PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-16 (16)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Do brain T2/FLAIR white matter hyperintensities correspond to myelin loss in normal aging? A radiologic-neuropathologic correlation study 
Background
White matter hyperintensities (WMH) lesions on T2/FLAIR brain MRI are frequently seen in healthy elderly people. Whether these radiological lesions correspond to irreversible histological changes is still a matter of debate. We report the radiologic-histopathologic concordance between T2/FLAIR WMHs and neuropathologically confirmed demyelination in the periventricular, perivascular and deep white matter (WM) areas.
Results
Inter-rater reliability was substantial-almost perfect between neuropathologists (kappa 0.71 - 0.79) and fair-moderate between radiologists (kappa 0.34 - 0.42). Discriminating low versus high lesion scores, radiologic compared to neuropathologic evaluation had sensitivity / specificity of 0.83 / 0.47 for periventricular and 0.44 / 0.88 for deep white matter lesions. T2/FLAIR WMHs overestimate neuropathologically confirmed demyelination in the periventricular (p < 0.001) areas but underestimates it in the deep WM (0 < 0.05). In a subset of 14 cases with prominent perivascular WMH, no corresponding demyelination was found in 12 cases.
Conclusions
MRI T2/FLAIR overestimates periventricular and perivascular lesions compared to histopathologically confirmed demyelination. The relatively high concentration of interstitial water in the periventricular / perivascular regions due to increasing blood–brain-barrier permeability and plasma leakage in brain aging may evoke T2/FLAIR WMH despite relatively mild demyelination.
doi:10.1186/2051-5960-1-14
PMCID: PMC3893472  PMID: 24252608
2.  Selective acquired long QT syndrome (saLQTS) upon risperidone treatment 
BMC Psychiatry  2012;12:220.
Background
Numerous structurally unrelated drugs, including antipsychotics, can prolong QT interval and trigger the acquired long QT syndrome (aLQTS). All of them are thought to act at the level of KCNH2, a subunit of the potassium channel. Although the QT-prolonging drugs are proscribed in the subjects with aLQTS, the individual response to diverse QT-prolonging drugs may vary substantially.
Case presentation
We report here a case of aLQTS in response to small doses of risperidone that was confirmed at three independent drug challenges in the absence of other QT-prolonging drugs. On the other hand, the patient did not respond with QT prolongation to some other antipsychotics. In particular, the administration of clozapine, known to be associated with higher QT-prolongation risk than risperidone, had no effect on QT-length. A detailed genetic analysis revealed no mutations or polymorphisms in KCNH2, KCNE1, KCNE2, SCN5A and KCNQ1 genes.
Conclusions
Our observation suggests that some patients may display a selective aLQTS to a single antipsychotic, without a potassium channel-related genetic substrate. Contrasting with the idea of a common target of the aLQTS-triggerring drugs, our data suggests existence of an alternative target protein, which unlike the KCNH2 would be drug-selective.
doi:10.1186/1471-244X-12-220
PMCID: PMC3539970  PMID: 23216910
Long QT syndrome; Acquired long QT syndrome; Selective acquired long QT syndrome; QT; Antipsychotic; Risperidone; Clozapine; KCNH2; hERG
3.  Preclinical Alzheimer disease: identification of cases at risk among cognitively intact older individuals 
BMC Medicine  2012;10:127.
Since the first description of the case of Auguste Deter, presented in Tübingen in 1906 by Alois Alzheimer, there has been an exponential increase in our knowledge of the neuropathological, cellular, and molecular foundation of Alzheimer's disease (AD). The concept of AD pathogenesis has evolved from a static, binary view discriminating cognitive normality from dementia, towards a dynamic view that considers AD pathology as a long-lasting morbid process that takes place progressively over years, or even decades, before the first symptoms become apparent, and thus operating in a continuum between the two aforementioned extreme states. Several biomarkers have been proposed to predict AD-related cognitive decline, initially in cases with mild cognitive impairment, and more recently in cognitively intact individuals. These early markers define at-risk individuals thought to be in the preclinical phase of AD. However, the clinical relevance of this preclinical phase remains controversial. The fate of such individuals, who are cognitively intact, but positive for some early AD biomarkers, is currently uncertain at best. In this report, we advocate the point of view that although most of these preclinical cases will evolve to clinically overt AD, some appear to have efficient compensatory mechanisms and virtually never develop dementia. We critically review the currently available early AD markers, discuss their clinical relevance, and propose a novel classification of preclinical AD, designating these non-progressing cases as 'stable asymptomatic cerebral amyloidosis'.
