Search tips
Search criteria

Results 1-25 (35)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Exposure to a Predator Scent Induces Chronic Behavioral Changes in Rats Previously Exposed to Low-level Blast: Implications for the Relationship of Blast-Related TBI to PTSD 
Blast-related mild traumatic brain injury (mTBI) has been unfortunately common in veterans who served in the recent conflicts in Iraq and Afghanistan. The postconcussion syndrome associated with these mTBIs has frequently appeared in combination with post-traumatic stress disorder (PTSD). The presence of PTSD has complicated diagnosis, since clinically, PTSD and the postconcussion syndrome of mTBI have many overlapping symptoms. In particular, establishing how much of the symptom complex can be attributed to the psychological trauma associated with PTSD in contrast to the physical injury of traumatic brain injury has proven difficult. Indeed, some have suggested that much of what is now being called blast-related postconcussion syndrome is better explained by PTSD. The relationship between the postconcussion syndrome of mTBI and PTSD is complex. Association of the two disorders might be viewed as additive effects of independent psychological and physical traumas suffered in a war zone. However, we previously found that rats exposed to repetitive low-level blast exposure in the absence of a psychological stressor developed a variety of anxiety and PTSD-related behavioral traits that were present months following the last blast exposure. Here, we show that a single predator scent challenge delivered 8 months after the last blast exposure induces chronic anxiety related changes in blast-exposed rats that are still present 45 days later. These observations suggest that in addition to independently inducing PTSD-related traits, blast exposure sensitizes the brain to react abnormally to a subsequent psychological stressor. These studies have implications for conceptualizing the relationship between blast-related mTBI and PTSD and suggest that blast-related mTBI in humans may predispose to the later development of PTSD in reaction to subsequent psychological stressors.
PMCID: PMC5067529  PMID: 27803688
animal models; blast; postconcussion syndrome; post-traumatic stress disorder; rat; traumatic brain injury
2.  In Silico Modelling of Novel Drug Ligands Associated with Abnormal Tau Phosphorylation: Implications for Concussion Associated Tauopathy Intervention† 
Journal of cellular biochemistry  2016;117(10):2241-2248.
The objective of this study was to develop an in silico screening model for characterization of potential novel ligands from commercial drug libraries able to functionally activate certain olfactory receptors (ORs), which are members of the class A rhodopsin-like family of G protein couple receptors (GPCRs), in the brain of murine models of concussion. We previously found that concussions may significantly influence expression of certain ORs, e.g. OR4M1 in subjects with a history of concussion/traumatic brain injury (TBI). In this study we built a 3-D OR4M1 model and used it in in silico screening of potential novel ligands from commercial drug libraries. We report that in vitro activation of OR4M1 with the commercially available ZINC library compound 10915775 led to a significant attenuation of abnormal tau phosphorylation in embryonic cortico-hippocampal neuronal cultures derived from NSE-OR4M1 transgenic mice, possibly through modulation of the JNK signaling pathway. The attenuation of abnormal tau phosphorylation was rather selective since ZINC10915775 significantly decreased tau phosphorylation on tau Ser202/T205 (AT8 epitope) and tau Thr212/Ser214 (AT100 epitope), but not on tau Ser396/404 (PHF-1 epitope). Moreover, no response of ZINC10915775 was found in control hippocampal neuronal cultures derived from wild type littermates. Our in silico model provides novel means to pharmacologically modulate select ubiquitously expressed ORs in the brain through high affinity ligand activation to prevent and eventually to treat concussion induced down regulation of ORs and subsequent cascade of tau pathology.
PMCID: PMC4988328  PMID: 26910498
concussion; olfactory receptor; G protein-coupled receptors; in silico screening; tau phosphorylation
3.  Neuronal DNA Methylation Profiling of Blast-Related Traumatic Brain Injury 
Journal of Neurotrauma  2015;32(16):1200-1209.
Long-term molecular changes in the brain resulting from blast exposure may be mediated by epigenetic changes, such as deoxyribonucleic acid (DNA) methylation, that regulate gene expression. Aberrant regulation of gene expression is associated with behavioral abnormalities, where DNA methylation bridges environmental signals to sustained changes in gene expression. We assessed DNA methylation changes in the brains of rats exposed to three 74.5 kPa blast overpressure events, conditions that have been associated with long-term anxiogenic manifestations weeks or months following the initial exposures. Rat frontal cortex eight months post-exposure was used for cell sorting of whole brain tissue into neurons and glia. We interrogated DNA methylation profiles in these cells using Expanded Reduced Representation Bisulfite Sequencing. We obtained data for millions of cytosines, showing distinct methylation profiles for neurons and glia and an increase in global methylation in neuronal versus glial cells (p<10−7). We detected DNA methylation perturbations in blast overpressure–exposed animals, compared with sham blast controls, within 458 and 379 genes in neurons and glia, respectively. Differentially methylated neuronal genes showed enrichment in cell death and survival and nervous system development and function, including genes involved in transforming growth factor β and nitric oxide signaling. Functional validation via gene expression analysis of 30 differentially methylated neuronal and glial genes showed a 1.2 fold change in gene expression of the serotonin N-acetyltransferase gene (Aanat) in blast animals (p<0.05). These data provide the first genome-based evidence for changes in DNA methylation induced in response to multiple blast overpressure exposures. In particular, increased methylation and decreased gene expression were observed in the Aanat gene, which is involved in converting serotonin to the circadian hormone melatonin and is implicated in sleep disturbance and depression associated with traumatic brain injury.
