Search tips
Search criteria

Results 1-18 (18)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Brain Mass and Cranial Nerve Size in Shrews and Moles 
Scientific Reports  2014;4:6241.
We investigated the relationship between body size, brain size, and fibers in selected cranial nerves in shrews and moles. Species include tiny masked shrews (S. cinereus) weighing only a few grams and much larger mole species weighing up to 90 grams. It also includes closely related species with very different sensory specializations – such as the star-nosed mole and the common, eastern mole. We found that moles and shrews have tiny optic nerves with fiber counts not correlated with body or brain size. Auditory nerves were similarly small but increased in fiber number with increasing brain and body size. Trigeminal nerve number was by far the largest and also increased with increasing brain and body size. The star-nosed mole was an outlier, with more than twice the number of trigeminal nerve fibers than any other species. Despite this hypertrophied cranial nerve, star-nosed mole brains were not larger than predicted from body size, suggesting that magnification of their somatosensory systems does not result in greater overall CNS size.
PMCID: PMC4150104  PMID: 25174995
2.  Greater addition of neurons to the olfactory bulb than to the cerebral cortex of eulipotyphlans but not rodents, afrotherians or primates 
The olfactory bulb is an evolutionarily old structure that antedates the appearance of a six-layered mammalian cerebral cortex. As such, the neuronal scaling rules that apply to scaling the mass of the olfactory bulb as a function of its number of neurons might be shared across mammalian groups, as we have found to be the case for the ensemble of non-cortical, non-cerebellar brain structures. Alternatively, the neuronal scaling rules that apply to the olfactory bulb might be distinct in those mammals that rely heavily on olfaction. The group previously referred to as Insectivora includes small mammals, some of which are now placed in Afrotheria, a base group in mammalian radiation, and others in Eulipotyphla, a group derived later, at the base of Laurasiatheria. Here we show that the neuronal scaling rules that apply to building the olfactory bulb differ across eulipotyphlans and other mammals such that eulipotyphlans have more neurons concentrated in an olfactory bulb of similar size than afrotherians, glires and primates. Most strikingly, while the cerebral cortex gains neurons at a faster pace than the olfactory bulb in glires, and afrotherians follow this trend, it is the olfactory bulb that gains neurons at a faster pace than the cerebral cortex in eulipotyphlans, which contradicts the common view that the cerebral cortex is the fastest expanding structure in brain evolution. Our findings emphasize the importance of not using brain structure size as a proxy for numbers of neurons across mammalian orders, and are consistent with the notion that different selective pressures have acted upon the olfactory system of eulipotyphlans, glires and primates, with eulipotyphlans relying more on olfaction for their behavior than glires and primates. Surprisingly, however, the neuronal scaling rules for primates predict that the human olfactory bulb has as many neurons as the larger eulipotyphlan olfactory bulbs, which questions the classification of humans as microsmatic.
PMCID: PMC3990053  PMID: 24782719
olfactory bulb; cortical expansion; mosaic evolution; olfaction
3.  Born Knowing: Tentacled Snakes Innately Predict Future Prey Behavior 
PLoS ONE  2010;5(6):e10953.
Aquatic tentacled snakes (Erpeton tentaculatus) can take advantage of their prey's escape response by startling fish with their body before striking. The feint usually startles fish toward the snake's approaching jaws. But when fish are oriented at a right angle to the jaws, the C-start escape response translates fish parallel to the snake's head. To exploit this latter response, snakes must predict the future location of the fish. Adult snakes can make this prediction. Is it learned, or are tentacled snakes born able to predict future fish behavior?
Methods and Findings
Laboratory-born, naïve snakes were investigated as they struck at fish. Trials were recorded at 250 or 500 frames per second. To prevent learning, snakes were placed in a water container with a clear transparency sheet or glass bottom. The chamber was placed over a channel in a separate aquarium with fish below. Thus snakes could see and strike at fish, without contact. The snake's body feint elicited C-starts in the fish below the transparency sheet, allowing strike accuracy to be quantified in relationship to the C-starts. When fish were oriented at a right angle to the jaws, naïve snakes biased their strikes to the future location of the escaping fish's head, such that the snake's jaws and the fish's translating head usually converged. Several different types of predictive strikes were observed.
