PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (70)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  The founding charter of the Genomic Observatories Network 
GigaScience  2014;3:2.
The co-authors of this paper hereby state their intention to work together to launch the Genomic Observatories Network (GOs Network) for which this document will serve as its Founding Charter. We define a Genomic Observatory as an ecosystem and/or site subject to long-term scientific research, including (but not limited to) the sustained study of genomic biodiversity from single-celled microbes to multicellular organisms.
An international group of 64 scientists first published the call for a global network of Genomic Observatories in January 2012. The vision for such a network was expanded in a subsequent paper and developed over a series of meetings in Bremen (Germany), Shenzhen (China), Moorea (French Polynesia), Oxford (UK), Pacific Grove (California, USA), Washington (DC, USA), and London (UK). While this community-building process continues, here we express our mutual intent to establish the GOs Network formally, and to describe our shared vision for its future. The views expressed here are ours alone as individual scientists, and do not necessarily represent those of the institutions with which we are affiliated.
doi:10.1186/2047-217X-3-2
PMCID: PMC3995929  PMID: 24606731
Biodiversity; Genomics; Biocode; Earth observations
2.  EBI metagenomics—a new resource for the analysis and archiving of metagenomic data 
Nucleic Acids Research  2013;42(D1):D600-D606.
Metagenomics is a relatively recently established but rapidly expanding field that uses high-throughput next-generation sequencing technologies to characterize the microbial communities inhabiting different ecosystems (including oceans, lakes, soil, tundra, plants and body sites). Metagenomics brings with it a number of challenges, including the management, analysis, storage and sharing of data. In response to these challenges, we have developed a new metagenomics resource (http://www.ebi.ac.uk/metagenomics/) that allows users to easily submit raw nucleotide reads for functional and taxonomic analysis by a state-of-the-art pipeline, and have them automatically stored (together with descriptive, standards-compliant metadata) in the European Nucleotide Archive.
doi:10.1093/nar/gkt961
PMCID: PMC3965009  PMID: 24165880
3.  Meeting Report: Hackathon-Workshop on Darwin Core and MIxS Standards Alignment (February 2012) 
Standards in Genomic Sciences  2012;7(1):166-170.
The Global Biodiversity Information Facility and the Genomic Standards Consortium convened a joint workshop at the University of Oxford, 27-29 February 2012, with a small group of experts from Europe, USA, China and Japan, to continue the alignment of the Darwin Core with the MIxS and related genomics standards. Several reference mappings were produced as well as test expressions of MIxS in RDF. The use and management of controlled vocabulary terms was considered in relation to both GBIF and the GSC, and tools for working with terms were reviewed. Extensions for publishing genomic biodiversity data to the GBIF network via a Darwin Core Archive were prototyped and work begun on preparing translations of the Darwin Core to Japanese and Chinese. Five genomic repositories were identified for engagement to begin the process of testing the publishing of genomic data to the GBIF network commencing with the SILVA rRNA database.
doi:10.4056/sigs.3166513
PMCID: PMC3570805  PMID: 23451295
4.  Toward interoperable bioscience data 
Nature genetics  2012;44(2):121-126.
To make full use of research data, the bioscience community needs to adopt technologies and reward mechanisms that support interoperability and promote the growth of an open ‘data commoning’ culture. Here we describe the prerequisites for data commoning and present an established and growing ecosystem of solutions using the shared ‘Investigation-Study-Assay’ framework to support that vision.
doi:10.1038/ng.1054
PMCID: PMC3428019  PMID: 22281772
5.  RCN4GSC Workshop Report: Managing Data at the Interface of Biodiversity and (Meta)Genomics, March 2011 
Standards in Genomic Sciences  2012;7(1):159-165.
