Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
author:("oozing, Jan")
1.  Long-Term Type 1 Diabetes Enhances In-Stent Restenosis after Aortic Stenting in Diabetes-Prone BB Rats 
Type 1 diabetic patients have increased risk of developing in-stent restenosis following endovascular stenting. Underlying pathogenetic mechanisms are not fully understood partly due to the lack of a relevant animal model to study the effect(s) of long-term autoimmune diabetes on development of in-stent restenosis. We here describe the development of in-stent restenosis in long-term (~7 months) spontaneously diabetic and age-matched, thymectomized, nondiabetic Diabetes Prone BioBreeding (BBDP) rats (n = 6-7 in each group). Diabetes was suboptimally treated with insulin and was characterized by significant hyperglycaemia, polyuria, proteinuria, and increased HbA1c levels. Stented abdominal aortas were harvested 28 days after stenting. Computerized morphometric analysis revealed significantly increased neointima formation in long-term diabetic rats compared with nondiabetic controls. In conclusion, long-term autoimmune diabetes in BBDP rats enhances in-stent restenosis. This model can be used to study the underlying pathogenetic mechanisms of diabetes-enhanced in-stent restenosis as well as to test new therapeutic modalities.
PMCID: PMC3038840  PMID: 21331346
2.  Tight Junctions, Intestinal Permeability, and Autoimmunity Celiac Disease and Type 1 Diabetes Paradigms 
Autoimmune diseases are characterized by tissue damage and loss of function due to an immune response that is directed against specific organs. This review is focused on celiac disease (CD), an autoimmune enteropathy, and type 1 diabetes (T1D), a hyperglycosaemia caused by a destructive autoimmune process targeting the insulin-producing pancreatic islet cells. Even if environmental factors and genetic susceptibility are clearly involved in the pathogenesis of autoimmunity, for most autoimmune disorders there is no or little knowledge about the causing agent or genetic makeup underlying the disease. In this respect, CD represents a unique autoimmune disorder because a close genetic association with HLA-DQ2 or HLA-DQ8 haplotypes and, more importantly, the environmental trigger (the gliadin fraction of gluten-containing grains wheat, barley, and rye) are known. Conversely, the trigger for autoimmune destruction of pancreatic ß cells in T1D is unclear. Interestingly, recent data suggest that gliadin is also involved in the pathogenesis of T1D. There is growing evidence that increased intestinal permeability plays a pathogenic role in various autoimmune diseases including CD and T1D. Therefore, we hypothesize that besides genetic and environmental factors, loss of intestinal barrier function is necessary to develop autoimmunity. In this review, each of these components will be briefly reviewed.
PMCID: PMC2886850  PMID: 19538307
tight junctions; intestinal permeability; zonulin; celiac disease; type 1 diabetes; gliadin
3.  Role of Peritoneal Macrophages in Cytomegalovirus-induced Acceleration of Autoimmune Diabetes in BB-rats 
Background: As one of the natural perturbants, infection with cytomegalovirus (CMV) is believed to play a role in the development of Type I diabetes. Using the DP-BB rat model for autoimmune diabetes, we here report about possible mechanisms responsible for R(at)CMV-induced accelerated onset of diabetes.
Methods: Rats were i.p. infected with 2 × 106 plaque forming units (pfu) RCMV and followed for diabetes development. Presence of RCMV antigens and DNA was analyzed by immunohistochemistry and PCR on pancreatic tissue and isolated islets. The effect of viral infection on peritoneal macrophages (pMΦ) and diabetes development was studied by analyzing numbers of pMΦ, virus permissiveness and by depletion of this subset by peritoneal lavage.
Results: RCMV accelerated onset of diabetes without infecting pancreatic islets. Immunohistochemistry and PCR on pancreas and isolated islets indicated that islets are non-permissive for RCMV. Infection results in an influx of pMΦ 1 day p.i. of which ~0.05% showed signs of reproductive infection. Depletion of pMΦ on days 1-3 p.i. completely counteracted the accelerating effect of RCMV.
Interpretation: RCMV accelerates onset of diabetes without infecting pancreatic islets. pMΦ might function as an carriage to disseminate virus to the pancreas where they enhance activation of autoreactive T cells resulting in accelerated onset of diabetes.
