PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (60)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  miRNA Expression Profiling Enables Risk Stratification in Archived and Fresh Neuroblastoma Tumor Samples 
Purpose
More accurate assessment of prognosis is important to further improve the choice of risk-related therapy in neuroblastoma (NB) patients. In this study, we aimed to establish and validate a prognostic miRNA signature for children with NB and tested it in both fresh frozen and archived formalin-fixed paraffin-embedded (FFPE) samples.
Experimental Design
Four hundred-thirty human mature miRNAs were profiled in two patient subgroups with maximally divergent clinical courses. Univariate logistic regression analysis was used to select miRNAs correlating with NB patient survival. A 25-miRNA gene signature was built using 51 training samples, tested on 179 test samples, and validated on an independent set of 304 fresh frozen tumor samples and 75 archived FFPE samples.
Results
The 25-miRNA signature significantly discriminates the test patients with respect to progression-free and overall survival (P < 0.0001), both in the overall population and in the cohort of high-risk patients. Multivariate analysis indicates that the miRNA signature is an independent predictor of patient survival after controlling for current risk factors. The results were confirmed in an external validation set. In contrast to a previously published mRNA classifier, the 25-miRNA signature was found to be predictive for patient survival in a set of 75 FFPE neuroblastoma samples.
Conclusions
In this study, we present the largest NB miRNA expression study so far, including more than 500 NB patients. We established and validated a robust miRNA classifier, able to identify a cohort of high-risk NB patients at greater risk for adverse outcome using both fresh frozen and archived material.
doi:10.1158/1078-0432.CCR-11-0610
PMCID: PMC4008338  PMID: 22031095
2.  Activated Alk triggers prolonged neurogenesis and Ret upregulation providing a therapeutic target in ALK-mutated neuroblastoma 
Oncotarget  2014;5(9):2688-2702.
Activating mutations of the ALK (Anaplastic lymphoma Kinase) gene have been identified in sporadic and familial cases of neuroblastoma, a cancer of early childhood arising from the sympathetic nervous system (SNS). To decipher ALK function in neuroblastoma predisposition and oncogenesis, we have characterized knock-in (KI) mice bearing the two most frequent mutations observed in neuroblastoma patients. A dramatic enlargement of sympathetic ganglia is observed in AlkF1178L mice from embryonic to adult stages associated with an increased proliferation of sympathetic neuroblasts from E14.5 to birth. In a MYCN transgenic context, the F1178L mutation displays a higher oncogenic potential than the R1279Q mutation as evident from a shorter latency of tumor onset. We show that tumors expressing the R1279Q mutation are sensitive to ALK inhibition upon crizotinib treatment. Furthermore, our data provide evidence that activated ALK triggers RET upregulation in mouse sympathetic ganglia at birth as well as in murine and human neuroblastoma. Using vandetanib, we show that RET inhibition strongly impairs tumor growth in vivo in both MYCN/KI AlkR1279Q and MYCN/KI AlkF1178L mice. Altogether, our findings demonstrate the critical role of activated ALK in SNS development and pathogenesis and identify RET as a therapeutic target in ALK mutated neuroblastoma.
PMCID: PMC4058037  PMID: 24811913
Neuroblastoma; ALK; neurogenesis; therapeutic target; RET
4.  PHF6 mutations in adult acute myeloid leukemia 
Leukemia  2010;25(1):10.1038/leu.2010.247.
Loss of function mutations and deletions encompassing the PHF6 gene are present in about 20% of T-cell acute lymphoblastic leukemias. Here we report the identification of recurrent mutations in PHF6 in 10/353 adult acute myeloid leukemias (AML). Genetic lesions in PHF6 found in AML are frameshift and nonsense mutations distributed through the gene or point mutations involving the second PHD-like domain of the protein. As in the case of T-ALL, where PHF6 alterations are found almost exclusively in males, mutations in PHF6 were 7 times more prevalent in males than in females with AML. Overall these results identify PHF6 as a tumor suppressor mutated in AML and extend the role of this X-linked tumor suppressor gene in the pathogenesis of hematologic tumors.
doi:10.1038/leu.2010.247
PMCID: PMC3878659  PMID: 21030981
PHF6; mutations; AML
5.  Comprehensive Analysis of Transcriptome Variation Uncovers Known and Novel Driver Events in T-Cell Acute Lymphoblastic Leukemia 
PLoS Genetics  2013;9(12):e1003997.