The results show that some predators have adapted their nervous systems to directly compensate for the future behavior of prey in a sensory realm that usually requires learning. Instead of behavior selected during their lifetime, newborn tentacled snakes exhibit behavior that has been selected on a different scale—over many generations. Counter adaptations in fish are not expected, as tentacled snakes are rare predators exploiting fish responses that are usually adaptive.
PMCID: PMC2886828  PMID: 20585384
4.  Barrelettes without Barrels in the American Water Shrew 
PLoS ONE  2013;8(6):e65975.
Water shrews (Sorex palustris) depend heavily on their elaborate whiskers to navigate their environment and locate prey. They have small eyes and ears with correspondingly small optic and auditory nerves. Previous investigations have shown that water shrew neocortex is dominated by large representations of the whiskers in primary and secondary somatosensory cortex (S1 and S2). Flattened sections of juvenile cortex processed for cytochrome oxidase revealed clear borders of the whisker pad representation in S1, but no cortical barrels. We were therefore surprised to discover prominent barrelettes in brainstem of juvenile water shrews in the present investigation. These distinctive modules were found in the principal trigeminal nucleus (PrV), and in two of the three spinal trigeminal subnuclei (interpolaris – SpVi and caudalis – SpVc). Analysis of the shrew's whisker pad revealed the likely relationship between whiskers and barrelettes. Barrelettes persisted in adult water shrew PrV, but barrels were also absent from adult cortex. Thus in contrast to mice and rats, which have obvious barrels in primary somatosensory cortex and less clear barrelettes in the principal nucleus, water shrews have clear barrelettes in the brainstem and no barrels in the neocortex. These results highlight the diverse ways that similar mechanoreceptors can be represented in the central nervous systems of different species.
PMCID: PMC3670899  PMID: 23755296
5.  The Star-Nosed Mole Reveals Clues to the Molecular Basis of Mammalian Touch 
PLoS ONE  2013;8(1):e55001.
Little is known about the molecular mechanisms underlying mammalian touch transduction. To identify novel candidate transducers, we examined the molecular and cellular basis of touch in one of the most sensitive tactile organs in the animal kingdom, the star of the star-nosed mole. Our findings demonstrate that the trigeminal ganglia innervating the star are enriched in tactile-sensitive neurons, resulting in a higher proportion of light touch fibers and lower proportion of nociceptors compared to the dorsal root ganglia innervating the rest of the body. We exploit this difference using transcriptome analysis of the star-nosed mole sensory ganglia to identify novel candidate mammalian touch and pain transducers. The most enriched candidates are also expressed in mouse somatosesensory ganglia, suggesting they may mediate transduction in diverse species and are not unique to moles. These findings highlight the utility of examining diverse and specialized species to address fundamental questions in mammalian biology.
PMCID: PMC3559429  PMID: 23383028
6.  Cutaneous and periodontal inputs to the cerebellum of the naked mole-rat (Heterocephalus glaber) 
The naked mole-rat (Heterocephalus glaber) is a small fossorial rodent with specialized dentition that is reflected by the large cortical area dedicated to representation of the prominent incisors. Due to naked mole-rats’ behavioral reliance on the incisors for digging and for manipulating objects, as well as their ability to move the lower incisors independently, we hypothesized that expanded somatosensory representations of the incisors would be present within the cerebellum in order to accommodate a greater degree of proprioceptive, cutaneous, and periodontal input. Multiunit electrophysiological recordings targeting the ansiform lobule were used to investigate tactile inputs from receptive fields on the entire body with a focus on the incisors. Similar to other rodents, a fractured somatotopy appeared to be present with discrete representations of the same receptive fields repeated within each folium of the cerebellum. These findings confirm the presence of somatosensory inputs to a large area of the naked mole-rat cerebellum with particularly extensive representations of the lower incisors and mystacial vibrissae. We speculate that these extensive inputs facilitate processing of tactile cues as part of a sensorimotor integration network that optimizes how sensory stimuli are acquired through active exploration and in turn adjusts motor outputs (such as independent movement of the lower incisors). These results highlight the diverse sensory specializations and corresponding brain organizational schemes that have evolved in different mammals to facilitate exploration of and interaction with their environment.