PMCID: PMC4532898  PMID: 25594545
blast overpressure; DNA methylation; epigenetic; sleep disturbance; traumatic brain injury
4.  Fibroblast growth factor rescues brain endothelial cells lacking presenilin 1 from apoptotic cell death following serum starvation 
Scientific Reports  2016;6:30267.
Presenilin 1 (Psen1) is important for vascular brain development and is known to influence cellular stress responses. To understand the role of Psen1 in endothelial stress responses, we investigated the effects of serum withdrawal on wild type (wt) and Psen1−/− embryonic brain endothelial cells. Serum starvation induced apoptosis in Psen1−/− cells but did not affect wt cells. PI3K/AKT signaling was reduced in serum-starved Psen1−/− cells, and this was associated with elevated levels of phospho-p38 consistent with decreased pro-survival AKT signaling in the absence of Psen1. Fibroblast growth factor (FGF1 and FGF2), but not vascular endothelial growth factor (VEGF) rescued Psen1−/− cells from serum starvation induced apoptosis. Inhibition of FGF signaling induced apoptosis in wt cells under serum withdrawal, while blocking γ-secretase activity had no effect. In the absence of serum, FGF2 immunoreactivity was distributed diffusely in cytoplasmic and nuclear vesicles of wt and Psen1−/− cells, as levels of FGF2 in nuclear and cytosolic fractions were not significantly different. Thus, sensitivity of Psen1−/− cells to serum starvation is not due to lack of FGF synthesis but likely to effects of Psen1 on FGF release onto the cell surface and impaired activation of the PI3K/AKT survival pathway.
PMCID: PMC4957214  PMID: 27443835
5.  Increased locomotor activity in mice lacking the low-density lipoprotein receptor 
Behavioural brain research  2008;191(2):256-265.
While the low-density lipoprotein receptor (LDLR) is best known for its role in regulating serum cholesterol, LDLR is expressed in brain, suggesting that it may play a role in CNS function as well. Here, using mice with a null mutation in LDLR (LDLR-/-), we investigated whether the absence of LDLR affects a series of behavioral functions. We also utilized the fact that plasma cholesterol levels can be regulated in LDLR-/- mice by manipulating dietary cholesterol to investigate whether elevated plasma cholesterol might independently affect behavioral performance. LDLR-/- mice showed no major deficits in general sensory or motor function. However, LDLR-/- mice exhibited increased locomotor activity in an open field test without evidence of altered anxiety in either an open field or a light/dark emergence test. By contrast, modulating dietary cholesterol produced only isolated effects. While both C57BL/6J and LDLR-/- mice fed a high cholesterol diet showed increased anxiety in a light/dark task, and LDLR-/- mice fed a high cholesterol diet exhibited longer target latencies in the probe trial of the Morris water maze, no other findings supported a general effect of cholesterol on anxiety or spatial memory. Collectively these studies suggest that while LDLR-/- mice exhibit no major developmental defects, LDLR nevertheless plays a significant role in modulating locomotor behavior in the adult.
PMCID: PMC4662864  PMID: 18466986
Alzheimer's disease; acoustic startle; cholesterol; light/dark preference; low-density lipoprotein receptor; Morris water maze; null mutation; open field
6.  A critical role for human caspase-4 in endotoxin sensitivity 
Response to endotoxins is an important part of the organismal reaction to gram-negative bacteria, and plays a critical role in sepsis and septic shock, as well as other conditions such as metabolic endotoxemia. Humans are generally more sensitive to endotoxins when compared to experimental animals such as mouse. Inflammatory caspases mediate endotoxin-induced interelukin-1β (IL-1β) secretion and lethality in mouse, and caspase-4 is an inflammatory caspase that is found in the human, and not mouse, genome. To test whether caspase-4 is involved in endotoxin sensitivity, we developed a transgenic mouse expressing human caspase-4 in its genomic context. Caspase-4 transgenic mice exhibited significantly higher endotoxin sensitivity, as measured by enhanced cytokine secretion and lethality following lipopolysaccharide (LPS) challenge. Using bone marrow-derived macrophages (BMDMs), we then observed that caspase-4 can support activation of caspase-1 and secretion of IL-1β and IL-18 in response to priming signals (LPS or Pam3CSK4) alone, without the need for second signals to stimulate the assembly of the inflammasome. These findings indicate that the regulation of caspase-1 activity by human caspase-4 could represent unique mechanism in humans, as compared to laboratory rodents, and may partially explain the higher sensitivity to endotoxins observed in humans. Regulation of the expression, activation, or activity of caspase-4 therefore represent therapeutic targets for systemic inflammatory response syndrome (SIRS), sepsis, septic shock, and related disorders.