doi:10.1186/1741-7015-10-127
PMCID: PMC3523068  PMID: 23098093
Alzheimer disease; asymptomatic; cerebral amyloidosis; cognition; compensatory phenomena; dementia
4.  Contact sport-related chronic traumatic encephalopathy in the elderly: clinical expression and structural substrates 
Professional boxers and other contact sport athletes are exposed to repetitive brain trauma that may affect motor functions, cognitive performance, emotional regulation and social awareness. The term of chronic traumatic encephalopathy (CTE) was recently introduced to regroup a wide spectrum of symptoms such as cerebellar, pyramidal, and extrapyramidal syndromes, impairments in orientation, memory, language, attention, information processing and frontal executive functions, as well as personality changes and behavioural and psychiatric symptoms. Magnetic resonance imaging (MRI) usually reveals hippocampal and vermis atrophy, a cavum septum pellucidum (CSP), signs of diffuse axonal injury, pituitary gland atrophy, dilated perivascular spaces, and periventricular white matter disease. Given the partial overlapping of the clinical expression, epidemiology, and pathogenesis of CTE and Alzheimer’s disease (AD), as well as the close association between traumatic brain injuries (TBIs) and neurofibrillary tangle formation, a mixed pathology promoted by pathogenetic cascades resulting in either CTE or AD has been postulated. Molecular studies suggested that TBIs increase the neurotoxicity of the TAR DNA-binding protein 43 (TDP-43) that is a key pathological marker of ubiquitin-positive forms of frontotemporal dementia (FTLD-TDP) associated or not with motor neuron disease/amyotrophic lateral sclerosis (MND/ALS). Similar patterns of immunoreactivity for TDP-43 in CTE, FTLD-TDP, and ALS as well as epidemiological correlations support the presence of common pathogenetic mechanisms. The present review provides a critical update of the evolution of the concept of CTE with reference to its neuropathological definition together with an in depth discussion of the differential diagnosis between this entity, AD and frontotemporal dementia.
doi:10.1111/j.1365-2990.2011.01186.x
PMCID: PMC3166385  PMID: 21696410
chronic traumatic encephalopathy; traumatic brain injuries; boxing; contact sports; Alzheimer’s disease; frontotemporal dementia; amyotrophic lateral sclerosis
5.  Magnetic resonance imaging correlates of first-episode psychosis in young adult male patients: combined analysis of grey and white matter 
Background
Several patterns of grey and white matter changes have been separately described in young adults with first-episode psychosis. Concomitant investigation of grey and white matter densities in patients with first-episode psychosis without other psychiatric comorbidities that include all relevant imaging markers could provide clues to the neurodevelopmental hypothesis in schizophrenia.
Methods
We recruited patients with first-episode psychosis diagnosed according to the DSM-IV-TR and matched controls. All participants underwent magnetic resonance imaging (MRI). Voxel-based morphometry (VBM) analysis and mean diffusivity voxel-based analysis (VBA) were used for grey matter data. Fractional anisotropy and axial, radial and mean diffusivity were analyzed using tract-based spatial statistics (TBSS) for white matter data.
Results
We included 15 patients and 16 controls. The mean diffusivity VBA showed significantly greater mean diffusivity in the first-episode psychosis than in the control group in the lingual gyrus bilaterally, the occipital fusiform gyrus bilaterally, the right lateral occipital gyrus and the right inferior temporal gyrus. Moreover, the TBSS analysis revealed a lower fractional anisotropy in the first-episode psychosis than in the control group in the genu of the corpus callosum, minor forceps, corticospinal tract, right superior longitudinal fasciculus, left middle cerebellar peduncle, left inferior longitudinal fasciculus and the posterior part of the fronto-occipital fasciculus. This analysis also revealed greater radial diffusivity in the first-episode psychosis than in the control group in the right corticospinal tract, right superior longitudinal fasciculus and left middle cerebellar peduncle.
