Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Age-related increase of sIAHP in prefrontal pyramidal cells of monkeys: relationship to cognition 
Neurobiology of Aging  2010;33(6):1085-1095.
Reduced excitability, due to an increase in the slow afterhyperpolarization (and its underlying current sIAHP), occurs in CA1 pyramidal cells in aged cognitively-impaired, but not cognitively-unimpaired, rodents. We sought to determine whether similar age-related changes in the sIAHP occur in pyramidal cells in the rhesus monkey dorsolateral prefrontal cortex (dlPFC). Whole-cell patch-clamp recordings were obtained from layer 3 (L3) and layer 5 (L5) pyramidal cells in dlPFC slices prepared from young (9.6 ± 0.7 years old) and aged (22.3 ± 0.7 years old) behaviorally characterized subjects. The amplitude of the sIAHP was significantly greater in L3 (but not L5) cells from aged-impaired compared to both aged-unimpaired and young monkeys, which did not differ. Aged L3, but not L5, cells exhibited significantly increased action potential firing rates, but there was no relationship between sIAHP and firing rate. Thus, in monkey dlPFC L3 cells, an increase in sIAHP is associated with age-related cognitive decline; however, this increase is not associated with a reduction in excitability.
PMCID: PMC2992607  PMID: 20727620
Slice; Patch-clamp; Voltage-clamp; Potassium channels; Excitability
2.  Influence of highly distinctive structural properties on the excitability of pyramidal neurons in monkey visual and prefrontal cortices 
Whole-cell patch-clamp recordings and high-resolution 3D morphometric analyses of layer 3 pyramidal neurons in in vitro slices of monkey primary visual cortex (V1) and dorsolateral granular prefrontal cortex (dlPFC) revealed that neurons in these two brain areas possess highly distinctive structural and functional properties. Area V1 pyramidal neurons are much smaller than dlPFC neurons, with significantly less extensive dendritic arbors and far fewer dendritic spines. Relative to dlPFC neurons, V1 neurons have a significantly higher input resistance, depolarized resting membrane potential and higher action potential (AP) firing rates. Most V1 neurons exhibit both phasic and regular-spiking tonic AP firing patterns, while dlPFC neurons exhibit only tonic firing. Spontaneous postsynaptic currents are lower in amplitude and have faster kinetics in V1 than in dlPFC neurons, but are no different in frequency. Three-dimensional reconstructions of V1 and dlPFC neurons were incorporated into computational models containing Hodgkin-Huxley and AMPA- and GABAA-receptor gated channels. Morphology alone largely accounted for observed passive physiological properties, but led to AP firing rates that differed more than observed empirically, and to synaptic responses that opposed empirical results. Accordingly, modeling predicts that active channel conductances differ between V1 and dlPFC neurons. The unique features of V1 and dlPFC neurons are likely fundamental determinants of area-specific network behavior. The compact electrotonic arbor and increased excitability of V1 neurons support the rapid signal integration required for early processing of visual information. The greater connectivity and dendritic complexity of dlPFC neurons likely support higher level cognitive functions including working memory and planning.
PMCID: PMC3485081  PMID: 23035077

Results 1-3 (3)