PMCID: PMC3831171  PMID: 24302898
naked mole-rat; somatosensory; tactile exploration; grasping; dentition; incisor; cerebellum; electrophysiology
7.  The sense of touch in the star-nosed mole: from mechanoreceptors to the brain 
Star-nosed moles are somatosensory specialists that explore their environment with 22 appendages that ring their nostrils. The appendages are covered with sensory domes called Eimer's organs. Each organ is associated with a Merkel cell–neurite complex, a lamellated corpuscle, and a series of 5–10 free nerve endings that form a circle of terminal swellings. Anatomy and electrophysiological recordings suggest that Eimer's organs detect small shapes and textures. There are parallels between the organization of the mole's somatosensory system and visual systems of other mammals. The centre of the star is a tactile fovea used for detailed exploration of objects and prey items. The tactile fovea is over-represented in the neocortex, and this is evident in the modular, anatomically visible representation of the star. Multiple maps of the star are visible in flattened cortical preparations processed for cytochrome oxidase or NADPH-diaphorase. Star-nosed moles are the fastest known foragers among mammals, able to identify and consume a small prey item in 120 ms. Together these behavioural and nervous system specializations have made star-nosed moles an intriguing model system for examining general and specialized aspects of mammalian touch.
PMCID: PMC3172592  PMID: 21969683
somatosensory; tactile; skin; neocortex; evolution
8.  Updated Neuronal Scaling Rules for the Brains of Glires (Rodents/Lagomorphs) 
Brain, Behavior and Evolution  2011;78(4):302-314.
Brain size scales as different functions of its number of neurons across mammalian orders such as rodents, primates, and insectivores. In rodents, we have previously shown that, across a sample of 6 species, from mouse to capybara, the cerebral cortex, cerebellum and the remaining brain structures increase in size faster than they gain neurons, with an accompanying decrease in neuronal density in these structures [Herculano-Houzel et al.: Proc Natl Acad Sci USA 2006;103:12138–12143]. Important remaining questions are whether such neuronal scaling rules within an order apply equally to all pertaining species, and whether they extend to closely related taxa. Here, we examine whether 4 other species of Rodentia, as well as the closely related rabbit (Lagomorpha), conform to the scaling rules identified previously for rodents. We report the updated neuronal scaling rules obtained for the average values of each species in a way that is directly comparable to the scaling rules that apply to primates [Gabi et al.: Brain Behav Evol 2010;76:32–44], and examine whether the scaling relationships are affected when phylogenetic relatedness in the dataset is accounted for. We have found that the brains of the spiny rat, squirrel, prairie dog and rabbit conform to the neuronal scaling rules that apply to the previous sample of rodents. The conformity to the previous rules of the new set of species, which includes the rabbit, suggests that the cellular scaling rules we have identified apply to rodents in general, and probably to Glires as a whole (rodents/lagomorphs), with one notable exception: the naked mole-rat brain is apparently an outlier, with only about half of the neurons expected from its brain size in its cerebral cortex and cerebellum.
PMCID: PMC3237106  PMID: 21985803
Rodents; Brain size; Evolution; Neurons; Glia; Glires
9.  Organization of somatosensory cortex in the northern grasshopper mouse (Onychomys leucogaster), a predatory rodent 
Northern grasshopper mice (Onychomys leucogaster) are among the most highly carnivorous rodents in North America. Because predatory mammals may have specialization of senses used to detect prey, we investigated the organization of sensory areas within grasshopper mouse neocortex and quantified the number of myelinated axons in grasshopper mouse trigeminal, cochlear, and optic nerves. Multiunit electrophysiological recordings combined with analysis of flattened sections of neocortex processed for cytochrome oxidase were used to determine the topography of primary somatosensory cortex (S1) and the location and size of both the visual and auditory cortex in adult animals. These findings were then related to the distinctive chemoarchitecture of layer IV visible in flattened cortical sections of juvenile grasshopper mice labeled with the serotonin transporter (SERT) antibody, revealing a striking correspondence between electrophysiological maps and cortical anatomy.
PMCID: PMC3064439  PMID: 21120928
S1; trigeminal; somatosensory; visual; forepaw; evolution; predator
10.  Heterochrony and developmental modularity of cranial osteogenesis in lipotyphlan mammals 
EvoDevo  2011;2:21.
Here we provide the most comprehensive study to date on the cranial ossification sequence in Lipotyphla, the group which includes shrews, moles and hedgehogs. This unique group, which encapsulates diverse ecological modes, such as terrestrial, subterranean, and aquatic lifestyles, is used to examine the evolutionary lability of cranial osteogenesis and to investigate the modularity of development.