Building on the planning efforts of the RCN4GSC project, a workshop was convened in San Diego to bring together experts from genomics and metagenomics, biodiversity, ecology, and bioinformatics with the charge to identify potential for positive interactions and progress, especially building on successes at establishing data standards by the GSC and by the biodiversity and ecological communities. Until recently, the contribution of microbial life to the biomass and biodiversity of the biosphere was largely overlooked (because it was resistant to systematic study). Now, emerging genomic and metagenomic tools are making investigation possible. Initial research findings suggest that major advances are in the offing. Although different research communities share some overlapping concepts and traditions, they differ significantly in sampling approaches, vocabularies and workflows. Likewise, their definitions of ‘fitness for use’ for data differ significantly, as this concept stems from the specific research questions of most importance in the different fields. Nevertheless, there is little doubt that there is much to be gained from greater coordination and integration. As a first step toward interoperability of the information systems used by the different communities, participants agreed to conduct a case study on two of the leading data standards from the two formerly disparate fields: (a) GSC’s standard checklists for genomics and metagenomics and (b) TDWG’s Darwin Core standard, used primarily in taxonomy and systematic biology.
doi:10.4056/sigs.3156511
PMCID: PMC3570804  PMID: 23451294
6.  The Metadata Coverage Index (MCI): A standardized metric for quantifying database metadata richness 
Standards in Genomic Sciences  2012;6(3):438-447.
Variability in the extent of the descriptions of data (‘metadata’) held in public repositories forces users to assess the quality of records individually, which rapidly becomes impractical. The scoring of records on the richness of their description provides a simple, objective proxy measure for quality that enables filtering that supports downstream analysis. Pivotally, such descriptions should spur on improvements. Here, we introduce such a measure - the ‘Metadata Coverage Index’ (MCI): the percentage of available fields actually filled in a record or description. MCI scores can be calculated across a database, for individual records or for their component parts (e.g., fields of interest). There are many potential uses for this simple metric: for example; to filter, rank or search for records; to assess the metadata availability of an ad hoc collection; to determine the frequency with which fields in a particular record type are filled, especially with respect to standards compliance; to assess the utility of specific tools and resources, and of data capture practice more generally; to prioritize records for further curation; to serve as performance metrics of funded projects; or to quantify the value added by curation. Here we demonstrate the utility of MCI scores using metadata from the Genomes Online Database (GOLD), including records compliant with the ‘Minimum Information about a Genome Sequence’ (MIGS) standard developed by the Genomic Standards Consortium. We discuss challenges and address the further application of MCI scores; to show improvements in annotation quality over time, to inform the work of standards bodies and repository providers on the usability and popularity of their products, and to assess and credit the work of curators. Such an index provides a step towards putting metadata capture practices and in the future, standards compliance, into a quantitative and objective framework.
doi:10.4056/sigs.2675953
PMCID: PMC3558968  PMID: 23409217
7.  A call for an international network of genomic observatories (GOs) 
GigaScience  2012;1:5.
We are entering a new era in genomics–that of large-scale, place-based, highly contextualized genomic research. Here we review this emerging paradigm shift and suggest that sites of utmost scientific importance be expanded into ‘Genomic Observatories’ (GOs). Investment in GOs should focus on the digital characterization of whole ecosystems, from all-taxa biotic inventories to time-series ’omics studies. The foundational layer of biodiversity–genetic variation–would thus be mainstreamed into Earth Observation systems enabling predictive modelling of biodiversity dynamics and resultant impacts on ecosystem services.
doi:10.1186/2047-217X-1-5
PMCID: PMC3617453  PMID: 23587188
Ecogenomics; Earth observation; Biodiversity; Ecosystems; Biocode; Genomic observatory; DNA
8.  The M5nr: a novel non-redundant database containing protein sequences and annotations from multiple sources and associated tools 
BMC Bioinformatics  2012;13:141.
Background
Computing of sequence similarity results is becoming a limiting factor in metagenome analysis. Sequence similarity search results encoded in an open, exchangeable format have the potential to limit the needs for computational reanalysis of these data sets. A prerequisite for sharing of similarity results is a common reference.
Description
We introduce a mechanism for automatically maintaining a comprehensive, non-redundant protein database and for creating a quarterly release of this resource. In addition, we present tools for translating similarity searches into many annotation namespaces, e.g. KEGG or NCBI's GenBank.