PMCID: PMC4066208  PMID: 24879791
7.  Vascular and Inflammatory Factors in the Pathophysiology of Blast-Induced Brain Injury 
Blast-related traumatic brain injury (TBI) has received much recent attention because of its frequency in the conflicts in Iraq and Afghanistan. This renewed interest has led to a rapid expansion of clinical and animal studies related to blast. In humans, high-level blast exposure is associated with a prominent hemorrhagic component. In animal models, blast exerts a variety of effects on the nervous system including vascular and inflammatory effects that can be seen with even low-level blast exposures which produce minimal or no neuronal pathology. Acutely, blast exposure in animals causes prominent vasospasm and decreased cerebral blood flow along with blood-brain barrier breakdown and increased vascular permeability. Besides direct effects on the central nervous system, evidence supports a role for a thoracically mediated effect of blast; whereby, pressure waves transmitted through the systemic circulation damage the brain. Chronically, a vascular pathology has been observed that is associated with alterations of the vascular extracellular matrix. Sustained microglial and astroglial reactions occur after blast exposure. Markers of a central and peripheral inflammatory response are found for sustained periods after blast injury and include elevation of inflammatory cytokines and other inflammatory mediators. At low levels of blast exposure, a microvascular pathology has been observed in the presence of an otherwise normal brain parenchyma, suggesting that the vasculature may be selectively vulnerable to blast injury. Chronic immune activation in brain following vascular injury may lead to neurobehavioral changes in the absence of direct neuronal pathology. Strategies aimed at preventing or reversing vascular damage or modulating the immune response may improve the chronic neuropsychiatric symptoms associated with blast-related TBI.
PMCID: PMC4360816  PMID: 25852632
animal models; blast; inflammation; traumatic brain injury; vascular pathology
8.  Effects of Low-Level Blast Exposure on the Nervous System: Is There Really a Controversy? 
High-pressure blast waves can cause extensive CNS injury in human beings. However, in combat settings, such as Iraq and Afghanistan, lower level exposures associated with mild traumatic brain injury (mTBI) or subclinical exposure have been much more common. Yet controversy exists concerning what traits can be attributed to low-level blast, in large part due to the difficulty of distinguishing blast-related mTBI from post-traumatic stress disorder (PTSD). We describe how TBI is defined in human beings and the problems posed in using current definitions to recognize blast-related mTBI. We next consider the problem of applying definitions of human mTBI to animal models, in particular that TBI severity in human beings is defined in relation to alteration of consciousness at the time of injury, which typically cannot be assessed in animals. However, based on outcome assessments, a condition of “low-level” blast exposure can be defined in animals that likely approximates human mTBI or subclinical exposure. We review blast injury modeling in animals noting that inconsistencies in experimental approach have contributed to uncertainty over the effects of low-level blast. Yet, animal studies show that low-level blast pressure waves are transmitted to the brain. In brain, low-level blast exposures cause behavioral, biochemical, pathological, and physiological effects on the nervous system including the induction of PTSD-related behavioral traits in the absence of a psychological stressor. We review the relationship of blast exposure to chronic neurodegenerative diseases noting the paradoxical lowering of Abeta by blast, which along with other observations suggest that blast-related TBI is pathophysiologically distinct from non-blast TBI. Human neuroimaging studies show that blast-related mTBI is associated with a variety of chronic effects that are unlikely to be explained by co-morbid PTSD. We conclude that abundant evidence supports low-level blast as having long-term effects on the nervous system.
PMCID: PMC4271615  PMID: 25566175
animal models; blast; human studies; post-traumatic stress disorder; traumatic brain injury
9.  Select small nucleolar RNAs in blood components as novel biomarkers for improved identification of comorbid traumatic brain injury and post-traumatic stress disorder in veterans of the conflicts in Afghanistan and Iraq 
Background: The present study was designed to validate the ability of our recently identified set of small noncoding RNA candidate mild traumatic brain injury (mTBI) biomarkers to diagnose mTBI in the presence or absence of post-traumatic stress disorder (PTSD) comorbidity. Using qPCR, we explored the regulation of the candidate biomarkers in peripheral blood mononuclear cells (PBMC) from 58 veterans. Results: We confirmed that 4 small nucleolar RNAs (snoRNAs), ACA48, U35, U55, and U83A, are significantly down-regulated in PBMC from veterans with mTBI and PTSD compared to non-TBI, control subjects with PTSD only. We found that the snoRNA biomarkers are able to dissect subjects with comorbid mTBI and PTSD from PTSD subjects without mTBI with 100% sensitivity, 81% accuracy, and 72% specificity. No significant differential expression of snoRNA biomarkers was found in mTBI subjects without comorbid PTSD. However, we found significantly lower U55 contents in subjects with PTSD. We explored the regulation of ACA48 in rodent models of PTSD or blast-induced mTBI to gather proof-of-concept evidence that would connect the regulation of the biomarkers and the development of mTBI or PTSD. We found no change in the regulation of ACA48 in the mTBI rat model. We did, however, find significant down-regulation of ACA48 in the PTSD mouse model 24 hours following psychological trauma exposure. This may reflect a short-term response to trauma exposure, since we found no change in the regulation of ACA48 in veteran PTSD subjects 3.6 years post-deployment. Conclusions: Additional application of the 4 snoRNA biomarker to current diagnostic criteria may provide an objective biomarker pattern to help identify veterans with comorbid mTBI and PTSD. Our observations suggest that biological interactions between TBI and PTSD may contribute to the clinical features of veterans with comorbid mTBI and PTSD. Future investigations on mTBI mechanisms or TBI biomarkers should consider their interactions with PTSD.