RNA-seq is a promising technology to re-sequence protein coding genes for the identification of single nucleotide variants (SNV), while simultaneously obtaining information on structural variations and gene expression perturbations. We asked whether RNA-seq is suitable for the detection of driver mutations in T-cell acute lymphoblastic leukemia (T-ALL). These leukemias are caused by a combination of gene fusions, over-expression of transcription factors and cooperative point mutations in oncogenes and tumor suppressor genes. We analyzed 31 T-ALL patient samples and 18 T-ALL cell lines by high-coverage paired-end RNA-seq. First, we optimized the detection of SNVs in RNA-seq data by comparing the results with exome re-sequencing data. We identified known driver genes with recurrent protein altering variations, as well as several new candidates including H3F3A, PTK2B, and STAT5B. Next, we determined accurate gene expression levels from the RNA-seq data through normalizations and batch effect removal, and used these to classify patients into T-ALL subtypes. Finally, we detected gene fusions, of which several can explain the over-expression of key driver genes such as TLX1, PLAG1, LMO1, or NKX2-1; and others result in novel fusion transcripts encoding activated kinases (SSBP2-FER and TPM3-JAK2) or involving MLLT10. In conclusion, we present novel analysis pipelines for variant calling, variant filtering, and expression normalization on RNA-seq data, and successfully applied these for the detection of translocations, point mutations, INDELs, exon-skipping events, and expression perturbations in T-ALL.
Author Summary
The quest for somatic mutations underlying oncogenic processes is a central theme in today's cancer research. High-throughput genomics approaches including amplicon re-sequencing, exome re-sequencing, full genome re-sequencing, and SNP arrays have contributed to cataloguing driver genes across cancer types. Thus far transcriptome sequencing by RNA-seq has been mainly used for the detection of fusion genes, while few studies have assessed its value for the combined detection of SNPs, INDELs, fusions, gene expression changes, and alternative transcript events. Here we apply RNA-seq to 49 T-ALL samples and perform a critical assessment of the bioinformatics pipelines and filters to identify each type of aberration. By comparing to exome re-sequencing, and by exploiting the catalogues of known cancer drivers, we identified many known and several novel driver genes in T-ALL. We also determined an optimal normalization strategy to obtain accurate gene expression levels and used these to identify over-expressed transcription factors that characterize different T-ALL subtypes. Finally, by PCR, cloning, and in vitro cellular assays we uncover new fusion genes that have consequences at the level of gene expression, oncogenic chimaeras, and tumor suppressor inactivation. In conclusion, we present the first RNA-seq data set across T-ALL patients and identify new driver events.
doi:10.1371/journal.pgen.1003997
PMCID: PMC3868543  PMID: 24367274
6.  Modulation of Neuroblastoma Disease Pathogenesis By An Extensive Network of Epigenetically Regulated MicroRNAs 
Oncogene  2012;32(24):2927-2936.
MicroRNAs contribute to the pathogenesis of many forms of cancer, including the pediatric cancer neuroblastoma, but the underlying mechanisms leading to altered miRNA expression are often unknown. Here, a novel integrated approach for analyzing DNA methylation coupled with miRNA and mRNA expression data sets identified 67 epigenetically regulated miRNA in neuroblastoma. A large proportion (42%) of these miRNAs were associated with poor patient survival when under-expressed in tumors. Moreover, we demonstrate that this panel of epigenetically silenced miRNAs targets a large set of genes that are over-expressed in tumors from patients with poor survival in a highly redundant manner. The genes targeted by the epigenetically regulated miRNAs are enriched for a number of biological processes, including regulation of cell differentiation. Functional studies involving ectopic over-expression of several of the epigenetically silenced miRNAs had a negative impact on neuroblastoma cell viability, providing further support to the concept that inactivation of these miRNAs is important for neuroblastoma disease pathogenesis. One locus, miR-340, induced either differentiation or apoptosis in a cell context dependent manner, indicating a tumor suppressive function for this miRNA. Intriguingly, it was determined that miR-340 is up-regulated by demethylation of an upstream genomic region that occurs during the process of neuroblastoma cell differentiation induced by all-trans retinoic acid (ATRA). Further biological studies of miR-340 revealed that it directly represses the SOX2 transcription factor by targeting of its 3’ UTR, explaining the mechanism by which SOX2 is down-regulated by ATRA. Although SOX2 contributes to the maintenance of stem cells in an undifferentiated state, we demonstrate that miR-340 mediated down-regulation of SOX2 is not required for ATRA induced differentiation to occur. In summary, our results exemplify the dynamic nature of the miRNA epigenome and identify a remarkable network of miRNA/mRNA interactions that significantly contribute to neuroblastoma disease pathogenesis.
doi:10.1038/onc.2012.311
PMCID: PMC3477279  PMID: 22797059
miRNA; methylation; tumor suppressor; neuroblastoma; SOX2
7.  A p53 Drug Response Signature Identifies Prognostic Genes in High-Risk Neuroblastoma 
PLoS ONE  2013;8(11):e79843.