Limitations
The modest sample size and the absence of women in our series could limit the impact of our results.
Conclusion
Our results highlight the structural vulnerability of grey matter in posterior areas of the brain among young adult male patients with first-episode psychosis. Moreover, the concomitant greater radial diffusivity within several regions already revealed by the fractional anisotropy analysis supports the idea of a late myelination in patients with first-episode psychosis.
doi:10.1503/jpn.110057
PMCID: PMC3447129  PMID: 22748698
6.  Event-related potentials and changes of brain rhythm oscillations during working memory activation in patients with first-episode psychosis 
Background
Earlier contributions have documented significant changes in sensory, attention-related endogenous event-related potential (ERP) components and θ band oscillatory responses during working memory activation in patients with schizophrenia. In patients with first-episode psychosis, such studies are still scarce and mostly focused on auditory sensory processing. The present study aimed to explore whether subtle deficits of cortical activation are present in these patients before the decline of working memory performance.
Methods
We assessed exogenous and endogenous ERPs and frontal θ event-related synchronization (ERS) in patients with first-episode psychosis and healthy controls who successfully performed an adapted 2-back working memory task, including 2 visual n-back working memory tasks as well as oddball detection and passive fixation tasks.
Results
We included 15 patients with first-episode psychosis and 18 controls in this study. Compared with controls, patients with first-episode psychosis displayed increased latencies of early visual ERPs and phasic θ ERS culmination peak in all conditions. However, they also showed a rapid recruitment of working memory–related neural generators, even in pure attention tasks, as indicated by the decreased N200 latency and increased amplitude of sustained θ ERS in detection compared with controls.
Limitations
Owing to the limited sample size, no distinction was made between patients with first-episode psychosis with positive and negative symptoms. Although we controlled for the global load of neuroleptics, medication effect cannot be totally ruled out.
Conclusion
The present findings support the concept of a blunted electroencephalographic response in patients with first-episode psychosis who recruit the maximum neural generators in simple attention conditions without being able to modulate their brain activation with increased complexity of working memory tasks.
doi:10.1503/jpn.110033
PMCID: PMC3297068  PMID: 22146152
7.  Neuropathological analysis of lacunes and microvascular lesions in late-onset depression 
Aims
Previous neuropathological studies documented that small vascular and microvascular pathology is associated with cognitive decline. More recently, we showed that thalamic and basal ganglia lacunes are associated with post-stroke depression and may affect emotional regulation. The present study examines whether this is also the case for late-onset depression.
Methods
We performed a detailed analysis of small macrovascular and microvascular pathology in the postmortem brains of 38 patients with late-onset major depression (LOD) and 29 healthy elderly controls. A clinical diagnosis of LOD was established while the subjects were alive using the DSM-IV criteria. Additionally, we retrospectively reviewed all charts for the presence of clinical criteria of vascular depression. Neuropathological evaluation included bilateral semiquantitative assessment of lacunes, deep white matter and periventricular demyelination, cortical microinfarcts and both focal and diffuse gliosis. The association between vascular burden and LOD was investigated using Fisher’s exact test and univariate and multivariate logistic regression models.
Results
Neither the existence of lacunes nor the presence of microvascular ischaemic lesions was related to occurrence of LOD. Similarly, there was no relationship between vascular lesion scores and LOD. This was also the case within the subgroup of LOD patients fulfilling the clinical criteria for vascular depression.
Conclusions
Our results challenge the vascular depression hypothesis by showing that neither deep white matter nor periventricular demyelination is associated with LOD. In conjunction with our previous observations in stroke patients, they also imply that the impact of lacunes on mood may be significant solely in the presence of acute brain compromise.
doi:10.1111/j.1365-2990.2010.01101.x
PMCID: PMC2962688  PMID: 20609111
brain ischaemia; elderly; mood; neuropathology; vascular depression
8.  White Matter Changes in Bipolar Disorder, Alzheimer Disease, and Mild Cognitive Impairment: New Insights from DTI 
Journal of Aging Research  2011;2011:286564.