An acceleration of developmental timing of the vomeronasal complex has occurred in the common ancestor of moles. However, ossification of the nasal bone has shifted late in the more terrestrial shrew mole. Among the lipotyphlans, sequence heterochrony shows no significant association with modules derived from developmental origins (that is, neural crest cells vs. mesoderm derived parts) or with those derived from ossification modes (that is, dermal vs. endochondral ossification).
The drastic acceleration of vomeronasal development in moles is most likely coupled with the increased importance of the rostrum for digging and its use as a specialized tactile surface, both fossorial adaptations. The late development of the nasal in shrew moles, a condition also displayed by hedgehogs and shrews, is suggested to be the result of an ecological reversal to terrestrial lifestyle and reduced functional importance of the rostrum. As an overall pattern in lipotyphlans, our results reject the hypothesis that ossification sequence heterochrony occurs in modular fashion when considering the developmental patterns of the skull. We suggest that shifts in the cranial ossification sequence are not evolutionarily constrained by developmental origins or mode of ossification.
PMCID: PMC3247175  PMID: 22040374
skull; heterochrony; Eulipotyphla; embryology; ossification; integration; phylogeny; micro CT
11.  A Star in the Brainstem Reveals the First Step of Cortical Magnification 
PLoS ONE  2011;6(7):e22406.
A fundamental question in the neurosciences is how central nervous system (CNS) space is allocated to different sensory inputs. Yet it is difficult to measure innervation density and corresponding representational areas in the CNS of most species. These measurements can be made in star-nosed moles (Condylura cristata) because the cortical representation of nasal rays is visible in flattened sections and afferents from each ray can be counted. Here we used electrophysiological recordings combined with sections of the brainstem to identify a large, visible star representation in the principal sensory nucleus (PrV). PrV was greatly expanded and bulged out of the brainstem rostrally to partially invade the trigeminal nerve. The star representation was a distinct PrV subnucleus containing 11 modules, each representing one of the nasal rays. The 11 PrV ray representations were reconstructed to obtain volumes and the largest module corresponded to ray 11, the mole's tactile fovea. These measures were compared to fiber counts and primary cortical areas from a previous investigation. PrV ray volumes were closely correlated with the number of afferents from each ray, but afferents from the behaviorally most important, 11th ray were preferentially over-represented. This over-representation at the brainstem level was much less than at the cortical level. Our results indicate that PrV provides the first step in magnifying CNS representations of important afferents, but additional magnification occurs at higher levels. The early development of the 11th, foveal appendage could provide a mechanism for the most important afferents to capture the most CNS space.
PMCID: PMC3139641  PMID: 21811600
12.  Molecular basis of a novel adaptation to hypoxic-hypercapnia in a strictly fossorial mole 
Elevated blood O2 affinity enhances survival at low O2 pressures, and is perhaps the best known and most broadly accepted evolutionary adjustment of terrestrial vertebrates to environmental hypoxia. This phenotype arises by increasing the intrinsic O2 affinity of the hemoglobin (Hb) molecule, by decreasing the intracellular concentration of allosteric effectors (e.g., 2,3-diphosphoglycerate; DPG), or by suppressing the sensitivity of Hb to these physiological cofactors.
Here we report that strictly fossorial eastern moles (Scalopus aquaticus) have evolved a low O2 affinity, DPG-insensitive Hb - contrary to expectations for a mammalian species that is adapted to the chronic hypoxia and hypercapnia of subterranean burrow systems. Molecular modelling indicates that this functional shift is principally attributable to a single charge altering amino acid substitution in the β-type δ-globin chain (δ136Gly→Glu) of this species that perturbs electrostatic interactions between the dimer subunits via formation of an intra-chain salt-bridge with δ82Lys. However, this replacement also abolishes key binding sites for the red blood cell effectors Cl-, lactate and DPG (the latter of which is virtually absent from the red cells of this species) at δ82Lys, thereby markedly reducing competition for carbamate formation (CO2 binding) at the δ-chain N-termini.
We propose this Hb phenotype illustrates a novel mechanism for adaptively elevating the CO2 carrying capacity of eastern mole blood during burst tunnelling activities associated with subterranean habitation.