PMCID: PMC4299721  PMID: 25628968
Mild traumatic brain injury; post-traumatic stress disorder; biomarker; small nucleolar RNAs
10.  Chronic traumatic encephalopathy: clinical‐biomarker correlations and current concepts in pathogenesis 
Chronic traumatic encephalopathy (CTE) is a recently revived term used to describe a neurodegenerative process that occurs as a long term complication of repetitive mild traumatic brain injury (TBI). Corsellis provided one of the classic descriptions of CTE in boxers under the name “dementia pugilistica” (DP). Much recent attention has been drawn to the apparent association of CTE with contact sports (football, soccer, hockey) and with frequent battlefield exposure to blast waves generated by improvised explosive devices (IEDs). Recently, a promising serum biomarker has been identified by measurement of serum levels of the neuronal microtubule associated protein tau. New positron emission tomography (PET) ligands (e.g., [18 F] T807) that identify brain tauopathy have been successfully deployed for the in vitro and in vivo detection of presumptive tauopathy in the brains of subjects with clinically probable CTE.
Major academic and lay publications on DP/CTE were reviewed beginning with the 1928 paper describing the initial use of the term CTE by Martland.
The major current concepts in the neurological, psychiatric, neuropsychological, neuroimaging, and body fluid biomarker science of DP/CTE have been summarized. Newer achievements, such as serum tau and [18 F] T807 tauopathy imaging, are also introduced and their significance has been explained.
Recent advances in the science of DP/CTE hold promise for elucidating a long sought accurate determination of the true prevalence of CTE. This information holds potentially important public health implications for estimating the risk of contact sports in inflicting permanent and/or progressive brain damage on children, adolescents, and adults.
PMCID: PMC4249716  PMID: 25231386
11.  Introduction of the human AVPR1A gene substantially alters brain receptor expression patterns and enhances aspects of social behavior in transgenic mice 
Disease Models & Mechanisms  2014;7(8):1013-1022.
Central arginine vasopressin receptor 1A (AVPR1A) modulates a wide range of behaviors, including stress management and territorial aggression, as well as social bonding and recognition. Inter- and intra-species variations in the expression pattern of AVPR1A in the brain and downstream differential behavioral phenotypes have been attributed to differences in the non-coding regions of the AVPR1A gene, including polymorphic elements within upstream regulatory areas. Gene association studies have suggested a link between AVPR1A polymorphisms and autism, and AVPR1A has emerged as a potential pharmacological target for treatment of social cognitive impairments and mood and anxiety disorders. To further investigate the genetic mechanism giving rise to species differences in AVPR1A expression patterns and associated social behaviors, and to create a preclinical mouse model useful for screening drugs targeting AVPR1A, we engineered and extensively characterized bacterial artificial chromosome (BAC) transgenic mice harboring the entire human AVPR1A locus with the surrounding regulatory elements. Compared with wild-type animals, the humanized mice displayed a more widely distributed ligand-AVPR1A binding pattern, which overlapped with that of primates. Furthermore, humanized AVPR1A mice displayed increased reciprocal social interactions compared with wild-type animals, but no differences in social approach and preference for social novelty were observed. Aspects of learning and memory, specifically novel object recognition and spatial relocation recognition, were unaffected. The biological alterations in humanized AVPR1A mice resulted in the rescue of the prepulse inhibition impairments that were observed in knockout mice, indicating conserved functionality. Although further behavioral paradigms and additional cohorts need to be examined in humanized AVPR1A mice, the results demonstrate that species-specific variations in the genomic content of regulatory regions surrounding the AVPR1A locus are responsible for differential receptor protein expression patterns across species and that they are likely to contribute to species-specific behavioral variation. The humanized AVPR1A mouse is a potential preclinical model for further understanding the regulation of receptor gene expression and the impact of variation in receptor expression on behaviors, and should be useful for screening drugs targeting human AVPR1A, taking advantage of the expression of human AVPR1A in human-relevant brain regions.
PMCID: PMC4107330  PMID: 24924430
AVPR1A; Humanized mouse; Social behavior; Species-specific; Microsatellite; Autism
12.  Slc25a12 disruption alters myelination and neurofilaments: A model for a hypomyelination syndrome and childhood neurodevelopmental disorders 
Biological psychiatry  2009;67(9):887-894.
SLC25A12, a susceptibility gene for autism spectrum disorders (ASDs) that is mutated in a neurodevelopmental syndrome, encodes a mitochondrial aspartate/glutamate carrier (AGC1). AGC1 is an important component of the malate/aspartate shuttle, a crucial system supporting oxidative phosphorylation and ATP production.
We characterized mice with a disruption of the Slc25a12 gene, followed by confirmatory in vitro studies.
Slc25a12-knockout mice, which showed no AGC1 by immunoblotting, were born normally but displayed delayed development and died around 3 weeks after birth. In P13-14 knockout brains, the brains were smaller with no obvious alteration in gross structure. However, we found a reduction in myelin basic protein (MBP)-positive fibers, consistent with a previous report. Furthermore, the neocortex of knockout mice contained abnormal neurofilamentous accumulations in neurons, suggesting defective axonal transport and/or neurodegeneration. Slice cultures prepared from knockout mice also showed a myelination defect, and reduction of Slc25a12 in rat primary oligodendrocytes led to a cellautonomous reduction in MBP expression. Myelin deficits in slice cultures from knockout mice could be reversed by administration of pyruvate, indicating that reduction in AGC1 activity leads to reduced production of aspartate/N-acetyl aspartate (NAA) and/or alterations in the NADH/NAD+ ratio, resulting in myelin defects.
Our data implicate AGC1 activity in myelination and in neuronal structure, and indicate that while loss of AGC1 leads to hypomyelination and neuronal changes, subtle alterations in AGC1 expression could affect brain development contributing to increased autism susceptibility.