Conclusions
The data and tools we present allow the creation of multiple result sets using a single computation, permitting computational results to be shared between groups for large sequence data sets.
doi:10.1186/1471-2105-13-141
PMCID: PMC3410781  PMID: 22720753
9.  Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications 
Yilmaz, Pelin | Kottmann, Renzo | Field, Dawn | Knight, Rob | Cole, James R | Amaral-Zettler, Linda | Gilbert, Jack A | Karsch-Mizrachi, Ilene | Johnston, Anjanette | Cochrane, Guy | Vaughan, Robert | Hunter, Christopher | Park, Joonhong | Morrison, Norman | Rocca-Serra, Philippe | Sterk, Peter | Arumugam, Manimozhiyan | Bailey, Mark | Baumgartner, Laura | Birren, Bruce W | Blaser, Martin J | Bonazzi, Vivien | Booth, Tim | Bork, Peer | Bushman, Frederic D | Buttigieg, Pier Luigi | Chain, Patrick S G | Charlson, Emily | Costello, Elizabeth K | Huot-Creasy, Heather | Dawyndt, Peter | DeSantis, Todd | Fierer, Noah | Fuhrman, Jed A | Gallery, Rachel E | Gevers, Dirk | Gibbs, Richard A | Gil, Inigo San | Gonzalez, Antonio | Gordon, Jeffrey I | Guralnick, Robert | Hankeln, Wolfgang | Highlander, Sarah | Hugenholtz, Philip | Jansson, Janet | Kau, Andrew L | Kelley, Scott T | Kennedy, Jerry | Knights, Dan | Koren, Omry | Kuczynski, Justin | Kyrpides, Nikos | Larsen, Robert | Lauber, Christian L | Legg, Teresa | Ley, Ruth E | Lozupone, Catherine A | Ludwig, Wolfgang | Lyons, Donna | Maguire, Eamonn | Methé, Barbara A | Meyer, Folker | Muegge, Brian | Nakielny, Sara | Nelson, Karen E | Nemergut, Diana | Neufeld, Josh D | Newbold, Lindsay K | Oliver, Anna E | Pace, Norman R | Palanisamy, Giriprakash | Peplies, Jörg | Petrosino, Joseph | Proctor, Lita | Pruesse, Elmar | Quast, Christian | Raes, Jeroen | Ratnasingham, Sujeevan | Ravel, Jacques | Relman, David A | Assunta-Sansone, Susanna | Schloss, Patrick D | Schriml, Lynn | Sinha, Rohini | Smith, Michelle I | Sodergren, Erica | Spor, Aymé | Stombaugh, Jesse | Tiedje, James M | Ward, Doyle V | Weinstock, George M | Wendel, Doug | White, Owen | Whiteley, Andrew | Wilke, Andreas | Wortman, Jennifer R | Yatsunenko, Tanya | Glöckner, Frank Oliver
Nature Biotechnology  2011;29(5):415-420.
Here we present a standard developed by the Genomic Standards Consortium (GSC) for reporting marker gene sequences—the minimum information about a marker gene sequence (MIMARKS). We also introduce a system for describing the environment from which a biological sample originates. The ‘environmental packages’ apply to any genome sequence of known origin and can be used in combination with MIMARKS and other GSC checklists. Finally, to establish a unified standard for describing sequence data and to provide a single point of entry for the scientific community to access and learn about GSC checklists, we present the minimum information about any (x) sequence (MIxS). Adoption of MIxS will enhance our ability to analyze natural genetic diversity documented by massive DNA sequencing efforts from myriad ecosystems in our ever-changing biosphere.
doi:10.1038/nbt.1823
PMCID: PMC3367316  PMID: 21552244
10.  The Western English Channel contains a persistent microbial seed bank 
The ISME Journal  2011;6(6):1089-1093.
