it have traditionally been harder to interpret and quantify. Here, we report on two new image analysis tools that result in accurate size and density measurements of fluorescent puncta. Anti-PSD-95 staining was used to target synapses. The new technique of vamping, using Volume Assisted Measurement of Puncta in 2 and 3 Dimensions (VAMP2D and VAMP3D) respectively, is based on stereological principles. The fully automated image analysis tool was tested on the same subjects for whom we had previously obtained EM measurements of PSD size and/or density. Based on highly consistent results between data obtained by each of these methods, vamping offers an expedient alternative to EM that can nonetheless deliver a high level of accuracy in measuring sub-cellular structures.
doi:10.1016/j.jneumeth.2012.05.031
PMCID: PMC3402578  PMID: 22683698
Confocal microscopy; electron microscopy; image analysis; stereology; PSD-95; postsynaptic densities
2.  Estrogen Promotes Stress Sensitivity in a Prefrontal Cortex–Amygdala Pathway 
Cerebral Cortex (New York, NY)  2010;20(11):2560-2567.
We have recently reported in male rats that medial prefrontal cortex (mPFC) neurons that project to the basolateral nucleus of the amygdala (BLA) are resilient to stress-induced dendritic remodeling. The present study investigated whether this also occurs in female rats. This pathway was identified using the retrograde tracer Fast Blue injected into the BLA of ovariectomized female rats with estrogen replacement (OVX + E) and without (OVX + veh). Animals were exposed for 10 days either to 2-h immobilization stress or to home cage rest, after which layer III mPFC neurons that were either retrogradely labeled by Fast Blue or unlabeled were filled with Lucifer Yellow and analyzed for apical dendritic length and spine density. No dendritic remodeling occurred in unlabeled neurons from OVX + veh or OVX + E animals. In BLA-projecting neurons, however, stress had no effect on length in OVX + veh animals, but stressed OVX + E females showed greater dendritic length than controls at intermediate branches. Stress also caused an increase in spine density in all neurons in OVX + veh animals and a spine density increase in BLA-projecting neurons in OVX + E females. Estrogen also increased spine density on BLA-projecting neurons in unstressed animals. These data demonstrate both independent effects of estrogen on pyramidal cell morphology and effects that are interactive with stress, with the BLA-projecting neurons being sensitive to both kinds of effects.
doi:10.1093/cercor/bhq003
PMCID: PMC2951843  PMID: 20139149
connectivity; dendritic arborization; medial prefrontal cortex; neural plasticity; sex difference
3.  Stress-Induced Dendritic Remodeling in the Prefrontal Cortex is Circuit Specific 
Cerebral Cortex (New York, NY)  2009;19(10):2479-2484.
Chronic stress exposure has been reported to induce dendritic remodeling in several brain regions, but it is not known whether individual neural circuits show distinct patterns of remodeling. The current study tested the hypothesis that the projections from the infralimbic (IL) area of the medial prefrontal cortex (mPFC) to the basolateral nucleus of the amygdala (BLA), a pathway relevant to stress-related mental illnesses like depression and post-traumatic stress disorder, would have a unique pattern of remodeling in response to chronic stress. The retrograde tracer FastBlue was injected into male rats’ BLA or entorhinal cortex (EC) 1 week prior to 10 days of immobilization stress. After cessation of stress, FastBlue-labeled and unlabeled IL pyaramidal neurons were loaded with fluorescent dye Lucifer Yellow to visualize dendritic arborization and spine density. As has been previously reported, randomly selected (non-FastBlue-labeled) neurons showed stress-induced dendritic retraction in apical dendrites, an effect also seen in EC-projecting neurons. In contrast, BLA-projecting neurons showed no remodeling with stress, suggesting that this pathway may be particularly resilient against the effects of stress. No neurons showed stress-related changes in spine density, contrasting with reports that more dorsal areas of the mPFC show stress-induced decreases in spine density. Such region- and circuit-specificity in response to stress could contribute to the development of stress-related mental illnesses.
doi:10.1093/cercor/bhp003
PMCID: PMC2742599  PMID: 19193712
amygdala; chronic stress; connectivity; infralimbic cortex; neural plasticity; spine density

Results 1-3 (3)