PMCID: PMC4067545  PMID: 20015484
Malate/aspartate shuttle; mitochondria; N-acetyl aspartate (NAA); neuron-oligodendrocyte interactions; pyruvate
13.  Selective vulnerability of the cerebral vasculature to blast injury in a rat model of mild traumatic brain injury 
Blast-related traumatic brain injury (TBI) is a common cause of injury in the military operations in Iraq and Afghanistan. How the primary blast wave affects the brain is not well understood. The aim of the present study was to examine whether blast exposure affects the cerebral vasculature in a rodent model. We analyzed the brains of rats exposed to single or multiple (three) 74.5 kPa blast exposures, conditions that mimic a mild TBI. Rats were sacrificed 24 hours or between 6 and 10 months after exposure. Blast-induced cerebral vascular pathology was examined by a combination of light microscopy, immunohistochemistry, and electron microscopy.
We describe a selective vascular pathology that is present acutely at 24 hours after injury. The vascular pathology is found at the margins of focal shear-related injuries that, as we previously showed, typically follow the patterns of penetrating cortical vessels. However, changes in the microvasculature extend beyond the margins of such lesions. Electron microscopy revealed that microvascular pathology is found in regions of the brain with an otherwise normal neuropil. This initial injury leads to chronic changes in the microvasculature that are still evident many months after the initial blast exposure.
These studies suggest that vascular pathology may be a central mechanism in the induction of chronic blast-related injury.
PMCID: PMC4229875  PMID: 24938728
Blast; Rat; Traumatic brain injury; Vascular pathology
14.  Absence of strong strain effects in behavioral analyses of Shank3-deficient mice 
Disease Models & Mechanisms  2014;7(6):667-681.
Haploinsufficiency of SHANK3, caused by chromosomal abnormalities or mutations that disrupt one copy of the gene, leads to a neurodevelopmental syndrome called Phelan-McDermid syndrome, symptoms of which can include absent or delayed speech, intellectual disability, neurological changes and autism spectrum disorders. The SHANK3 protein forms a key structural part of the post-synaptic density. We previously generated and characterized mice with a targeted disruption of Shank3 in which exons coding for the ankyrin-repeat domain were deleted and expression of full-length Shank3 was disrupted. We documented specific deficits in synaptic function and plasticity, along with reduced reciprocal social interactions, in Shank3 heterozygous mice. Changes in phenotype owing to a mutation at a single locus are quite frequently modulated by other loci, most dramatically when the entire genetic background is changed. In mice, each strain of laboratory mouse represents a distinct genetic background and alterations in phenotype owing to gene knockout or transgenesis are frequently different across strains, which can lead to the identification of important modifier loci. We have investigated the effect of genetic background on phenotypes of Shank3 heterozygous, knockout and wild-type mice, using C57BL/6, 129SVE and FVB/Ntac strain backgrounds. We focused on observable behaviors with the goal of carrying out subsequent analyses to identify modifier loci. Surprisingly, there were very modest strain effects over a large battery of analyses. These results indicate that behavioral phenotypes associated with Shank3 haploinsufficiency are largely strain-independent.
PMCID: PMC4036474  PMID: 24652766
Shank3; Phelan-McDermid syndrome; Autism spectrum disorders; 22q13; Mouse strain; Genetic modifier; Behavior
15.  A Critical Role for Human Caspase-4 in Endotoxin Sensitivity 
Response to endotoxins is an important part of the organismal reaction to Gram-negative bacteria and plays a critical role in sepsis and septic shock, as well as other conditions such as metabolic endotoxemia. Humans are generally more sensitive to endotoxins when compared with experimental animals such as mice. Inflammatory caspases mediate endotoxin-induced IL-1β secretion and lethality in mice, and caspase-4 is an inflammatory caspase that is found in the human, and not mouse, genome. To test whether caspase-4 is involved in endotoxin sensitivity, we developed a transgenic mouse expressing human caspase-4 in its genomic context. Caspase-4 transgenic mice exhibited significantly higher endotoxin sensitivity, as measured by enhanced cytokine secretion and lethality following LPS challenge. Using bone marrow–derived macrophages, we then observed that caspase-4 can support activation of caspase-1 and secretion of IL-1β and IL-18 in response to priming signals (LPS or Pam3CSK4) alone, without the need for second signals to stimulate the assembly of the inflammasome. These findings indicate that the regulation of caspase-1 activity by human caspase-4 could represent a unique mechanism in humans, as compared with laboratory rodents, and may partially explain the higher sensitivity to endotoxins observed in humans. Regulation of the expression, activation, or activity of caspase-4 therefore represents targets for systemic inflammatory response syndrome, sepsis, septic shock, and related disorders.
PMCID: PMC4066208  PMID: 24879791
16.  Blast Exposure Induces Post-Traumatic Stress Disorder-Related Traits in a Rat Model of Mild Traumatic Brain Injury 
Journal of Neurotrauma  2012;29(16):2564-2575.
