Search tips
Search criteria

Results 1-25 (73)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Assessing the impact of minimizing arginine conversion in fully defined SILAC culture medium in human embryonic stem cells 
Proteomics  2016;16(20):2605-2614.
We present a fully defined culture system (adapted Essential8TM [E8TM] medium in combination with vitronectin) for human embryonic stem cells that can be used for SILAC purposes. Although a complete incorporation of the labels was observed after 4 days in culture, over 90% of precursors showed at least 10% conversion. To reduce this arginine conversion, E8TM medium was modified by adding (1) l‐proline, (2) l‐ornithine, (3) Nω‐hydroxy‐nor‐l‐arginine acetate, or by (4) lowering the arginine concentration. Reduction of arginine conversion was best obtained by adding 5 mM l‐ornithine, followed by 3.5 mM l‐proline and by lowering the arginine concentration in the medium to 99.5 μM. No major changes in pluripotency and cell amount could be observed for the adapted E8TM media with ornithine and proline. However, our subsequent ion mobility assisted data‐independent acquisition (high‐definition MS) proteome analysis cautions for ongoing changes in the proteome when aiming at longer term suppression of arginine conversion.
PMCID: PMC5096064  PMID: 27392809
Arginine conversion; Cell culture; hESC; SILAC; Technology
2.  Tackling aspecific side reactions during histone propionylation: The promise of reversing overpropionylation 
Proteomics  2016;16(14):1970-1974.
Histone proteins are essential elements for DNA packaging. Moreover, the PTMs that are extremely abundant on these proteins, contribute in modeling chromatin structure and recruiting enzymes involved in gene regulation, DNA repair and chromosome condensation. This fundamental aspect, together with the epigenetic inheritance of histone PTMs, underlines the importance of having biochemical techniques for their characterization. Over the past two decades, significant improvements in mass accuracy and resolution of mass spectrometers have made LC‐coupled MS the strategy of choice for accurate identification and quantification of protein PTMs. Nevertheless, in previous work we disclosed the limitations and biases of the most widely adopted sample preparation protocols for histone propionylation, required prior to bottom‐up MS analysis. In this work, however, we put forward a new specific and efficient propionylation strategy by means of propionic anhydride. In this method, aspecific overpropionylation at serine (S), threonine (T) and tyrosine (Y) is reversed by adding hydroxylamine (HA). We recommend using this method for future analysis of histones through bottom‐up MS.
PMCID: PMC5096241  PMID: 27139031
Histone; Mass spectrometry; Method optimization; Propionylation; Technology
3.  CRISPR/Cas9 mediated knockout of rb1 and rbl1 leads to rapid and penetrant retinoblastoma development in Xenopus tropicalis 
Scientific Reports  2016;6:35264.
Retinoblastoma is a pediatric eye tumor in which bi-allelic inactivation of the Retinoblastoma 1 (RB1) gene is the initiating genetic lesion. Although recently curative rates of retinoblastoma have increased, there are at this time no molecular targeted therapies available. This is, in part, due to the lack of highly penetrant and rapid retinoblastoma animal models that facilitate rapid identification of targets that allow therapeutic intervention. Different mouse models are available, all based on genetic deactivation of both Rb1 and Retinoblastoma-like 1 (Rbl1), and each showing different kinetics of retinoblastoma development. Here, we show by CRISPR/Cas9 techniques that similar to the mouse, neither rb1 nor rbl1 single mosaic mutant Xenopus tropicalis develop tumors, whereas rb1/rbl1 double mosaic mutant tadpoles rapidly develop retinoblastoma. Moreover, occasionally presence of pinealoblastoma (trilateral retinoblastoma) was detected. We thus present the first CRISPR/Cas9 mediated cancer model in Xenopus tropicalis and the first genuine genetic non-mammalian retinoblastoma model. The rapid kinetics of our model paves the way for use as a pre-clinical model. Additionally, this retinoblastoma model provides unique possibilities for fast elucidation of novel drug targets by triple multiplex CRISPR/Cas9 gRNA injections (rb1 + rbl1 + modifier gene) in order to address the clinically unmet need of targeted retinoblastoma therapy.
PMCID: PMC5064383  PMID: 27739525
4.  Pitfalls in histone propionylation during bottom‐up mass spectrometry analysis 
Proteomics  2015;15(17):2966-2971.