Robust seasonal dynamics in microbial community composition have previously been observed in the English Channel L4 marine observatory. These could be explained either by seasonal changes in the taxa present at the L4 site, or by the continuous modulation of abundance of taxa within a persistent microbial community. To test these competing hypotheses, deep sequencing of 16S rRNA from one randomly selected time point to a depth of 10 729 927 reads was compared with an existing taxonomic survey data covering 6 years. When compared against the 6-year survey of 72 shallow sequenced time points, the deep sequenced time point maintained 95.4% of the combined shallow OTUs. Additionally, on average, 99.75%±0.06 (mean±s.d.) of the operational taxonomic units found in each shallow sequenced sample were also found in the single deep sequenced sample. This suggests that the vast majority of taxa identified in this ecosystem are always present, but just in different proportions that are predictable. Thus observed changes in community composition are actually variations in the relative abundance of taxa, not, as was previously believed, demonstrating extinction and recolonization of taxa in the ecosystem through time.
doi:10.1038/ismej.2011.162
PMCID: PMC3358019  PMID: 22071345
16S rRNA; bacteria; community; diversity; seed bank
11.  Report of the 13th Genomic Standards Consortium Meeting, Shenzhen, China, March 4–7, 2012. 
Standards in Genomic Sciences  2012;6(2):276-286.
This report details the outcome of the 13th Meeting of the Genomic Standards Consortium. The three-day conference was held at the Kingkey Palace Hotel, Shenzhen, China, on March 5–7, 2012, and was hosted by the Beijing Genomics Institute. The meeting, titled From Genomes to Interactions to Communities to Models, highlighted the role of data standards associated with genomic, metagenomic, and amplicon sequence data and the contextual information associated with the sample. To this end the meeting focused on genomic projects for animals, plants, fungi, and viruses; metagenomic studies in host-microbe interactions; and the dynamics of microbial communities. In addition, the meeting hosted a Genomic Observatories Network session, a Genomic Standards Consortium biodiversity working group session, and a Microbiology of the Built Environment session sponsored by the Alfred P. Sloan Foundation.
doi:10.4056/sigs.2876184
PMCID: PMC3387801  PMID: 22768370
Genomic Standards Consortium; microbiome; microbial metagenomics; fungal genomics; viral genomics; Genomic Observatories Network
13.  Cloud BioLinux: pre-configured and on-demand bioinformatics computing for the genomics community 
BMC Bioinformatics  2012;13:42.
Background
A steep drop in the cost of next-generation sequencing during recent years has made the technology affordable to the majority of researchers, but downstream bioinformatic analysis still poses a resource bottleneck for smaller laboratories and institutes that do not have access to substantial computational resources. Sequencing instruments are typically bundled with only the minimal processing and storage capacity required for data capture during sequencing runs. Given the scale of sequence datasets, scientific value cannot be obtained from acquiring a sequencer unless it is accompanied by an equal investment in informatics infrastructure.
Results
Cloud BioLinux is a publicly accessible Virtual Machine (VM) that enables scientists to quickly provision on-demand infrastructures for high-performance bioinformatics computing using cloud platforms. Users have instant access to a range of pre-configured command line and graphical software applications, including a full-featured desktop interface, documentation and over 135 bioinformatics packages for applications including sequence alignment, clustering, assembly, display, editing, and phylogeny. Each tool's functionality is fully described in the documentation directly accessible from the graphical interface of the VM. Besides the Amazon EC2 cloud, we have started instances of Cloud BioLinux on a private Eucalyptus cloud installed at the J. Craig Venter Institute, and demonstrated access to the bioinformatic tools interface through a remote connection to EC2 instances from a local desktop computer. Documentation for using Cloud BioLinux on EC2 is available from our project website, while a Eucalyptus cloud image and VirtualBox Appliance is also publicly available for download and use by researchers with access to private clouds.
Conclusions
Cloud BioLinux provides a platform for developing bioinformatics infrastructures on the cloud. An automated and configurable process builds Virtual Machines, allowing the development of highly customized versions from a shared code base. This shared community toolkit enables application specific analysis platforms on the cloud by minimizing the effort required to prepare and maintain them.
doi:10.1186/1471-2105-13-42
PMCID: PMC3372431  PMID: 22429538
14.  Conceptualizing a Genomics Software Institute (GSI) 
Standards in Genomic Sciences  2012;6(1):136-144.