Chemotherapy induces apoptosis and tumor regression primarily through activation of p53-mediated transcription. Neuroblastoma is a p53 wild type malignancy at diagnosis and repression of p53 signaling plays an important role in its pathogenesis. Recently developed small molecule inhibitors of the MDM2-p53 interaction are able to overcome this repression and potently activate p53 dependent apoptosis in malignancies with intact p53 downstream signaling. We used the small molecule MDM2 inhibitor, Nutlin-3a, to determine the p53 drug response signature in neuroblastoma cells. In addition to p53 mediated apoptotic signatures, GSEA and pathway analysis identified a set of p53-repressed genes that were reciprocally over-expressed in neuroblastoma patients with the worst overall outcome in multiple clinical cohorts. Multifactorial regression analysis identified a subset of four genes (CHAF1A, RRM2, MCM3, and MCM6) whose expression together strongly predicted overall and event-free survival (p<0.0001). The expression of these four genes was then validated by quantitative PCR in a large independent clinical cohort. Our findings further support the concept that oncogene-driven transcriptional networks opposing p53 activation are essential for the aggressive behavior and poor response to therapy of high-risk neuroblastoma.
doi:10.1371/journal.pone.0079843
PMCID: PMC3865347  PMID: 24348903
8.  BET bromodomain protein inhibition is a therapeutic option for medulloblastoma 
Oncotarget  2013;4(11):2080-2095.
Medulloblastoma is the most common malignant brain tumor of childhood, and represents a significant clinical challenge in pediatric oncology, since overall survival currently remains under 70%. Patients with tumors overexpressing MYC or harboring a MYC oncogene amplification have an extremely poor prognosis. Pharmacologically inhibiting MYC expression may, thus, have clinical utility given its pathogenetic role in medulloblastoma. Recent studies using the selective small molecule BET inhibitor, JQ1, have identified BET bromodomain proteins, especially BRD4, as epigenetic regulatory factors for MYC and its targets. Targeting MYC expression by BET inhibition resulted in antitumoral effects in various cancers. Our aim here was to evaluate the efficacy of JQ1 against preclinical models for high-risk MYC-driven medulloblastoma. Treatment of medulloblastoma cell lines with JQ1 significantly reduced cell proliferation and preferentially induced apoptosis in cells expressing high levels of MYC. JQ1 treatment of medulloblastoma cell lines downregulated MYC expression and resulted in a transcriptional deregulation of MYC targets, and also significantly altered expression of genes involved in cell cycle progression and p53 signalling. JQ1 treatment prolonged the survival of mice harboring medulloblastoma xenografts and reduced the tumor burden in these mice. Our preclinical data provide evidence to pursue testing BET inhibitors, such as JQ1, as molecular targeted therapeutic options for patients with high-risk medulloblastomas overexpressing MYC or harboring MYC amplifications.
PMCID: PMC3875771  PMID: 24231268
BET bromodomains; BRD4; MYC; JQ1; pediatric brain tumors; targeted therapy
9.  Effective Alu Repeat Based RT-Qpcr Normalization in Cancer Cell Perturbation Experiments 
PLoS ONE  2013;8(8):e71776.
Background
Measuring messenger RNA (mRNA) levels using the reverse transcription quantitative polymerase chain reaction (RT-qPCR) is common practice in many laboratories. A specific set of mRNAs as internal control reference genes is considered as the preferred strategy to normalize RT-qPCR data. Proper selection of reference genes is a critical issue, especially in cancer cells that are subjected to different in vitro manipulations. These manipulations may result in dramatic alterations in gene expression levels, even of assumed reference genes. In this study, we evaluated the expression levels of 11 commonly used reference genes as internal controls for normalization of 19 experiments that include neuroblastoma, T-ALL, melanoma, breast cancer, non small cell lung cancer (NSCL), acute myeloid leukemia (AML), prostate cancer, colorectal cancer, and cervical cancer cell lines subjected to various perturbations.
Results
The geNorm algorithm in the software package qbase+ was used to rank the candidate reference genes according to their expression stability. We observed that the stability of most of the candidate reference genes varies greatly in perturbation experiments. Expressed Alu repeats show relatively stable expression regardless of experimental condition. These Alu repeats are ranked among the best reference assays in all perturbation experiments and display acceptable average expression stability values (M<0.5).
Conclusions
We propose the use of Alu repeats as a reference assay when performing cancer cell perturbation experiments.
doi:10.1371/journal.pone.0071776
PMCID: PMC3743747  PMID: 23977142
10.  Pharmacological activation of the p53 pathway by nutlin-3 exerts anti-tumoral effects in medulloblastomas 
Neuro-Oncology  2012;14(7):859-869.