Despite their important role in regulating gene expression, posttranslational histone modifications remain technically challenging to analyze. For identification by bottom‐up MS, propionylation is required prior to and following trypsin digestion. Hereby, more hydrophobic peptides are generated enabling RP HPLC separation. When histone dynamics are studied in a quantitative manner, specificity, and efficiency of this chemical derivatization are crucial. Therefore we examined eight different protocols, including two different propionylation reagents. This revealed amidation (up to 70%) and methylation (up to 9%) of carboxyl groups as a side reaction. Moreover, incomplete (up to 85%) as well as a specific propionylation (up to 63%) can occur, depending on the protocol. These results highlight the possible pitfalls and implications for data analysis when doing bottom‐up MS on histones.
PMCID: PMC5032999  PMID: 26010583
Cell biology; Histone; Method optimization; MS–LC‐MS; Propionylation
5.  Performance of a TthPrimPol-based whole genome amplification kit for copy number alteration detection using massively parallel sequencing 
Scientific Reports  2016;6:31825.
Starting from only a few cells, current whole genome amplification (WGA) methods provide enough DNA to perform massively parallel sequencing (MPS). Unfortunately, all current WGA methods introduce representation bias which limits detection of copy number aberrations (CNAs) smaller than 3 Mb. A recent WGA method, called TruePrime single cell WGA, uses a recently discovered DNA primase, TthPrimPol, instead of artificial primers to initiate DNA amplification. This method could lead to a lower representation bias, and consequently to a better detection of CNAs. The enzyme requires no complementarity and thus should generate random primers, equally distributed across the genome. The performance of TruePrime WGA was assessed for aneuploidy screening and CNA analysis after MPS, starting from 1, 3 or 5 cells. Although the method looks promising, the single cell TruePrime WGA kit v1 is not suited for high resolution CNA detection after MPS because too much representation bias is introduced.
PMCID: PMC4992833  PMID: 27546482
6.  Divergence between the Highly Virulent Zoonotic Pathogen Helicobacter heilmannii and Its Closest Relative, the Low-Virulence “Helicobacter ailurogastricus” sp. nov. 
Infection and Immunity  2015;84(1):293-306.
Helicobacter heilmannii naturally colonizes the stomachs of dogs and cats and has been associated with gastric disorders in humans. Nine feline Helicobacter strains, classified as H. heilmannii based on ureAB and 16S rRNA gene sequences, were divided into a highly virulent and a low-virulence group. The genomes of these strains were sequenced to investigate their phylogenetic relationships, to define their gene content and diversity, and to determine if the differences in pathogenicity were associated with the presence or absence of potential virulence genes. The capacities of these helicobacters to bind to the gastric mucosa were investigated as well. Our analyses revealed that the low-virulence strains do not belong to the species H. heilmannii but to a novel, closely related species for which we propose the name Helicobacter ailurogastricus. Several homologs of H. pylori virulence factors, such as IceA1, HrgA, and jhp0562-like glycosyltransferase, are present in H. heilmannii but absent in H. ailurogastricus. Both species contain a VacA-like autotransporter, for which the passenger domain is remarkably larger in H. ailurogastricus than in H. heilmannii. In addition, H. ailurogastricus shows clear differences in binding to the gastric mucosa compared to H. heilmannii. These findings highlight the low-virulence character of this novel Helicobacter species.
PMCID: PMC4694010  PMID: 26527212
7.  Application Of Small Molecules Favoring Naïve Pluripotency during Human Embryonic Stem Cell Derivation 
Cellular Reprogramming  2015;17(3):170-180.
In mice, inhibition of both the fibroblast growth factor (FGF) mitogen-activated protein kinase kinase/extracellular-signal regulated kinase (MEK/Erk) and the Wnt signaling inhibitor glycogen synthase-3β (GSK3β) enables the derivation of mouse embryonic stem cells (mESCs) from nonpermissive strains in the presence of leukemia inhibitory factor (LIF). Whereas mESCs are in an uncommitted naïve state, human embryonic stem cells (hESCs) represent a more advanced state, denoted as primed pluripotency. This burdens hESCs with a series of characteristics, which, in contrast to naïve ESCs, makes them not ideal for key applications such as cell-based clinical therapies and human disease modeling. In this study, different small molecule combinations were applied during human ESC derivation. Hereby, we aimed to sustain the naïve pluripotent state, by interfering with various key signaling pathways. First, we tested several combinations on existing, 2i (PD0325901 and CHIR99021)-derived mESCs. All combinations were shown to be equally adequate to sustain the expression of naïve pluripotency markers. Second, these conditions were tested during hESC derivation. Overall, the best results were observed in the presence of medium supplemented with 2i, LIF, and the noncanonical Wnt signaling agonist Wnt5A, alone and combined with epinephrine. In these conditions, outgrowths repeatedly showed an ESC progenitor-like morphology, starting from day 3. Culturing these “progenitor cells” did not result in stable, naïve hESC lines in the current conditions. Although Wnt5A could not promote naïve hESC derivation, we found that it was sustaining the conversion of established hESCs toward a more naïve state. Future work should aim to distinct the effects of the various culture formulations, including our Wnt5A-supplemented medium, reported to promote stable naïve pluripotency in hESCs.