Blast related traumatic brain injury (TBI) has been a major cause of injury in the wars in Iraq and Afghanistan. A striking feature of the mild TBI (mTBI) cases has been the prominent association with post-traumatic stress disorder (PTSD). However, because of the overlapping symptoms, distinction between the two disorders has been difficult. We studied a rat model of mTBI in which adult male rats were exposed to repetitive blast injury while under anesthesia. Blast exposure induced a variety of PTSD-related behavioral traits that were present many months after the blast exposure, including increased anxiety, enhanced contextual fear conditioning, and an altered response in a predator scent assay. We also found elevation in the amygdala of the protein stathmin 1, which is known to influence the generation of fear responses. Because the blast overpressure injuries occurred while animals were under general anesthesia, our results suggest that a blast-related mTBI exposure can, in the absence of any psychological stressor, induce PTSD-related traits that are chronic and persistent. These studies have implications for understanding the relationship of PTSD to mTBI in the population of veterans returning from the wars in Iraq and Afghanistan.
PMCID: PMC3495123  PMID: 22780833
blast; PTSD; rat; stathmin 1; TBI
17.  Blast overpressure induces shear-related injuries in the brain of rats exposed to a mild traumatic brain injury 
Blast-related traumatic brain injury (TBI) has been a significant cause of injury in the military operations of Iraq and Afghanistan, affecting as many as 10-20% of returning veterans. However, how blast waves affect the brain is poorly understood. To understand their effects, we analyzed the brains of rats exposed to single or multiple (three) 74.5 kPa blast exposures, conditions that mimic a mild TBI.
Rats were sacrificed 24 hours or between 4 and 10 months after exposure. Intraventricular hemorrhages were commonly observed after 24 hrs. A screen for neuropathology did not reveal any generalized histopathology. However, focal lesions resembling rips or tears in the tissue were found in many brains. These lesions disrupted cortical organization resulting in some cases in unusual tissue realignments. The lesions frequently appeared to follow the lines of penetrating cortical vessels and microhemorrhages were found within some but not most acute lesions.
These lesions likely represent a type of shear injury that is unique to blast trauma. The observation that lesions often appeared to follow penetrating cortical vessels suggests a vascular mechanism of injury and that blood vessels may represent the fault lines along which the most damaging effect of the blast pressure is transmitted.
PMCID: PMC3893550  PMID: 24252601
Blast overpressure injury; Neuropathology; Shear injury; Traumatic brain injury
18.  Presenilin transgenic mice as models of Alzheimer’s disease 
Brain structure & function  2009;214(0):127-143.
Mutations in presenilin-1 (PS1) and presenilin-2 (PS2) cause familial Alzheimer’s disease (FAD). Presenilins influence multiple molecular pathways and are best known for their role in the γ-secretase cleavage of type I transmembrane proteins including the amyloid precursor protein (APP). PS1 and PS2 FAD mutant transgenic mice have been generated using a variety of promoters. PS1-associated FAD mutations have also been knocked into the endogenous mouse gene. PS FAD mutant mice consistently show elevations of Aβ42 with little if any effect on Aβ40. When crossed with plaque forming APP FAD mutant lines, the PS1 FAD mutants cause earlier and more extensive plaque deposition. Although single transgenic PS1 or PS2 mice do not form plaques, they exhibit a number of pathological features including age-related neuronal and synaptic loss as well as vascular pathology. They also exhibit increased susceptibility to excitotoxic injury most likely on the basis of exaggerated calcium release from the endoplasmic reticulum. Electrophysiologically long-term potentiation in the hippocampus is increased in young PS1 FAD mutant mice but this effect appears to be lost with aging. In most studies neurogenesis in the adult hippocampus is also impaired by PS1 FAD mutants. Mice in which PS1 has been conditionally knocked out in adult forebrain on a PS2 null background (PS1/2 cDKO) develop a striking neurodegeneration that mimics AD neuropathology in being associated with neuronal and synaptic loss, astrogliosis and hyperphosphorylation of tau, although it is not accompanied by plaque deposits. The relevance of PS transgenic mice as models of AD is discussed.
PMCID: PMC3527905  PMID: 19921519
Alzheimer’s disease; Familial Alzheimer’s disease; Hippocampal neurogenesis; Presenilin-1; Presenilin-2; Transgenic mice
19.  Acute Blast Injury Reduces Brain Abeta in Two Rodent Species 
Blast-induced traumatic brain injury (TBI) has been a major cause of morbidity and mortality in the conflicts in Iraq and Afghanistan. How the primary blast wave affects the brain is not well understood. In particular, it is unclear whether blast injures the brain through mechanisms similar to those found in non-blast closed impact injuries (nbTBI). The β-amyloid (Aβ) peptide associated with the development of Alzheimer’s disease is elevated acutely following TBI in humans as well as in experimental animal models of nbTBI. We examined levels of brain Aβ following experimental blast injury using enzyme-linked immunosorbent assays for Aβ 40 and 42. In both rat and mouse models of blast injury, rather than being increased, endogenous rodent brain Aβ levels were decreased acutely following injury. Levels of the amyloid precursor protein (APP) were increased following blast exposure although there was no evidence of axonal pathology based on APP immunohistochemical staining. Unlike the findings in nbTBI animal models, levels of the β-secretase, β-site APP cleaving enzyme 1, and the γ-secretase component presenilin-1 were unchanged following blast exposure. These studies have implications for understanding the nature of blast injury to the brain. They also suggest that strategies aimed at lowering Aβ production may not be effective for treating acute blast injury to the brain.
PMCID: PMC3527696  PMID: 23267342
abeta; amyloid precursor protein; β-site APP cleaving enzyme 1; blast; mouse; presenilin-1; rat; traumatic brain injury
20.  Presenilin-1 regulates the constitutive turnover of the fibronectin matrix in endothelial cells 
BMC Biochemistry  2012;13:28.