PMCID: PMC2927915  PMID: 20637064
13.  Cessation of Reproduction-Related Spine Elongation After Multiple Breeding Cycles in Female Naked Mole-Rats 
The breeding female or “queen” naked mole-rat has a uniquely elongated body morphology attributed to the lengthening of the lumbar vertebral column that occurs during pregnancy. It is unknown whether this vertebral growth is a continuous process, or associated only with early reproductive experience. We compared pregnancy-related bone elongation in nascent primiparous queens and established queens to determine if this vertebral expansion was a lifelong process in these females. We also investigated the impact of lactation on vertebral elongation in these mole-rats because it is known to be a time of significant bone loss in other mammals. Our data show that after eight or more pregnancies, established queens no longer experienced a net gain in lumbar spine length over the reproductive cycle, whereas the nascent breeders demonstrated significant spine lengthening over this time. Despite the lack of net spine lengthening in established breeders, our results indicated that these queens still experienced some pregnancy-specific vertebral elongation. In naked mole-rats, pregnancy-induced bone elongation may serve the dual purposes of first lengthening the spine, and then once optimal spine size is achieved, serving as a homeostatic mechanism that prepares the spine for the mineral demands of lactation.
PMCID: PMC2864304  PMID: 18951517
longitudinal bone growth; lumbar vertebrae; pregnancy; lactation; rodents; eusocial
14.  Distinct tumor suppressor mechanisms evolve in rodent species that differ in size and lifespan 
Aging cell  2008;7(6):813-823.
Large, long-lived species experience more lifetime cell divisions and hence a greater risk of spontaneous tumor formation than smaller, short-lived species. Large, long-lived species are thus expected to evolve more elaborate tumor suppressor systems. In previous work, we showed that telomerase activity coevolves with body mass, but not lifespan, in rodents: telomerase activity is repressed in the somatic tissues of large rodent species but remains active in small ones. Without telomerase activity, the telomeres of replicating cells become progressively shorter until, at some critical length, cells stop dividing. Our findings therefore suggested that repression of telomerase activity mitigates the increased risk of cancer in larger bodied species but not necessarily longer-lived ones. These findings imply that other tumor suppressor mechanisms must mitigate increased cancer risk in long-lived species. Here, we examined the proliferation of fibroblasts from 15 rodent species with diverse body sizes and lifespans. We show that, consistent with repressed telomerase activity, fibroblasts from large rodents undergo replicative senescence accompanied by telomere shortening and overexpression of p16Ink4a and p21Cip1/Waf1 cycline dependent kinase inhibitors. Interestingly, small rodents with different lifespans show a striking difference: cells from small shorter-lived species display continuous rapid proliferation, whereas cells from small long-lived species display continuous slow proliferation. We hypothesize that cells of small long-lived rodents, lacking replicative senescence, have evolved alternative tumor-suppressor mechanisms that prevent inappropriate cell division in vivo and slow cell growth in vitro. Thus, large-bodied species and small but long-lived species have evolved distinct tumor suppressor mechanisms.
PMCID: PMC2637185  PMID: 18778411
Lifespan; body mass; senescence; evolution; cancer
15.  Telomerase activity coevolves with body mass, not lifespan 
Aging cell  2006;6(1):45-52.
In multicellular organisms, telomerase is required to maintain telomere length in the germline but is dispensable in the soma. Mice, for example, express telomerase in somatic and germline tissues, while humans express telomerase almost exclusively in the germline. As a result, when telomeres of human somatic cells reach a critical length the cells enter irreversible growth arrest called replicative senescence. Replicative senescence is believed to be an anticancer mechanism that limits cell proliferation. The difference between mice and humans led to the hypothesis that repression of telomerase in somatic cells has evolved as a tumor-suppressor adaptation in large, long-lived organisms. We tested whether regulation of telomerase activity coevolves with lifespan and body mass using comparative analysis of 15 rodent species with highly diverse lifespans and body masses. Here we show that telomerase activity does not coevolve with lifespan but instead coevolves with body mass: larger rodents repress telomerase activity in somatic cells. These results suggest that large body mass presents a greater risk of cancer than long lifespan, and large animals evolve repression of telomerase activity to mitigate that risk.
