Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Distribution of Matrix Metalloproteinases in Human Atherosclerotic Carotid Plaques and Their Production by Smooth Muscle Cells and Macrophage Subsets 
Molecular Imaging and Biology  2015;18:283-291.
In this study, the potential of matrix metalloproteinase (MMP) sense for detection of atherosclerotic plaque instability was explored. Secondly, expression of MMPs by macrophage subtypes and smooth muscle cells (SMCs) was investigated.
Twenty-three consecutive plaques removed during carotid endarterectomy were incubated in MMPSense™ 680 and imaged with IVIS® Spectrum. mRNA levels of MMPs, macrophage markers, and SMCs were determined in plaque specimens, and in in vitro differentiated M1 and M2 macrophages.
There was a significant difference between autofluorescence signals and MMPSense signals, both on the intraluminal and extraluminal sides of plaques. MMP-9 and CD68 messenger RNA (mRNA) expression was higher in hot spots, whereas MMP-2 and αSMA expression was higher in cold spots. In vitro M2 macrophages had higher mRNA expression of MMP-1, MMP-9, MMP-12, and TIMP-1 compared to M1 macrophages.
MMP-9 is most dominantly MMP present in atherosclerotic plaques and is produced by M2 rather than M1 macrophages.
PMCID: PMC4783451  PMID: 26377769
Matrix metalloproteinase; Macrophage; Atherosclerotic plaque; Smooth muscle cell; MMPSense
2.  Multispectral Optoacoustic Tomography of Matrix Metalloproteinase Activity in Vulnerable Human Carotid Plaques 
Molecular Imaging and Biology  2011;14(3):277-285.
Elevated expression of cathepsins, integrins and matrix metalloproteinases (MMPs) is typically associated with atherosclerotic plaque instability. While fluorescent tagging of such molecules has been amply demonstrated, no imaging method was so far shown capable of resolving these inflammation-associated tags with high fidelity and resolution beyond microscopic depths. This study is aimed at demonstrating a new method with high potential for noninvasive clinical cardiovascular diagnostics of vulnerable plaques using high-resolution deep-tissue multispectral optoacoustic tomography (MSOT) technology.
Methods and results
MMP-sensitive activatable fluorescent probe (MMPSense™ 680) was applied to human carotid plaques from symptomatic patients. Atherosclerotic activity was detected by tuning MSOT wavelengths to activation-dependent absorption changes of the molecules, structurally modified in the presence of enzymes. MSOT analysis simultaneously provided morphology along with heterogeneous MMP activity with better than 200 micron resolution throughout the intact plaque tissue. The results corresponded well with epi-fluorescence images made from thin cryosections. Elevated MMP activity was further confirmed by in situ zymography, accompanied by increased macrophage influx.
We demonstrated, for the first time to our knowledge, the ability of MSOT to provide volumetric images of activatable molecular probe distribution deep within optically diffuse tissues. High-resolution mapping of MMP activity was achieved deep in the vulnerable plaque of intact human carotid specimens. This performance directly relates to pre-clinical screening applications in animal models and to clinical decision potential as it might eventually allow for highly specific visualization and staging of plaque vulnerability thus impacting therapeutic clinical decision making.
PMCID: PMC3346936  PMID: 21720908
Atherosclerosis; Optoacoustic imaging; Carotid arteries; Plaque; Contrast media; Inflammation; Medicine & Public Health; Imaging / Radiology
4.  Multispectral Real-time Fluorescence Imaging for Intraoperative Detection of the Sentinel Lymph Node in Gynecologic Oncology 
The prognosis in virtually all solid tumors depends on the presence or absence of lymph node metastases.1-3 Surgical treatment most often combines radical excision of the tumor with a full lymphadenectomy in the drainage area of the tumor. However, removal of lymph nodes is associated with increased morbidity due to infection, wound breakdown and lymphedema.4,5 As an alternative, the sentinel lymph node procedure (SLN) was developed several decades ago to detect the first draining lymph node from the tumor.6 In case of lymphogenic dissemination, the SLN is the first lymph node that is affected (Figure 1). Hence, if the SLN does not contain metastases, downstream lymph nodes will also be free from tumor metastases and need not to be removed. The SLN procedure is part of the treatment for many tumor types, like breast cancer and melanoma, but also for cancer of the vulva and cervix.7 The current standard methodology for SLN-detection is by peritumoral injection of radiocolloid one day prior to surgery, and a colored dye intraoperatively. Disadvantages of the procedure in cervical and vulvar cancer are multiple injections in the genital area, leading to increased psychological distress for the patient, and the use of radioactive colloid.
Multispectral fluorescence imaging is an emerging imaging modality that can be applied intraoperatively without the need for injection of radiocolloid. For intraoperative fluorescence imaging, two components are needed: a fluorescent agent and a quantitative optical system for intraoperative imaging. As a fluorophore we have used indocyanine green (ICG). ICG has been used for many decades to assess cardiac function, cerebral perfusion and liver perfusion.8 It is an inert drug with a safe pharmaco-biological profile. When excited at around 750 nm, it emits light in the near-infrared spectrum around 800 nm. A custom-made multispectral fluorescence imaging camera system was used.9.
The aim of this video article is to demonstrate the detection of the SLN using intraoperative fluorescence imaging in patients with cervical and vulvar cancer. Fluorescence imaging is used in conjunction with the standard procedure, consisting of radiocolloid and a blue dye. In the future, intraoperative fluorescence imaging might replace the current method and is also easily transferable to other indications like breast cancer and melanoma.
PMCID: PMC3185642  PMID: 21048667
5.  Intraoperative Multispectral Fluorescence Imaging for the Detection of the Sentinel Lymph Node in Cervical Cancer: A Novel Concept 
Molecular Imaging and Biology  2010;13(5):1043-1049.
Real-time intraoperative near-infrared fluorescence (NIRF) imaging is a promising technique for lymphatic mapping and sentinel lymph node (SLN) detection. The purpose of this technical feasibility pilot study was to evaluate the applicability of NIRF imaging with indocyanin green (ICG) for the detection of the SLN in cervical cancer.
In ten patients with early stage cervical cancer, a mixture of patent blue and ICG was injected into the cervix uteri during surgery. Real-time color and fluorescence videos and images were acquired using a custom-made multispectral fluorescence camera system.
Real-time fluorescence lymphatic mapping was observed in vivo in six patients; a total of nine SLNs were detected, of which one (11%) contained metastases. Ex vivo fluorescence imaging revealed the remaining fluorescent signal in 11 of 197 non-sentinel LNs (5%), of which one contained metastatic tumor tissue. None of the non-fluorescent LNs contained metastases.
We conclude that lymphatic mapping and detection of the SLN in cervical cancer using intraoperative NIRF imaging is technically feasible. However, the technique needs to be refined for full applicability in cervical cancer in terms of sensitivity and specificity.
Electronic supplementary material
The online version of this article (doi:10.1007/s11307-010-0425-7) contains supplementary material, which is available to authorized users.
PMCID: PMC3179588  PMID: 20835767
Cervical cancer; Near-infrared fluorescence; Sentinel lymph node; Multispectral intraoperative imaging

Results 1-5 (5)