PMCID: PMC4487243  PMID: 26053517
8.  Dynamic epigenetic changes to VHL occur with sunitinib in metastatic clear cell renal cancer 
Oncotarget  2016;7(18):25241-25250.
Genetic intratumoral heterogeneity (ITH) hinders biomarker development in metastatic clear cell renal cancer (mccRCC). Epigenetic relative to genetic ITH or the presence of consistent epigenetic changes following targeted therapy in mccRCC have not been evaluated. The aim of this study was to determine methylome/genetic ITH and to evaluate specific epigenetic and genetic changes associated with sunitinib therapy.
Patients and methods
Multi-region DNA sampling performed on sequential frozen pairs of primary tumor tissue from 14 metastatic ccRCC patients, in the Upfront Sunitinib (SU011248) Therapy Followed by Surgery in Patients with Metastatic Renal Cancer: a Pilot Phase II Study (SuMR; identifier: NCT01024205), at presentation (biopsy) and after 3-cycles of 50mg sunitinib (nephrectomy). Untreated biopsy and nephrectomy samples before and after renal artery ligation were controls. Ion Proton sequencing of 48 key ccRCC genes, and MethylCap-seq DNA methylation analysis was performed, data was analysed using the statistical computing environment R.
Unsupervised hierarchical clustering revealed complete methylome clustering of biopsy and three nephrectomy samples for each patient (14/14 patients). For mutational status, untreated biopsy and all treated nephrectomy samples clustered together in 8/13 (61.5%) patients. The only methylation target significantly altered following sunitinib therapy was VHL promoter region 7896829 which was hypermethylated with treatment (FDR=0.077, P<0.001) and consistent for all patients (pre-treatment 50% patients had VHL mutations, 14% patients VHL hypermethylation). Renal artery ligation did not affect this result. No significant differences in driver or private mutation count was found with sunitinib treatment.
Demonstration of relative methylome homogeneity and consistent VHL hypermethylation, after sunitinib, may overcome the hurdle of ITH present at other molecular levels for biomarker research.
PMCID: PMC5041900  PMID: 27029034
heterogeneity; methylation; mutations; renal cancer; VHL
10.  Viral Small-RNA Analysis of Bombyx mori Larval Midgut during Persistent and Pathogenic Cytoplasmic Polyhedrosis Virus Infection 
Journal of Virology  2015;89(22):11473-11486.
The lepidopteran innate immune response against RNA viruses remains poorly understood, while in other insects several studies have highlighted an essential role for the exo-RNAi pathway in combating viral infection. Here, by using deep-sequencing technology for viral small-RNA (vsRNA) assessment, we provide evidence that exo-RNAi is operative in the silkworm Bombyx mori against both persistent and pathogenic infection of B. mori cytoplasmic polyhedrosis virus (BmCPV) which is characterized by a segmented double-stranded RNA (dsRNA) genome. Further, we show that Dicer-2 predominantly targets viral dsRNA and produces 20-nucleotide (nt) vsRNAs, whereas an additional pathway is responsive to viral mRNA derived from segment 10. Importantly, vsRNA distributions, which define specific hot and cold spot profiles for each viral segment, to a considerable degree overlap between Dicer-2-related (19 to 21 nt) and Dicer-2-unrelated vsRNAs, suggesting a common origin for these profiles. We found a degenerate motif significantly enriched at the cut sites of vsRNAs of various lengths which link an unknown RNase to the origins of vsRNAs biogenesis and distribution. Accordingly, the indicated RNase activity may be an important early factor for the host's antiviral defense in Lepidoptera.
IMPORTANCE This work contributes to the elucidation of the lepidopteran antiviral response against infection of segmented double-stranded RNA (dsRNA) virus (CPV; Reoviridae) and highlights the importance of viral small-RNA (vsRNA) analysis for getting insights into host-pathogen interactions. Three vsRNA pathways are implicated in antiviral defense. For dsRNA, two pathways are proposed, either based on Dicer-2 cleavage to generate 20-nucleotide vsRNAs or based on the activity of an uncharacterized endo-RNase that cleaves the viral RNA substrate at a degenerate motif. The analysis also indicates the existence of a degradation pathway that targets the positive strand of segment 10.