Medulloblastomas account for 20% of pediatric brain tumors. With an overall survival of 40%–70%, their treatment is still a challenge. The majority of medulloblastomas lack p53 mutations, but even in cancers retaining wild-type p53, the tumor surveillance function of p53 is inhibited by the oncoprotein MDM2. Deregulation of the MDM2/p53 balance leads to malignant transformation. Here, we analyzed MDM2 mRNA and protein expression in primary medulloblastomas and normal cerebellum and assessed the mutational status of p53 and MDM2 expression in 6 medulloblastoma cell lines. MDM2 expression was elevated in medulloblastomas, compared with cerebellum. Four of 6 medulloblastoma cell lines expressed wild-type p53 and high levels of MDM2. The tumor-promoting p53-MDM2 interaction can be inhibited by the small molecule, nutlin-3, restoring p53 function. Targeting the p53-MDM2 axis using nutlin-3 significantly reduced cell viability and induced either cell cycle arrest or apoptosis and expression of the p53 target gene p21 in these 4 cell lines. In contrast, DAOY and UW-228 cells harboring TP53 mutations were almost unaffected by nutlin-3 treatment. MDM2 knockdown in medulloblastoma cells by siRNA mimicked nutlin-3 treatment, whereas expression of dominant negative p53 abrogated nutlin-3 effects. Oral nutlin-3 treatment of mice with established medulloblastoma xenografts inhibited tumor growth and significantly increased survival. Thus, nutlin-3 reduced medulloblastoma cell viability in vitro and in vivo by re-activating p53 function. We suggest that inhibition of the MDM2-p53 interaction with nutlin-3 is a promising therapeutic option for medulloblastomas with functional p53 that should be further evaluated in clinical trials.
doi:10.1093/neuonc/nos115
PMCID: PMC3379802  PMID: 22591662
MDM2; medulloblastoma; nutlin-3; p21; wild-type p53
11.  Dynamic Activity of miR-125b and miR-93 during Murine Neural Stem Cell Differentiation In Vitro and in the Subventricular Zone Neurogenic Niche 
PLoS ONE  2013;8(6):e67411.
Several microRNAs (miRNAs) that are either specifically enriched or highly expressed in neurons and glia have been described, but the identification of miRNAs modulating neural stem cell (NSC) biology remains elusive. In this study, we exploited high throughput miRNA expression profiling to identify candidate miRNAs enriched in NSC/early progenitors derived from the murine subventricular zone (SVZ). Then, we used lentiviral miRNA sensor vectors (LV.miRT) to monitor the activity of shortlisted miRNAs with cellular and temporal resolution during NSC differentiation, taking advantage of in vitro and in vivo models that recapitulate physiological neurogenesis and gliogenesis and using known neuronal- and glial-specific miRNAs as reference. The LV.miRT platform allowed us monitoring endogenous miRNA activity in low represented cell populations within a bulk culture or within the complexity of CNS tissue, with high sensitivity and specificity. In this way we validated and extended previous results on the neuronal-specific miR-124 and the astroglial-specific miR-23a. Importantly, we describe for the first time a cell type- and differentiation stage-specific modulation of miR-93 and miR-125b in SVZ-derived NSC cultures and in the SVZ neurogenic niche in vivo, suggesting key roles of these miRNAs in regulating NSC function.
doi:10.1371/journal.pone.0067411
PMCID: PMC3694868  PMID: 23826292
12.  CLL Cells Respond to B-Cell Receptor Stimulation with a MicroRNA/mRNA Signature Associated with MYC Activation and Cell Cycle Progression 
PLoS ONE  2013;8(4):e60275.
Chronic lymphocytic leukemia (CLL) is a disease with variable clinical outcome. Several prognostic factors such as the immunoglobulin heavy chain variable genes (IGHV) mutation status are linked to the B-cell receptor (BCR) complex, supporting a role for triggering the BCR in vivo in the pathogenesis. The miRNA profile upon stimulation and correlation with IGHV mutation status is however unknown. To evaluate the transcriptional response of peripheral blood CLL cells upon BCR stimulation in vitro, miRNA and mRNA expression was measured using hybridization arrays and qPCR. We found both IGHV mutated and unmutated CLL cells to respond with increased expression of MYC and other genes associated with BCR activation, and a phenotype of cell cycle progression. Genome-wide expression studies showed hsa-miR-132-3p/hsa-miR-212 miRNA cluster induction associated with a set of downregulated genes, enriched for genes modulated by BCR activation and amplified by Myc. We conclude that BCR triggering of CLL cells induces a transcriptional response of genes associated with BCR activation, enhanced cell cycle entry and progression and suggest that part of the transcriptional profiles linked to IGHV mutation status observed in isolated peripheral blood are not cell intrinsic but rather secondary to in vivo BCR stimulation.
doi:10.1371/journal.pone.0060275
PMCID: PMC3613353  PMID: 23560086
13.  Focal DNA Copy Number Changes in Neuroblastoma Target MYCN Regulated Genes 
PLoS ONE  2013;8(1):e52321.