Microbial ecology has been enhanced greatly by the ongoing ‘omics revolution, bringing half the world's biomass and most of its biodiversity into analytical view for the first time; indeed, it feels almost like the invention of the microscope and the discovery of the new world at the same time. With major microbial ecology research efforts accumulating prodigious quantities of sequence, protein, and metabolite data, we are now poised to address environmental microbial research at macro scales, and to begin to characterize and understand the dimensions of microbial biodiversity on the planet. What is currently impeding progress is the need for a framework within which the research community can develop, exchange and discuss predictive ecosystem models that describe the biodiversity and functional interactions. Such a framework must encompass data and metadata transparency and interoperation; data and results validation, curation, and search; application programming interfaces for modeling and analysis tools; and human and technical processes and services necessary to ensure broad adoption. Here we discuss the need for focused community interaction to augment and deepen established community efforts, beginning with the Genomic Standards Consortium (GSC), to create a science-driven strategic plan for a Genomic Software Institute (GSI).
doi:10.4056/sigs.2485911
PMCID: PMC3359878  PMID: 22675605
15.  Defining seasonal marine microbial community dynamics 
The ISME Journal  2011;6(2):298-308.
Here we describe, the longest microbial time-series analyzed to date using high-resolution 16S rRNA tag pyrosequencing of samples taken monthly over 6 years at a temperate marine coastal site off Plymouth, UK. Data treatment effected the estimation of community richness over a 6-year period, whereby 8794 operational taxonomic units (OTUs) were identified using single-linkage preclustering and 21 130 OTUs were identified by denoising the data. The Alphaproteobacteria were the most abundant Class, and the most frequently recorded OTUs were members of the Rickettsiales (SAR 11) and Rhodobacteriales. This near-surface ocean bacterial community showed strong repeatable seasonal patterns, which were defined by winter peaks in diversity across all years. Environmental variables explained far more variation in seasonally predictable bacteria than did data on protists or metazoan biomass. Change in day length alone explains >65% of the variance in community diversity. The results suggested that seasonal changes in environmental variables are more important than trophic interactions. Interestingly, microbial association network analysis showed that correlations in abundance were stronger within bacterial taxa rather than between bacteria and eukaryotes, or between bacteria and environmental variables.
doi:10.1038/ismej.2011.107
PMCID: PMC3260500  PMID: 21850055
16S rRNA; microbial; bacteria; community; diversity; model
17.  The Earth Microbiome Project: The Meeting Report for the 1st International Earth Microbiome Project Conference, Shenzhen, China, June 13th-15th 2011 
Standards in Genomic Sciences  2011;5(2):243-247.
This report details the outcome of the 1st International Earth Microbiome Project Conference. The 2-day conference was held at the Kingkey Palace Hotel, Shenzhen, China, on the 14th-15th June 2011, and was hosted by BGI (formally the Beijing Genomics Institute). The conference was arranged as a formal launch for the Earth Microbiome Project, to highlight some of the exciting research projects, results of the preliminary pilot studies, and to provide a discussion forum for the types of technology and experimental approaches that will come to define the standard operating procedures of this project.
doi:10.4056/sigs.2134923
PMCID: PMC3235519
19.  The Genomic Standards Consortium 
PLoS Biology  2011;9(6):e1001088.
A vast and rich body of information has grown up as a result of the world's enthusiasm for 'omics technologies. Finding ways to describe and make available this information that maximise its usefulness has become a major effort across the 'omics world. At the heart of this effort is the Genomic Standards Consortium (GSC), an open-membership organization that drives community-based standardization activities, Here we provide a short history of the GSC, provide an overview of its range of current activities, and make a call for the scientific community to join forces to improve the quality and quantity of contextual information about our public collections of genomes, metagenomes, and marker gene sequences.
doi:10.1371/journal.pbio.1001088
PMCID: PMC3119656  PMID: 21713030
20.  Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset 
Background
The world's oceans are home to a diverse array of microbial life whose metabolic activity helps to drive the earth's biogeochemical cycles. Metagenomic analysis has revolutionized our access to these communities, providing a system-scale perspective of microbial community interactions. However, while metagenome sequencing can provide useful estimates of the relative change in abundance of specific genes and taxa between environments or over time, this does not investigate the relative changes in the production or consumption of different metabolites.
Results
We propose a methodology, Predicted Relative Metabolic Turnover (PRMT) that defines and enables exploration of metabolite-space inferred from the metagenome. Our analysis of metagenomic data from a time-series study in the Western English Channel demonstrated considerable correlations between predicted relative metabolic turnover and seasonal changes in abundance of measured environmental parameters as well as with observed seasonal changes in bacterial population structure.