PMCID: PMC4645660  PMID: 26339065
11.  Host Stress Drives Salmonella Recrudescence 
Scientific Reports  2016;6:20849.
Host stress is well known to result in flare-ups of many bacterial, viral and parasitic infections. The mechanism by which host stress is exploited to increase pathogen loads, is poorly understood. Here we show that Salmonella enterica subspecies enterica serovar Typhimurium employs a dedicated mechanism, driven by the scsA gene, to respond to the host stress hormone cortisol. Through this mechanism, cortisol increases Salmonella proliferation inside macrophages, resulting in increased intestinal infection loads in DBA/2J mice. ScsA directs overall Salmonella virulence gene expression under conditions that mimic the intramacrophagic environment of Salmonella, and stimulates the host cytoskeletal alterations that are required for increased Salmonella proliferation inside cortisol exposed macrophages. We thus provide evidence that in a stressed host, the complex interplay between a pathogen and its host endocrine and innate immune system increases intestinal pathogen loads to facilitate pathogen dispersal.
PMCID: PMC4746619  PMID: 26857846
12.  Suboptimal culture conditions induce more deviations in gene expression in male than female bovine blastocysts 
BMC Genomics  2016;17:72.
Since the development of in vitro embryo production in cattle, different supplements have been added to culture media to support embryo development, with serum being the most popular. However, the addition of serum during embryo culture can induce high birthweights and low viability in calves (Large Offspring Syndrome). Analysis of global gene expression in bovine embryos produced under different conditions can provide valuable information to optimize culture media for in vitro embryo production.
We used RNA sequencing to examine the effect of in vitro embryo production, in either serum-containing or serum-free media, on the global gene expression pattern of individual bovine blastocysts. Compared to in vivo derived embryos, embryos produced in serum-containing medium had five times more differentially expressed genes than embryos produced in serum-free conditions (1109 vs. 207). Importantly, in vitro production in the presence of serum appeared to have a different impact on the embryos according to their sex, with male embryos having three times more genes differentially expressed than their female counterparts (1283 vs. 456). On the contrary, male and female embryos produced in serum-free conditions showed the same number (191 vs. 192) of genes expressed differentially; however, only 44 of those genes were common in both comparisons. The pathways affected by in vitro production differed depending on the type of supplementation. For example, embryos produced in serum-containing conditions had a lower expression of genes related to metabolism while embryos produced in serum-free conditions showed aberrations in genes involved in lipid metabolism.
Serum supplementation had a major impact on the gene expression pattern of embryos, with male embryos being the most affected. The transcriptome of embryos produced in serum-free conditions showed a greater resemblance to that of in vivo derived embryos, although genes involved in lipid metabolism were altered. Male embryos appeared to be most affected by suboptimal in vitro culture, i.e. in the presence of serum.
Electronic supplementary material
The online version of this article (doi:10.1186/s12864-016-2393-z) contains supplementary material, which is available to authorized users.
PMCID: PMC4724126  PMID: 26801242
Bovine embryos; RNA-Seq; In vivo; In vitro production; Serum; Serum-free; Sex
13.  BMP-SMAD Signaling Regulates Lineage Priming, but Is Dispensable for Self-Renewal in Mouse Embryonic Stem Cells 
Stem Cell Reports  2015;6(1):85-94.
Naive mouse embryonic stem cells (mESCs) are in a metastable state and fluctuate between inner cell mass- and epiblast-like phenotypes. Here, we show transient activation of the BMP-SMAD signaling pathway in mESCs containing a BMP-SMAD responsive reporter transgene. Activation of the BMP-SMAD reporter transgene in naive mESCs correlated with lower levels of genomic DNA methylation, high expression of 5-methylcytosine hydroxylases Tet1/2 and low levels of DNA methyltransferases Dnmt3a/b. Moreover, naive mESCs, in which the BMP-SMAD reporter transgene was activated, showed higher resistance to differentiation. Using double Smad1;Smad5 knockout mESCs, we showed that BMP-SMAD signaling is dispensable for self-renewal in both naive and ground state. These mutant mESCs were still pluripotent, but they exhibited higher levels of DNA methylation than their wild-type counterparts and had a higher propensity to differentiate. We showed that BMP-SMAD signaling modulates lineage priming in mESCs, by transiently regulating the enzymatic machinery responsible for DNA methylation.