Neuroblastoma is an embryonic tumor arising from immature sympathetic nervous system cells. Recurrent genomic alterations include MYCN and ALK amplification as well as recurrent patterns of gains and losses of whole or large partial chromosome segments. A recent whole genome sequencing effort yielded no frequently recurring mutations in genes other than those affecting ALK. However, the study further stresses the importance of DNA copy number alterations in this disease, in particular for genes implicated in neuritogenesis. Here we provide additional evidence for the importance of focal DNA copy number gains and losses, which are predominantly observed in MYCN amplified tumors. A focal 5 kb gain encompassing the MYCN regulated miR-17∼92 cluster as sole gene was detected in a neuroblastoma cell line and further analyses of the array CGH data set demonstrated enrichment for other MYCN target genes in focal gains and amplifications. Next we applied an integrated genomics analysis to prioritize MYCN down regulated genes mediated by MYCN driven miRNAs within regions of focal heterozygous or homozygous deletion. We identified RGS5, a negative regulator of G-protein signaling implicated in vascular normalization, invasion and metastasis, targeted by a focal homozygous deletion, as a new MYCN target gene, down regulated through MYCN activated miRNAs. In addition, we expand the miR-17∼92 regulatory network controlling TGFß signaling in neuroblastoma with the ring finger protein 11 encoding gene RNF11, which was previously shown to be targeted by the miR-17∼92 member miR-19b. Taken together, our data indicate that focal DNA copy number imbalances in neuroblastoma (1) target genes that are implicated in MYCN signaling, possibly selected to reinforce MYCN oncogene addiction and (2) serve as a resource for identifying new molecular targets for treatment.
doi:10.1371/journal.pone.0052321
PMCID: PMC3537730  PMID: 23308108
14.  Genome-wide promoter methylation analysis in neuroblastoma identifies prognostic methylation biomarkers 
Genome Biology  2012;13(10):R95.
Background
Accurate outcome prediction in neuroblastoma, which is necessary to enable the optimal choice of risk-related therapy, remains a challenge. To improve neuroblastoma patient stratification, this study aimed to identify prognostic tumor DNA methylation biomarkers.
Results
To identify genes silenced by promoter methylation, we first applied two independent genome-wide methylation screening methodologies to eight neuroblastoma cell lines. Specifically, we used re-expression profiling upon 5-aza-2'-deoxycytidine (DAC) treatment and massively parallel sequencing after capturing with a methyl-CpG-binding domain (MBD-seq). Putative methylation markers were selected from DAC-upregulated genes through a literature search and an upfront methylation-specific PCR on 20 primary neuroblastoma tumors, as well as through MBD- seq in combination with publicly available neuroblastoma tumor gene expression data. This yielded 43 candidate biomarkers that were subsequently tested by high-throughput methylation-specific PCR on an independent cohort of 89 primary neuroblastoma tumors that had been selected for risk classification and survival. Based on this analysis, methylation of KRT19, FAS, PRPH, CNR1, QPCT, HIST1H3C, ACSS3 and GRB10 was found to be associated with at least one of the classical risk factors, namely age, stage or MYCN status. Importantly, HIST1H3C and GNAS methylation was associated with overall and/or event-free survival.
Conclusions
This study combines two genome-wide methylation discovery methodologies and is the most extensive validation study in neuroblastoma performed thus far. We identified several novel prognostic DNA methylation markers and provide a basis for the development of a DNA methylation-based prognostic classifier in neuroblastoma.
doi:10.1186/gb-2012-13-10-r95
PMCID: PMC3491423  PMID: 23034519
15.  Identification of BIRC6 as a novel intervention target for neuroblastoma therapy 
BMC Cancer  2012;12:285.
Background
Neuroblastoma are pediatric tumors of the sympathetic nervous system with a poor prognosis. Apoptosis is often deregulated in cancer cells, but only a few defects in apoptotic routes have been identified in neuroblastoma.
Methods
Here we investigated genomic aberrations affecting genes of the intrinsic apoptotic pathway in neuroblastoma. We analyzed DNA profiling data (CGH and SNP arrays) and mRNA expression data of 31 genes of the intrinsic apoptotic pathway in a dataset of 88 neuroblastoma tumors using the R2 bioinformatic platform ( http://r2.amc.nl). BIRC6 was selected for further analysis as a tumor driving gene. Knockdown experiments were performed using BIRC6 lentiviral shRNA and phenotype responses were analyzed by Western blot and MTT-assays. In addition, DIABLO levels and interactions were investigated with immunofluorescence and co-immunoprecipitation.
Results
We observed frequent gain of the BIRC6 gene on chromosome 2, which resulted in increased mRNA expression. BIRC6 is an inhibitor of apoptosis protein (IAP), that can bind and degrade the cytoplasmic fraction of the pro-apoptotic protein DIABLO. DIABLO mRNA expression was exceptionally high in neuroblastoma but the protein was only detected in the mitochondria. Upon silencing of BIRC6 by shRNA, DIABLO protein levels increased and cells went into apoptosis. Co-immunoprecipitation confirmed direct interaction between DIABLO and BIRC6 in neuroblastoma cell lines.