Presenilin-1 (PS1) is a transmembrane protein first discovered because of its association with familial Alzheimer’s disease. Mice with null mutations in PS1 die shortly after birth exhibiting multiple CNS and non-CNS abnormalities. One of the most prominent features in the brains of PS1−/− embryos is a vascular dysgenesis that leads to multiple intracerebral hemorrhages. The molecular and cellular basis for the vascular dysgenesis in PS1−/− mice remains incompletely understood. Because the extracellular matrix plays key roles in vascular development we hypothesized that an abnormal extracellular matrix might be present in endothelial cells lacking PS1 and examined whether the lack of PS1 affects expression of fibronectin a component of the extracellular matrix known to be essential for vascular development.
We report that primary as well as continuously passaged PS1−/− endothelial cells contain more fibronectin than wild type cells and that the excess fibronectin in PS1−/− endothelial cells is incorporated into a fibrillar network. Supporting the in vivo relevance of this observation fibronectin expression was increased in microvascular preparations isolated from E14.5 to E18.5 PS1−/− embryonic brain. Reintroduction of PS1 into PS1−/− endothelial cells led to a progressive decrease in fibronectin levels showing that the increased fibronectin in PS1−/− endothelial cells was due to loss of PS1. Increases in fibronectin protein in PS1−/− endothelial cells could not be explained by increased levels of fibronectin RNA nor based on metabolic labeling studies by increased protein synthesis. Rather we show based on the rate of turnover of exogenously added biotinylated fibronectin that increased fibronectin in PS1−/− endothelial cells results from a slower degradation of the fibronectin fibrillar matrix on the cell surface.
These studies show that PS1 regulates the constitutive turnover of the fibronectin matrix in endothelial cells. These studies provide molecular clues that may help to explain the origin of the vascular dysgenesis that develops in PS1−/− embryonic mice.
PMCID: PMC3556133  PMID: 23259730
Endothelial cells; Extracellular matrix; Fibronectin; Presenilin-1; Vascular development
21.  The IRG Mouse: A Two-Color Fluorescent Reporter for Assessing Cre-Mediated Recombination and Imaging Complex Cellular Relationships In Situ 
Genesis (New York, N.y. : 2000)  2008;46(6):308-317.
The Cre-loxP system is widely used for making conditional alterations to the mouse genome. Cre-mediated recombination is frequently monitored using reporter lines in which Cre expression activates a reporter gene driven by a ubiquitous promoter. Given the distinct advantages of fluorescent reporters, we developed a transgenic reporter line, termed IRG, in which DsRed-Express, a red fluorescent protein (RFP) is expressed ubiquitously prior to Cre-mediated recombination and an enhanced green fluorescent protein (EGFP) following recombination. Besides their utility for monitoring Cre-mediated recombination, we show that in IRG mice red and green native fluorescence can be imaged simultaneously in thick tissue sections by confocal microscopy allowing for complex reconstructions to be created that are suitable for analysis of neuronal morphologies as well as neurovascular interactions in brain. IRG mice should provide a versatile tool for analyzing complex cellular relationships in both neural and nonneural tissues.†
PMCID: PMC2928670  PMID: 18543298
Cre recombinase; loxP; conditional gene activation; DsRed-express; red fluorescent protein; enhanced green fluorescent protein; transgenic mice
22.  Optimizing the phenotyping of rodent ASD models: enrichment analysis of mouse and human neurobiological phenotypes associated with high-risk autism genes identifies morphological, electrophysiological, neurological, and behavioral features 
Molecular Autism  2012;3:1.
There is interest in defining mouse neurobiological phenotypes useful for studying autism spectrum disorders (ASD) in both forward and reverse genetic approaches. A recurrent focus has been on high-order behavioral analyses, including learning and memory paradigms and social paradigms. However, well-studied mouse models, including for example Fmr1 knockout mice, do not show dramatic deficits in such high-order phenotypes, raising a question as to what constitutes useful phenotypes in ASD models.
To address this, we made use of a list of 112 disease genes etiologically involved in ASD to survey, on a large scale and with unbiased methods as well as expert review, phenotypes associated with a targeted disruption of these genes in mice, using the Mammalian Phenotype Ontology database. In addition, we compared the results with similar analyses for human phenotypes.
We observed four classes of neurobiological phenotypes associated with disruption of a large proportion of ASD genes, including: (1) Changes in brain and neuronal morphology; (2) electrophysiological changes; (3) neurological changes; and (4) higher-order behavioral changes. Alterations in brain and neuronal morphology represent quantitative measures that can be more widely adopted in models of ASD to understand cellular and network changes. Interestingly, the electrophysiological changes differed across different genes, indicating that excitation/inhibition imbalance hypotheses for ASD would either have to be so non-specific as to be not falsifiable, or, if specific, would not be supported by the data. Finally, it was significant that in analyses of both mouse and human databases, many of the behavioral alterations were neurological changes, encompassing sensory alterations, motor abnormalities, and seizures, as opposed to higher-order behavioral changes in learning and memory and social behavior paradigms.