Neuropathological and neuroimaging studies have reported significant changes in white matter in psychiatric and neurodegenerative diseases. Diffusion tensor imaging (DTI), a recently developed technique, enables the detection of microstructural changes in white matter. It is a noninvasive in vivo technique that assesses water molecules' diffusion in brain tissues. The most commonly used parameters are axial and radial diffusivity reflecting diffusion along and perpendicular to the axons, as well as mean diffusivity and fractional anisotropy representing global diffusion. Although the combination of these parameters provides valuable information about the integrity of brain circuits, their physiological meaning still remains controversial. After reviewing the basic principles of DTI, we report on recent contributions that used this technique to explore subtle structural changes in white matter occurring in elderly patients with bipolar disorder and Alzheimer disease.
doi:10.4061/2011/286564
PMCID: PMC3236486  PMID: 22187647
9.  Evidence-Based Guidelines for Mental, Neurological, and Substance Use Disorders in Low- and Middle-Income Countries: Summary of WHO Recommendations 
PLoS Medicine  2011;8(11):e1001122.
Shekhar Saxena and colleagues summarize the recent WHO Mental Health Gap Action Programme (mhGAP) intervention guide that provides evidence-based management recommendations for mental, neurological, and substance use (MNS) disorders.
doi:10.1371/journal.pmed.1001122
PMCID: PMC3217030  PMID: 22110406
10.  Combined analysis of grey matter voxel-based morphometry and white matter tract-based spatial statistics in late-life bipolar disorder 
Background
Previous magnetic resonance imaging (MRI) studies in young patients with bipolar disorder indicated the presence of grey matter concentration changes as well as microstructural alterations in white matter in various neocortical areas and the corpus callosum. Whether these structural changes are also present in elderly patients with bipolar disorder with long-lasting clinical evolution remains unclear.
Methods
We performed a prospective MRI study of consecutive elderly, euthymic patients with bipolar disorder and healthy, elderly controls. We conducted a voxel-based morphometry (VBM) analysis and a tract-based spatial statistics (TBSS) analysis to assess fractional anisotropy and longitudinal, radial and mean diffusivity derived by diffusion tensor imaging (DTI).
Results
We included 19 patients with bipolar disorder and 47 controls in our study. Fractional anisotropy was the most sensitive DTI marker and decreased significantly in the ventral part of the corpus callosum in patients with bipolar disorder. Longitudinal, radial and mean diffusivity showed no significant between-group differences. Grey matter concentration was reduced in patients with bipolar disorder in the right anterior insula, head of the caudate nucleus, nucleus accumbens, ventral putamen and frontal orbital cortex. Conversely, there was no grey matter concentration or fractional anisotropy increase in any brain region in patients with bipolar disorder compared with controls.
Limitations
The major limitation of our study is the small number of patients with bipolar disorder.
Conclusion
Our data document the concomitant presence of grey matter concentration decreases in the anterior limbic areas and the reduced fibre tract coherence in the corpus callosum of elderly patients with long-lasting bipolar disorder.
doi:10.1503/jpn.100140
PMCID: PMC3201993  PMID: 21284917
11.  The neuroanatomical model of post-stroke depression: Towards a change of focus? 
Journal of the neurological sciences  2009;283(1-2):158-162.
One third of all stroke survivors develop post-stroke depression (PSD). Depressive symptoms adversely affect rehabilitation and significantly increase risk of death in the post-stroke period. One of the theoretical views on the determinants of PSD focuses on psychosocial factors like disability and social support. Others emphasize biologic mechanisms such as disruption of biogenic amine neurotransmission and release of proinflammatory cytokines. The “lesion location” perspective attempts to establish a relationship between localization of stroke and occurrence of depression, but empirical results remain contradictory. These divergences are partly related to the fact that neuroimaging methods, unlike neuropathology, are not able to assess precisely the full extent of stroke-affected areas and do not specify the different types of vascular lesions. We provide here an overview of the known phenomenological profile and current pathogenic hypotheses of PSD and present neuropathological data challenging the classic “single-stroke”-based neuroanatomical model of PSD. We suggest that vascular burden due to the chronic accumulation of small macrovascular and microvascular lesions may be a crucial determinant of the development and evolution of PSD.
doi:10.1016/j.jns.2009.02.334
PMCID: PMC2915758  PMID: 19264329
Cerebral ischemia; Location; Macroinfarcts; Microvascular; Mood; Neuropathology
12.  The impact of vascular burden on late-life depression 
Brain research reviews  2009;62(1):19-32.