Conclusion
Our findings indicate that BIRC6 may have a potential oncogenic role in neuroblastoma by inactivating cytoplasmic DIABLO. BIRC6 inhibition may therefore provide a means for therapeutic intervention in neuroblastoma.
doi:10.1186/1471-2407-12-285
PMCID: PMC3495678  PMID: 22788920
Neuroblastoma; BIRC6; DIABLO; Apoptosis; Cancer
16.  Cancer Gene Prioritization for Targeted Resequencing Using FitSNP Scores 
PLoS ONE  2012;7(3):e31333.
Background
Although the throughput of next generation sequencing is increasing and at the same time the cost is substantially reduced, for the majority of laboratories whole genome sequencing of large cohorts of cancer samples is still not feasible. In addition, the low number of genomes that are being sequenced is often problematic for the downstream interpretation of the significance of the variants. Targeted resequencing can partially circumvent this problem; by focusing on a limited number of candidate cancer genes to sequence, more samples can be included in the screening, hence resulting in substantial improvement of the statistical power. In this study, a successful strategy for prioritizing candidate genes for targeted resequencing of cancer genomes is presented.
Results
Four prioritization strategies were evaluated on six different cancer types: genes were ranked using these strategies, and the positive predictive value (PPV) or mutation rate within the top-ranked genes was compared to the baseline mutation rate in each tumor type. Successful strategies generate gene lists in which the top is enriched for known mutated genes, as evidenced by an increase in PPV. A clear example of such an improvement is seen in colon cancer, where the PPV is increased by 2.3 fold compared to the baseline level when 100 top fitSNP genes are sequenced.
Conclusions
A gene prioritization strategy based on the fitSNP scores appears to be most successful in identifying mutated cancer genes across different tumor entities, with variance of gene expression levels as a good second best.
doi:10.1371/journal.pone.0031333
PMCID: PMC3291573  PMID: 22396732
17.  N-Cadherin in Neuroblastoma Disease: Expression and Clinical Significance 
PLoS ONE  2012;7(2):e31206.
One of the first and most important steps in the metastatic cascade is the loss of cell-cell and cell-matrix interactions. N-cadherin, a crucial mediator of homotypic and heterotypic cell-cell interactions, might play a central role in the metastasis of neuroblastoma (NB), a solid tumor of neuroectodermal origin. Using Reverse Transcription Quantitative PCR (RT-qPCR), Western blot, immunocytochemistry and Tissue MicroArrays (TMA) we demonstrate the expression of N-cadherin in neuroblastoma tumors and cell lines. All neuroblastic tumors (n = 356) and cell lines (n = 10) expressed various levels of the adhesion protein. The N-cadherin mRNA expression was significantly lower in tumor samples from patients suffering metastatic disease. Treatment of NB cell lines with the N-cadherin blocking peptide ADH-1 (Exherin, Adherex Technologies Inc.), strongly inhibited tumor cell proliferation in vitro by inducing apoptosis. Our results suggest that N-cadherin signaling may play a role in neuroblastoma disease, marking involvement of metastasis and determining neuroblastoma cell viability.
doi:10.1371/journal.pone.0031206
PMCID: PMC3280274  PMID: 22355346
19.  The miR-17-92 microRNA cluster regulates multiple components of the TGFβ-pathway in neuroblastoma 
Molecular cell  2010;40(5):762-773.
Summary
The miR-17-92 microRNA cluster is often activated in cancer cells, but the identity of its targets remains elusive. Using SILAC and quantitative mass spectrometry, we examined the effects of activation of the miR-17-92 cluster on global protein expression in neuroblastoma cells. Our results reveal cooperation between individual miR-17-92 miRNAs and implicate miR-17-92 in multiple hallmarks of cancer, including proliferation and cell adhesion. Most importantly, we show that miR-17-92 is a potent inhibitor of TGFβ-signaling. By functioning both upstream and downstream of pSMAD2, miR-17-92 activation triggers downregulation of multiple key effectors along the TGFβ-signaling cascade as well as through direct inhibition of TGFβ-responsive genes.
doi:10.1016/j.molcel.2010.11.038
PMCID: PMC3032380  PMID: 21145484
20.  Refinement of 1p36 Alterations Not Involving PRDM16 in Myeloid and Lymphoid Malignancies 
PLoS ONE  2011;6(10):e26311.