PMCID: PMC2693359  PMID: 17173545
body mass; cancer; evolution; lifespan; rodents; telomerase
16.  Cellular Scaling Rules of Insectivore Brains 
Insectivores represent extremes in mammalian body size and brain size, retaining various “primitive” morphological characteristics, and some species of Insectivora are thought to share similarities with small-bodied ancestral eutherians. This raises the possibility that insectivore brains differ from other taxa, including rodents and primates, in cellular scaling properties. Here we examine the cellular scaling rules for insectivore brains and demonstrate that insectivore scaling rules overlap somewhat with those for rodents and primates such that the insectivore cortex shares scaling rules with rodents (increasing faster in size than in numbers of neurons), but the insectivore cerebellum shares scaling rules with primates (increasing isometrically). Brain structures pooled as “remaining areas” appear to scale similarly across all three mammalian orders with respect to numbers of neurons, and the numbers of non-neurons appear to scale similarly across all brain structures for all three orders. Therefore, common scaling rules exist, to different extents, between insectivore, rodent, and primate brain regions, and it is hypothesized that insectivores represent the common aspects of each order. The olfactory bulbs of insectivores, however, offer a noteworthy exception in that neuronal density increases linearly with increasing structure mass. This implies that the average neuronal cell size decreases with increasing olfactory bulb mass in order to accommodate greater neuronal density, and represents the first documentation of a brain structure gaining neurons at a greater rate than mass. This might allow insectivore brains to concentrate more neurons within the olfactory bulbs without a prohibitively large and metabolically costly increase in structure mass.
PMCID: PMC2713736  PMID: 19636383
allometry; brain size; comparative neuroanatomy; glia; neurons; evolution; olfactory bulb
17.  Worm Grunting, Fiddling, and Charming—Humans Unknowingly Mimic a Predator to Harvest Bait 
PLoS ONE  2008;3(10):e3472.
For generations many families in and around Florida's Apalachicola National Forest have supported themselves by collecting the large endemic earthworms (Diplocardia mississippiensis). This is accomplished by vibrating a wooden stake driven into the soil, a practice called “worm grunting”. In response to the vibrations, worms emerge to the surface where thousands can be gathered in a few hours. Why do these earthworms suddenly exit their burrows in response to vibrations, exposing themselves to predation?
Principal Findings
Here it is shown that a population of eastern American moles (Scalopus aquaticus) inhabits the area where worms are collected and that earthworms have a pronounced escape response from moles consisting of rapidly exiting their burrows to flee across the soil surface. Recordings of vibrations generated by bait collectors and moles suggest that “worm grunters” unknowingly mimic digging moles. An alternative possibility, that worms interpret vibrations as rain and surface to avoid drowning is not supported.
Previous investigations have revealed that both wood turtles and herring gulls vibrate the ground to elicit earthworm escapes, indicating that a range of predators may exploit the predator-prey relationship between earthworms and moles. In addition to revealing a novel escape response that may be widespread among soil fauna, the results show that humans have played the role of “rare predators” in exploiting the consequences of a sensory arms race.
PMCID: PMC2566961  PMID: 18852902
18.  Identification of retinal neurons in a regressive rodent eye (the naked mole-rat) 
Visual neuroscience  2004;21(2):107-117.
The retina consists of many parallel circuits designed to maximize the gathering of important information from the environment. Each of these circuits is comprised of a number of different cell types combined in modules that tile the retina. To a subterranean animal, vision is of relatively less importance. Knowledge of how circuits and their elements are altered in response to the subterranean environment is useful both in understanding processes of regressive evolution and in retinal processing itself. We examined common cell types in the retina of the naked mole-rat, Heterocephalus glaber with immunocytochemical markers and retrograde staining of ganglion cells from optic nerve injections. The stains used show that the naked mole-rat eye has retained multiple ganglion cell types, 1–2 types of horizontal cell, rod bipolar and multiple types of cone bipolar cells, and several types of common amacrine cells. However, no labeling was found with antibodies to the dopamine-synthesizing enzyme, tyrosine hydroxylase. Although most of the well-characterized mammalian cell types are present in the regressive mole-rat eye, their structural organization is considerably less regular than in more sighted mammals. We found less precision of depth of stratification in the inner plexiform layer and also less precision in their lateral coverage of the retina. The results suggest that image formation is not very important in these animals, but that circuits beyond those required for circadian entrainment remain in place.
PMCID: PMC1829152  PMID: 15259562
Mole-rat; Regressive evolution; Eye; Vision; Retina

Results 1-18 (18)