Small vessel pathology and microvascular lesions are no longer considered as minor players in the fields of cognitive impairment and mood regulation. Although frequently found in cognitively intact elders, both neuroimaging and neuropathological data revealed the negative impact on cognitive performances of their presence within neocortical association areas, thalamus and basal ganglia. Unlike cognition, the relationship between these lesions and mood dysregulation is still a matter of intense debate. Early studies focusing on the role of macroinfarct location in the occurrence of post-stroke depression (PSD) led to conflicting data. Later on, the concept of vascular depression proposed a deleterious effect of subcortical lacunes and deep white matter demyelination on mood regulation in elders who experienced the first depressive episode. More recently, the chronic accumulation of lacunes in thalamus, basal ganglia and deep white matter has been considered as a strong correlate of PSD. We provide here a critical overview of neuroimaging and neuropathological sets of evidence regarding the affective repercussions of vascular burden in the aging brain and discuss their conceptual and methodological limitations. Based on these observations, we propose that the accumulation of small vascular and microvascular lesions constitutes a common neuropathological platform for both cognitive decline and depressive episodes in old age.
doi:10.1016/j.brainresrev.2009.08.003
PMCID: PMC2915936  PMID: 19744522
Vascular burden; Cognitive impairment; Aging; Mood; Microvascular pathology; Lacunes
13.  Clinicopathologic correlates in the oldest-old Commentary on “No disease in the brain of a 115-year-old woman” 
Neurobiology of Aging  2008;29(8):1137-1139.
den Dunnen et al. [den Dunnen, W.F.A., Brouwer, W.H., Bijlard, E., Kamphuis, J., van Linschoten, K., Eggens-Meijer, E., Holstege, G., 2008. No disease in the brain of a 115-year-old woman. Neurobiol. Aging] had the opportunity to follow up the cognitive functioning of one of the world’s oldest woman during the last 3 years of her life. They performed two neuropsychological evaluations at age 112 and 115 that revealed a striking preservation of immediate recall abilities and orientation. In contrast, working memory, retrieval from semantic memory and mental arithmetic performances declined after age 112. Overall, only a one-point decrease of MMSE score occurred (from 27 to 26) reflecting the remarkable preservation of cognitive abilities. The neuropathological assessment showed few neurofibrillary tangles (NFT) in the hippocampal formation compatible with Braak staging II, absence of amyloid deposits and other types of neurodegenerative lesions as well as preservation of neuron numbers in locus coeruleus. This finding was related to a striking paucity of Alzheimer disease (AD)-related lesions in the hippocampal formation. The present report parallels the early descriptions of rare “supernormal” centenarians supporting the dissociation between brain aging and AD processes. In conjunction with recent stereological analyses in cases aged from 90 to 102 years, it also points to the marked resistance of the hippocampal formation to the degenerative process in this age group and possible dissociation between the occurrence of slight cognitive deficits and development of AD-related pathologic changes in neocortical areas. This work is discussed in the context of current efforts to identify the biological and genetic parameters of human longevity.
doi:10.1016/j.neurobiolaging.2008.04.015
PMCID: PMC2911139  PMID: 18534719
Disease; Brain aging; Centenarians; Longevity; Neuronal vulnerability
14.  Interhemispheric distribution of Alzheimer disease and vascular pathology in brain aging 
Background and purpose
Most of the neuropathological studies in brain aging were based on the assumption of a symmetric right-left hemisphere distribution of both Alzheimer's disease (AD) and vascular pathology. To explore the impact of asymmetric lesion formation on cognition, we performed a clinicopathological analysis of 153 cases with mixed pathology except macroinfarcts.
Methods
Cognitive status was assessed prospectively using the Clinical Dementia Rating (CDR) scale; neuropathological evaluation included assessment of Braak neurofibrillary tangle (NFT) and Aß-deposition staging, microvascular pathology and lacunes. The right-left hemisphere differences in neuropathological scores were evaluated using the Wilcoxon signed rank test. The relationship between the interhemispheric distribution of lesions and CDR scores was assessed using ordered logistic regression.