PMCID: PMC2485421  PMID: 14768944
4.  Cytomegalovirus Infection Modulates Cellular Immunity in an Experimental Model for Autoimmune Diabetes 
Background: Viral infections are thought to play a role in the development of autoimmune diseases like type 1 diabetes. In this study we investigated the effect of Rat Cytomegalovirus (RCMV) infection on cellular immunity in a well-defined animal model for diabetes, the Biobreeding (BB) rat.
Methods: Diabetes prone (DP)- and Diabetes resistant (DR)-BB rats were infected with 2 × 106 plaque forming units (pfu) RCMV. Diabetes development was monitored by frequent blood-glucose analysis. Effects of RCMV on CD4+, CD8+ and Vβ-TCR+ T-cell subsets were measured in vivo, and in vitro after restimulation with RCMV-infected fibroblasts. Proliferative capacity was determined by 3H-Thymidine incorporation.
Results: RCMV-infection resulted in a significant acceleration of diabetes onset in DP-BB rats ( p=0.003). Percentages CD4+ and CD8+ T-cells were not affected in vivo. In vitro, RCMV-restimulation resulted in a decreased CD4+/CD8+ blastoid T-cell ratio compared to ConA ( p=0.00028). Furthermore, RCMV-restimulation resulted in a strong RCMV-specific proliferation, which comprises about 50% of the response triggered by ConA. Vβ-TCR percentages did not change upon RCMV-infection or RCMV-restimulation.
Interpretation: RCMV-restimulation of splenic T-cells in vitro resulted in a strong RCMV-specific proliferation, probably also including autoreactive T-cells. In vivo, this polyclonal response might be involved in the observed accelerated diabetes development in DP-BB rats upon RCMV-infection.
PMCID: PMC2485415  PMID: 14768946
5.  Temporary, but Essential Requirement of CD8+ T Cells Early in the Pathogenesis of Diabetes in BB Rats as Revealed by Thymectomy and CD8 Depletion 
Autoimmunity-prone BB rats demonstrate a T lymphocytopenia and abnormal T cell subset distribution. To test whether the life span of all T cells or only of certain subsets is reduced in BB rats, we thymectomised 8-week-old BB and PVG rats and subsequently assessed size and composition of the T cell population over a 6-week-period. In both strains, thymectomy (Tx) was followed by a decrease in peripheral T cell numbers, which was proportionally larger in BB rats. The decline of the Thy-1+ recent thymic migrant (RTM) T cell phenotype was similar in both strains. BB rats showed a rapid preferential loss of CD8+ and CD45RC+ T cells, whereas the relative loss of RT6+ T cells was proportional to that of all T cells and not significantly different from that in PVG rats. Tx at 8-week did not prevent diabetes. Tx of 4-week-old BB rats revealed essentially the same changes in peripheral T cell subset distribution as in 8-week-old animals. However, Tx at week 4 did prevent diabetes. Since this raised the possibility of a temporary requirement of CD8+ T cells for the development of diabetes, we performed CD8 depletions during different pre-diabetic intervals. We found that CD8 depletion from 4 to 8 and 4 to 14 weeks, but not from 8 to 14 weeks of age prevented diabetes. We conclude that the protective effect of early adult Tx is, at least in part, due to the rapid loss of CD8+ T cells, and that these cells are only required between 4 and 8 weeks of age for diabetes to develop in BB rats.
PMCID: PMC2485407  PMID: 14768945
6.  Origin of neointimal endothelium and α-actin–positive smooth muscle cells in transplant arteriosclerosis 
Journal of Clinical Investigation  2001;107(11):1411-1422.
The development of transplant arteriosclerosis (TA) is today’s most important problem in clinical organ transplantation. Histologically, TA is characterized by perivascular inflammation and progressive intimal thickening. Current thought on this process of vascular remodeling assumes that neointimal vascular smooth muscle (VSM) cells and endothelium in TA are graft-derived, holding that medial VSM cells proliferate and migrate into the subendothelial space in response to signals from inflammatory cells and damaged graft endothelium. Using MHC class I haplotype-specific immunohistochemical staining and single-cell PCR analyses, we show that the neointimal α-actin–positive VSM cells in rat aortic or cardiac allografts are of recipient and not of donor origin. In aortic but not in cardiac allografts, recipient-derived endothelial cells (ECs) replaced donor endothelium. Cyclosporine treatment prevents neointima formation and preserves the vascular media in aortic allografts. Recipient-derived ECs do not replace graft endothelium after cyclosporine treatment. We propose that, although it progresses beyond the needs of functional repair, TA reflects the activity of a normal healing process that restores vascular wall function following allograft-induced immunological injury.