Conclusions
The PRMT method was successfully applied to metagenomic data to explore the Western English Channel microbial metabalome to generate specific, biologically testable hypotheses. Generated hypotheses linked organic phosphate utilization to Gammaproteobactaria, Plantcomycetes, and Betaproteobacteria, chitin degradation to Actinomycetes, and potential small molecule biosynthesis pathways for Lentisphaerae, Chlamydiae, and Crenarchaeota. The PRMT method can be applied as a general tool for the analysis of additional metagenomic or transcriptomic datasets.
doi:10.1186/2042-5783-1-4
PMCID: PMC3348665  PMID: 22587810
21.  Enriching public descriptions of marine phages using the Genomic Standards Consortium MIGS standard 
Standards in Genomic Sciences  2011;4(2):271-285.
In any sequencing project, the possible depth of comparative analysis is determined largely by the amount and quality of the accompanying contextual data. The structure, content, and storage of this contextual data should be standardized to ensure consistent coverage of all sequenced entities and facilitate comparisons. The Genomic Standards Consortium (GSC) has developed the “Minimum Information about Genome/Metagenome Sequences (MIGS/MIMS)” checklist for the description of genomes and here we annotate all 30 publicly available marine bacteriophage sequences to the MIGS standard. These annotations build on existing International Nucleotide Sequence Database Collaboration (INSDC) records, and confirm, as expected that current submissions lack most MIGS fields. MIGS fields were manually curated from the literature and placed in XML format as specified by the Genomic Contextual Data Markup Language (GCDML). These “machine-readable” reports were then analyzed to highlight patterns describing this collection of genomes. Completed reports are provided in GCDML. This work represents one step towards the annotation of our complete collection of genome sequences and shows the utility of capturing richer metadata along with raw sequences.
doi:10.4056/sigs.621069
PMCID: PMC3111985  PMID: 21677864
marine phages; contextual data; genome standards; markup language
22.  Data shopping in an open marketplace: Introducing the Ontogrator web application for marking up data using ontologies and browsing using facets 
Standards in Genomic Sciences  2011;4(2):286-292.
In the future, we hope to see an open and thriving data market in which users can find and select data from a wide range of data providers. In such an open access market, data are products that must be packaged accordingly. Increasingly, eCommerce sellers present heterogeneous product lines to buyers using faceted browsing. Using this approach we have developed the Ontogrator platform, which allows for rapid retrieval of data in a way that would be familiar to any online shopper. Using Knowledge Organization Systems (KOS), especially ontologies, Ontogrator uses text mining to mark up data and faceted browsing to help users navigate, query and retrieve data. Ontogrator offers the potential to impact scientific research in two major ways: 1) by significantly improving the retrieval of relevant information; and 2) by significantly reducing the time required to compose standard database queries and assemble information for further research. Here we present a pilot implementation developed in collaboration with the Genomic Standards Consortium (GSC) that includes content from the StrainInfo, GOLD, CAMERA, Silva and Pubmed databases. This implementation demonstrates the power of ontogration and highlights that the usefulness of this approach is fully dependent on both the quality of data and the KOS (ontologies) used. Ideally, the use and further expansion of this collaborative system will help to surface issues associated with the underlying quality of annotation and could lead to a systematic means for accessing integrated data resources.
doi:10.4056/sigs.1344279
PMCID: PMC3111990  PMID: 21677865
24.  Alive and well at 100 
doi:10.4056/sigs.1684178
PMCID: PMC3072088  PMID: 21475581
25.  Towards BioDBcore: a community-defined information specification for biological databases 
The present article proposes the adoption of a community-defined, uniform, generic description of the core attributes of biological databases, BioDBCore. The goals of these attributes are to provide a general overview of the database landscape, to encourage consistency and interoperability between resources; and to promote the use of semantic and syntactic standards. BioDBCore will make it easier for users to evaluate the scope and relevance of available resources. This new resource will increase the collective impact of the information present in biological databases.
doi:10.1093/database/baq027
PMCID: PMC3017395  PMID: 21205783

Results 1-25 (70)