Fluorescence in situ hybridization was performed to characterize 81 cases of myeloid and lymphoid malignancies with cytogenetic 1p36 alterations not affecting the PRDM16 locus. In total, three subgroups were identified: balanced translocations (N = 27) and telomeric rearrangements (N = 15), both mainly observed in myeloid disorders; and unbalanced non-telomeric rearrangements (N = 39), mainly observed in lymphoid proliferations and frequently associated with a highly complex karyotype. The 1p36 rearrangement was isolated in 12 cases, mainly myeloid disorders. The breakpoints on 1p36 were more widely distributed than previously reported, but with identifiable rare breakpoint cluster regions, such as the TP73 locus. We also found novel partner loci on 1p36 for the known multi-partner genes HMGA2 and RUNX1. We precised the common terminal 1p36 deletion, which has been suggested to have an adverse prognosis, in B-cell lymphomas [follicular lymphomas and diffuse large B-cell lymphomas with t(14;18)(q32;q21) as well as follicular lymphomas without t(14;18)]. Intrachromosomal telomeric repetitive sequences were detected in at least half the cases of telomeric rearrangements. It is unclear how the latter rearrangements occurred and whether they represent oncogenic events or result from chromosomal instability during oncogenesis.
doi:10.1371/journal.pone.0026311
PMCID: PMC3198844  PMID: 22039459
21.  The microRNA body map: dissecting microRNA function through integrative genomics 
Nucleic Acids Research  2011;39(20):e136.
While a growing body of evidence implicates regulatory miRNA modules in various aspects of human disease and development, insights into specific miRNA function remain limited. Here, we present an innovative approach to elucidate tissue-specific miRNA functions that goes beyond miRNA target prediction and expression correlation. This approach is based on a multi-level integration of corresponding miRNA and mRNA gene expression levels, miRNA target prediction, transcription factor target prediction and mechanistic models of gene network regulation. Predicted miRNA functions were either validated experimentally or compared to published data. The predicted miRNA functions are accessible in the miRNA bodymap, an interactive online compendium and mining tool of high-dimensional newly generated and published miRNA expression profiles. The miRNA bodymap enables prioritization of candidate miRNAs based on their expression pattern or functional annotation across tissue or disease subgroup. The miRNA bodymap project provides users with a single one-stop data-mining solution and has great potential to become a community resource.
doi:10.1093/nar/gkr646
PMCID: PMC3203610  PMID: 21835775
22.  Signaling of ERBB Receptor Tyrosine Kinases Promotes Neuroblastoma Growth in vitro and in vivo 
Cancer  2010;116(13):3233-3243.
Background
ERBB receptor tyrosine kinases can mediate proliferation, migration, adhesion, differentiation, and survival in many types of cells and play critical roles in many malignancies. Recent reports suggest a role for EGFR signaling in proliferation and survival of neuroblastoma, a common form of pediatric cancer that often has an extremely poor outcome.
Methods
We examined ERBB family expression in neuroblastoma cell lines and patient samples by flow cytometry, western blot and Q-PCR. Response to ERBB inhibition was assessed in vitro by cell cycle analysis and western blot, and in vivo by serial tumor size measurements.
Results
A panel of neuroblastoma cell lines and primary patient tumors expressed EGFR, HER-3, and HER-4, with Her-2 in some tumors. Her-4 mRNA was expressed predominantly in cleavable isoforms. While EGFR inhibition with erlotinib and pan-ERBB inhibition with CI-1033 inhibited EGF-induced phosphorylation of EGFR, AKT, and ERK1/2, only CI-1033 induced growth inhibition and dose-dependent apoptosis in vitro. Both CI-1033 and erlotinib treatment of neuroblastoma xenograft tumors resulted in decreased tumor growth in vivo, though CI-1033 was more effective. In vivo expression of EGFR was observed predominantly in vascular endothelial cells.
Conclusions
Pan-ERBB inhibition is required for ERBB-related neuroblastoma apoptosis in vitro, though EGFR contributes indirectly to tumor growth in vivo. Inhibition of EGFR in endothelial cells may be an important aspect of erlotinib's impact on neuroblastoma growth in vivo. Our results suggest that non-EGFR ERBB family members contribute directly to neuroblastoma growth and survival, and pan-ERBB inhibition represents a potential therapeutic target for treating neuroblastoma.
doi:10.1002/cncr.25073
PMCID: PMC2923448  PMID: 20564646
23.  Chromosomal and miRNA Expression Patterns Reveal Biologically Distinct Subgroups of 11q− Neuroblastoma 
Purpose
The purpose of this study was to further define the biology of the 11q− neuroblastoma tumor subgroup by the integration of aCGH with miRNA expression profiling data to determine if improved patient stratification is possible.
Experimental Design
A set of primary neuroblastoma (n=160) which was broadly representative of all genetic subtypes was analyzed by aCGH and for the expression of 430 miRNAs. A 15 miRNA expression signature previously demonstrated to be predictive of clinical outcome was used to analyze an independent cohort of 11q− tumors (n=37).
Results
Loss of 4p and gain of 7q occurred at a significantly higher frequency in the 11q−tumors, further defining the genetic characteristics of this subtype. The 11q− tumors could be split into two subgroups using a miRNA expression survival signature which differed significantly in both clinical outcome and the overall frequency of large scale genomic imbalances, with the poor survival subgroup having significantly more imbalances. MiRNAs from the expression signature which were up-regulated in unfavorable tumors were predicted to target down-regulated genes from a published mRNA expression classifier of clinical outcome at a higher than expected frequency, indicating the miRNAs might contribute to the regulation of genes within the signature.