The results indicated that mutations in ASD genes result in defined groups of changes in mouse models and support a broad neurobiological approach to phenotyping rodent models for ASD, with a focus on biochemistry and molecular biology, brain and neuronal morphology, and electrophysiology, as well as both neurological and additional behavioral analyses. Analysis of human phenotypes associated with these genes reinforced these conclusions, supporting face validity for these approaches to phenotyping of ASD models. Such phenotyping is consistent with the successes in Fmr1 knockout mice, in which morphological changes recapitulated human findings and electrophysiological deficits resulted in molecular insights that have since led to clinical trials. We propose both broad domains and, based on expert review of more than 50 publications in each of the four neurobiological domains, specific tests to be applied to rodent models of ASD.
PMCID: PMC3337792  PMID: 22348382
Systems biology; mouse behavior; autism; autism spectrum disorders; genetically modified mice; forward genetics; reverse genetics
Translational neuroscience  2010;1(4):282-285.
Myelin abnormalities exist in schizophrenia leading to the hypothesis that oligodendrocyte dysfunction plays a role in the pathophysiology of the disease. The expression of the mRNA for the peripheral myelin protein-22 (PMP-22) is decreased in schizophrenia and recent genetic evidence suggests a link between PMP-22 and schizophrenia. While PMP-22 mRNA is found in both rodent and human brain it has been generally thought that no protein expression occurs. Here we show that PMP-22 protein is present in myelin isolated from adult mouse and human brain. These results suggest that PMP-22 protein likely plays a role in the maintenance and function of central nervous system (CNS) myelin and provide an explanation for why altered PMP-22 expression may be pathophysiologically relevant in a CNS disorder such as schizophrenia.
PMCID: PMC3093192  PMID: 21572910
Myelin; Peripheral myelin protein-22; Schizophrenia
24.  The presenilin-1 familial Alzheimer’s disease mutation P117L decreases neuronal differentiation of embryonic murine neural progenitor cells 
Brain research bulletin  2009;80(4-5):296-301.
The presenilin-1 gene is mutated in early-onset familial Alzheimer’s disease. The mutation Pro117Leu is implicated in a very severe form of the disease, with an onset of less than thirty years. The consequences of this mutation on neurogenesis in the hippocampus of adult transgenic mice have already been studied in situ. The survival of neural progenitor cells was impaired resulting in decreased neurogenesis in the dentate gyrus. Our intention was to verify if similar alterations could occur in vitro in progenitor cells from the murine ganglionic eminences isolated from embryos of this same transgenic mouse model. These cells were grown in culture as neurospheres and after differentiation the percentage of neurons generated as well as their morphology were analysed. The mutation results in a significant decrease in neurogenesis compared to the wild type mice and the neurons grow longer and more ramified neurites. A shift of differentiation towards gliogenesis was observed that could explain decreased neurogenesis despite increased proliferation of neural precursors in transgenic neurospheres. A diminished survival of the newly generated mutant neurons is also proposed. Our data raise the possibility that these alterations in embryonic development might contribute to increase the severity of the Alzheimer’s disease phenotype later in adulthood.
PMCID: PMC2757516  PMID: 19555743
ganglionic eminence; neural progenitor cell; neuritic outgrowth; neurogenesis; neuronal morphology; striatum
25.  Presenilin-1 regulates induction of hypoxia inducible factor-1α: altered activation by a mutation associated with familial Alzheimer's disease 
Mutations in presenilin-1 (Psen1) cause familial Alzheimer's disease (FAD). Both hypoxia and ischemia have been implicated in the pathological cascade that leads to amyloid deposition in AD. Here we investigated whether Psen1 might regulate hypoxic responses by modulating induction of the transcription factor hypoxia inducible factor 1-α (HIF-1α).
In fibroblasts that lack Psen1 induction of HIF-1α was impaired in response to the hypoxia mimetic cobalt chloride, as well as was induction by insulin and calcium chelation. Reintroduction of human Psen1 using a lentiviral vector partially rescued the responsiveness of Psen1-/- fibroblasts to cobalt chloride induction. HIF-1α induction did not require Psen1's associated γ-secretase activity. In addition, the failure of insulin to induce HIF-1α was not explicable on the basis of failed activation of the phosphatidylinositol 3-kinase (PI3K/Akt) pathway which activated normally in Psen1-/- fibroblasts. Rather we found that basal levels of HIF-1α were lower in Psen1-/- fibroblasts and that the basis for lower constitutive levels of HIF-1α was best explained by accelerated HIF-1α degradation. We further found that Psen1 and HIF-1α physically interact suggesting that Psen1 may protect HIF-1α from degradation through the proteasome. In fibroblasts harboring the M146V Psen1 FAD mutation on a mouse Psen1 null background, metabolic induction of HIF-1α by insulin was impaired but not hypoxic induction by cobalt chloride. Unlike Psen1-/- fibroblasts, basal levels of HIF-1α were normal in FAD mutant fibroblasts but activation of the insulin-receptor pathway was impaired. Interestingly, in Psen1-/- primary neuronal cultures HIF-1α was induced normally in response to cobalt chloride but insulin induction of HIF-1α was impaired even though activation of the PI3K/Akt pathway by insulin proceeded normally in Psen1-/- neuronal cultures. Basal levels of HIF-1α were not significantly different in Psen1-/- neurons and HIF-1α levels were normal in Psen1-/- embryos.
Collectively these studies show that Psen1 regulates induction of HIF-1α although they indicate that cell type specific differences exist in the effect of Psen1 on induction. They also show that the M146V Psen1 FAD mutation impairs metabolic induction of HIF-1α, an observation that may have pathophysiological significance for AD.
PMCID: PMC2955646  PMID: 20863403

Results 1-25 (35)