Results
Unlike Braak NFT and Aß deposition staging, vascular scores were significantly higher in the left hemisphere for all CDR scores. A negative relationship was found between Braak NFT, but not Aß, staging and vascular scores in cases with moderate to severe dementia. In both hemispheres, Braak NFT staging was the main determinant of cognitive decline followed by vascular scores and Aß deposition staging. The concomitant predominance of AD and vascular pathology in the right hemisphere was associated with significantly higher CDR scores.
Conclusions
Our data show that the cognitive impact of AD and vascular lesions in mixed cases may be assessed unilaterally without major information loss. However, interhemispheric differences and, in particular, increased vascular and AD burden in the right hemisphere may increase the risk for dementia in this group.
doi:10.1161/STROKEAHA.108.530337
PMCID: PMC2674266  PMID: 19118241
Alzheimer; cerebral infarct; cognition; white matter disease
15.  Stereologic estimates of total spinophilin-immunoreactive spine number in area 9 and the CA1 field: relationship with the progression of Alzheimer’s disease 
Neurobiology of aging  2007;29(9):1296-1307.
The loss of presynaptic markers is thought to represent a strong pathologic correlate of cognitive decline in Alzheimer’s disease (AD). Spinophilin is a postsynaptic marker mainly located to the heads of dendritic spines. We assessed total numbers of spinophilin-immunoreactive puncta in the CA1 and CA3 fields of hippocampus and area 9 in 18 elderly individuals with various degrees of cognitive decline. The decrease in spinophilin-immunoreactivity was significantly related to both Braak neurofibrillary tangle (NFT) staging and clinical severity but not Aβ deposition staging. The total number of spinophilin-immunoreactive puncta in CA1 field and area 9 were significantly related to MMSE scores and predicted 23.5% and 61.9% of its variability. The relationship between total number of spinophilin-immunoreactive puncta in CA1 field and MMSE scores did not persist when adjusting for Braak NFT staging. In contrast, the total number of spinophilin-immunoreactive puncta in area 9 was still significantly related to the cognitive outcome explaining an extra 9.6% of MMSE and 25.6% of the Clinical Dementia Rating scores variability. Our data suggest that neocortical dendritic spine loss is an independent parameter to consider in AD clinicopathologic correlations.
doi:10.1016/j.neurobiolaging.2007.03.007
PMCID: PMC2569870  PMID: 17420070
Alzheimer’s disease; cognition; synapses; tangles
16.  Treatment of bipolar disorder: a complex treatment for a multi-faceted disorder 
Background
Manic-depression or bipolar disorder (BD) is a multi-faceted illness with an inevitably complex treatment.
Methods
This article summarizes the current status of our knowledge and practice of its treatment.
Results
It is widely accepted that lithium is moderately useful during all phases of bipolar illness and it might possess a specific effectiveness on suicidal prevention. Both first and second generation antipsychotics are widely used and the FDA has approved olanzapine, risperidone, quetiapine, ziprasidone and aripiprazole for the treatment of acute mania. These could also be useful in the treatment of bipolar depression, but only limited data exists so far to support the use of quetiapine monotherapy or the olanzapine-fluoxetine combination. Some, but not all, anticonvulsants possess a broad spectrum of effectiveness, including mixed dysphoric and rapid-cycling forms. Lamotrigine may be effective in the treatment of depression but not mania. Antidepressant use is controversial. Guidelines suggest their cautious use in combination with an antimanic agent, because they are supposed to induce switching to mania or hypomania, mixed episodes and rapid cycling.
Conclusion
The first-line psychosocial intervention in BD is psychoeducation, followed by cognitive-behavioral therapy. Other treatment options include Electroconvulsive therapy and transcranial magnetic stimulation. There is a gap between the evidence base, which comes mostly from monotherapy trials, and clinical practice, where complex treatment regimens are the rule.
doi:10.1186/1744-859X-6-27
PMCID: PMC2089060  PMID: 17925035

Results 1-16 (16)