Conclusion
We demonstrate that two distinct biological subtypes of neuroblastoma with loss of 11q occur which differ in their miRNA expression profiles, frequency of segmental imbalances and clinical outcome. A miRNA expression signature, combined with an analysis of segmental imbalances, provides greater prediction of EFS and OS outcomes than 11q status by itself, improving patient stratification.
doi:10.1158/1078-0432.CCR-09-3215
PMCID: PMC2880207  PMID: 20406844
aCGH; MYCN; neuroblastoma; miRNA
24.  The TLX1 oncogene drives aneuploidy in T-cell transformation 
Nature medicine  2010;16(11):1321-1327.
The TLX1 transcription factor oncogene plays an important role in the pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL). However, the specific mechanisms of T-cell transformation downstream of TLX1 remain to be elucidated. Here we show that forced expression of TLX1 in transgenic mice induces T-ALL tumors with frequent deletions and mutations in Bcl11b, and identify the presence of recurrent mutations and deletions in BCL11B in 16% of human T-ALLs. Most notably, mouse TLX1 tumors were typically aneuploid and showed a marked defect in the activation of the mitotic checkpoint. Mechanistically, TLX1 directly downregulates the expression of CHEK1 and additional mitotic control genes and induces loss of the mitotic checkpoint in non transformed preleukemic thymocytes. These results identify a novel mechanism contributing to chromosomal missegregation and aneuploidy active at the earliest stages of tumor development in the pathogenesis of cancer.
doi:10.1038/nm.2246
PMCID: PMC2974790  PMID: 20972433
25.  Outcome Prediction of Children with Neuroblastoma using a Multigene Expression Signature, a Retrospective SIOPEN/COG/GPOH Study 
The lancet oncology  2009;10(7):663-671.
BACKGROUND
More accurate prognostic assessment of patients with neuroblastoma is required to improve the choice of risk-related therapy. The aim of this study is to develop and validate a gene expression signature for improved outcome prediction.
METHODS
Fifty-nine genes were carefully selected based on an innovative data-mining strategy and profiled in the largest neuroblastoma patient series (n=579) to date using RT-qPCR starting from only 20 ng of RNA. A multigene expression signature was built using 30 training samples, tested on 313 test samples and subsequently validated in a blind study on an independent set of 236 additional tumours.
FINDINGS
The signature accurately classifies patients with respect to overall and progression-free survival (p<0·0001). The signature has a performance, sensitivity, and specificity of 85·4% (95%CI: 77·7–93·2), 84·4% (95%CI: 66·5–94·1), and 86·5% (95%CI: 81·1–90·6), respectively to predict patient outcome. Multivariate analysis indicates that the signature is a significant independent predictor after controlling for currently used riskfactors. Patients with high molecular risk have a higher risk to die from disease and for relapse/progression than patients with low molecular risk (odds ratio of 19·32 (95%CI: 6·50–57·43) and 3·96 (95%CI: 1·97–7·97) for OS and PFS, respectively). Patients with increased risk for adverse outcome can also be identified within the current treatment groups demonstrating the potential of this signature for improved clinical management. These results were confirmed in the validation study in which the signature was also independently statistically significant in a model adjusted for MYCN status, age, INSS stage, ploidy, INPC grade of differentiation, and MKI. The high patient/gene ratio (579/59) underlies the observed statistical power and robustness.
INTERPRETATION
A 59-gene expression signature predicts outcome of neuroblastoma patients with high accuracy. The signature is an independent risk predictor, identifying patients with increased risk in the current clinical risk groups. The applied method and signature is suitable for routine lab testing and ready for evaluation in prospective studies.
FUNDING
The Belgian Foundation Against Cancer, found of public interest (project SCIE2006-25), the Children Cancer Fund Ghent, the Belgian Society of Paediatric Haematology and Oncology, the Belgian Kid’s Fund and the Fondation Nuovo-Soldati (JV), the Fund for Scientific Research Flanders (KDP, JH), the Fund for Scientific Research Flanders (grant number: G•0198•08), the Institute for the Promotion of Innovation by Science and Technology in Flanders, Strategisch basisonderzoek (IWT-SBO 60848), the Fondation Fournier Majoie pour l’Innovation, the Instituto Carlos III,RD 06/0020/0102 Spain, the Italian Neuroblastoma Foundation, the European Community under the FP6 (project: STREP: EET-pipeline, number: 037260), and the Belgian program of Interuniversity Poles of Attraction, initiated by the Belgian State, Prime Minister's Office, Science Policy Programming.
doi:10.1016/S1470-2045(09)70154-8
PMCID: PMC3045079  PMID: 19515614

Results 1-25 (60)