PMCID: PMC209313  PMID: 11390423
7.  The Involvement of the Intestinal Microflora in the Expansion of CD4+ T Cells with a-Naive Phenotype in the Periphery 
Developmental Immunology  1992;2(2):141-150.
It is well known that immune reactivity declines with age. Recently, we demonstrated that the age-related decrease in IL-2 production by CD4+ T cells was accompanied by an increased production of IL-4 and interferon-γ,(IFN-γ). This age-related shift in the profile of lymphokine production was related to phenotypic changes within the CD4+ T-cell subset, that is, a decrease in the percentage of CD45RB++ CD4+ T cells and an increase in the percentage of Pgp-1+ CD4+ T cells. To study whether these age-related changes were due to previous antigenic exposure, we performed a phenotypic and functional analysis on splenic CD4+ T cells isolated from individual, germ-free (GF), specific pathogen-free (SPF), and clean conventional (CC) mice. Interestingly, the total number of splenic CD4+ T cells in GF mice was twofold lower as compared to age-matched SPF or CC mice, regardless whether mice were analyzed at young (10 weeks) or at advanced age (13-14 months). Unexpectedly, the phenotypic composition of the CD4+ T-cell subset was comparable in the GF, SPF, and CC mice as determined by the expression of CD45RB and Pgp-1, indicating that CD4+ T cells with a naive phenotype (CD45RB++ Pgp-1 –) were not enriched in GF mice. Moreover, at an age of 13–14 months, CD4+ T cells from GF mice frequently produced more IL-4 and IFN-γ, than their CC counterparts. These lymphokine data showed, therefore, that a relatively high proportion of CD4 T cells with a memory phenotype can also be defined in GF mice on the basis of their function. The contamination of GF mice with a colonization resistant factor (CRF flora) resulted in twofold higher numbers of splenic CD4+ T cells. Surprisingly, not only CD4+ T cells with a memory phenotype (CD45RB–/+ Pgp-1++) had expanded, but also CD4+ T cells with a naive (CD45RB++ Pgp-1–) phenotype. Our results, therefore, strongly suggest that the expansion of naive CD4+ T cells in the periphery is mediated by the intestinal microflora.
PMCID: PMC2275855  PMID: 1386544
CD4^+ T cells; germ-free; naive; memory; intestinal microflora
8.  VßGene Family Usage in Spontaneous Lymphomas of AKR Mice: Evidence for Defective Clonal Deletion 
Developmental Immunology  1992;2(2):95-101.
T-cell receptor (TCR) ß-chain usage and expression of the CD3, CD4, and CD8 differentiation antigens were analyzed in 14 spontaneous AKR lymphomas. Lymphoma cells massively infiltrated and/or proliferated in the organs analyzed (thymus, spleen, and mesenteric lymph nodes), giving rise to a loss of organ structure. One lymphoma occurred only in the thymus, and failed to express CD3, CD4, and CD8. All other lymphomas expressed the CD3/TCR complex. With respect to CD4 and CD8 expression, the lymphomas were either double-negative (DN), double-positive (DP), or single-positive (SP). The frequency of DP (CD4+8+) lymphomas was low compared to the frequency of DP thymocytes in a normal AKR thymus. A substantial heterogeneity was seen in the intensity of CD4 and CD8 expression among various lymphomas, which was independent of the level of CD3 expression. Considering TCR V ß gene family usage, 2 out of 14 lymphomas expressed V ß6. Normally, V ß6+ thymocytes are deleted from the thymocyte pool at the immature DP stage of T-cell development in AKR mice. These data support the hypothesis that the lymphocytes in the immature DP stage of T-cell development are susceptible to the induction of AKR lymphomagenesis. The presence of V ß6+ lymphoma cells indicates that the lymphomagenesis is accompanied by a defective clonal deletion of cells expressing a possible autoreactive TCR.
PMCID: PMC2275849  PMID: 1322753
Lymphomagenesis; AKR; thymus; selection; Vß

Results 1-8 (8)