Graphical Abstract
•BMP-SMAD signaling in mESCs is more prominent in naive than ground state•BMP-SMAD signaling is dispensable for pluripotency in mESCs•BMP-SMAD signaling facilitates lineage priming in mESCs•BMP-SMAD signaling regulates Dnmt3b and hence levels of DNA methylation
In this article, Chuva de Sousa Lopes and colleagues show that the BMP-SMAD signaling is dispensable for the derivation, maintenance, and self-renewal of mESCs both in “serum” and/or “2i” pluripotency states. The BMP-SMAD signaling plays a role regulating the levels of DNA methylation (via Dnmt3a/b and Tet1/2) and hence lineage priming in pluripotent mESCs.
PMCID: PMC4720007  PMID: 26711875
14.  An heuristic filtering tool to identify phenotype-associated genetic variants applied to human intellectual disability and canine coat colors 
BMC Bioinformatics  2015;16:391.
Identification of one or several disease causing variant(s) from the large collection of variants present in an individual is often achieved by the sequential use of heuristic filters. The recent development of whole exome sequencing enrichment designs for several non-model species created the need for a species-independent, fast and versatile analysis tool, capable of tackling a wide variety of standard and more complex inheritance models. With this aim, we developed “Mendelian”, an R-package that can be used for heuristic variant filtering.
The R-package Mendelian offers fast and convenient filters to analyze putative variants for both recessive and dominant models of inheritance, with variable degrees of penetrance and detectance. Analysis of trios is supported. Filtering against variant databases and annotation of variants is also included. This package is not species specific and supports parallel computation. We validated this package by reanalyzing data from a whole exome sequencing experiment on intellectual disability in humans. In a second example, we identified the mutations responsible for coat color in the dog. This is the first example of whole exome sequencing without prior mapping in the dog.
We developed an R-package that enables the identification of disease-causing variants from the long list of variants called in sequencing experiments. The software and a detailed manual are available at
Electronic supplementary material
The online version of this article (doi:10.1186/s12859-015-0822-7) contains supplementary material, which is available to authorized users.
PMCID: PMC4656174  PMID: 26597515
Dominant; Heuristic; Recessive; Sequence analysis; Variant filtering
15.  Current and New Approaches in GMO Detection: Challenges and Solutions 
BioMed Research International  2015;2015:392872.
In many countries, genetically modified organisms (GMO) legislations have been established in order to guarantee the traceability of food/feed products on the market and to protect the consumer freedom of choice. Therefore, several GMO detection strategies, mainly based on DNA, have been developed to implement these legislations. Due to its numerous advantages, the quantitative PCR (qPCR) is the method of choice for the enforcement laboratories in GMO routine analysis. However, given the increasing number and diversity of GMO developed and put on the market around the world, some technical hurdles could be encountered with the qPCR technology, mainly owing to its inherent properties. To address these challenges, alternative GMO detection methods have been developed, allowing faster detections of single GM target (e.g., loop-mediated isothermal amplification), simultaneous detections of multiple GM targets (e.g., PCR capillary gel electrophoresis, microarray, and Luminex), more accurate quantification of GM targets (e.g., digital PCR), or characterization of partially known (e.g., DNA walking and Next Generation Sequencing (NGS)) or unknown (e.g., NGS) GMO. The benefits and drawbacks of these methods are discussed in this review.
PMCID: PMC4624882  PMID: 26550567
16.  Genome-wide transcription start site profiling in biofilm-grown Burkholderia cenocepacia J2315 
BMC Genomics  2015;16:775.
Burkholderia cenocepacia is a soil-dwelling Gram-negative Betaproteobacterium with an important role as opportunistic pathogen in humans. Infections with B. cenocepacia are very difficult to treat due to their high intrinsic resistance to most antibiotics. Biofilm formation further adds to their antibiotic resistance. B. cenocepacia harbours a large, multi-replicon genome with a high GC-content, the reference genome of strain J2315 includes 7374 annotated genes. This study aims to annotate transcription start sites and identify novel transcripts on a whole genome scale.
RNA extracted from B. cenocepacia J2315 biofilms was analysed by differential RNA-sequencing and the resulting dataset compared to data derived from conventional, global RNA-sequencing. Transcription start sites were annotated and further analysed according to their position relative to annotated genes.
Four thousand ten transcription start sites were mapped over the whole B. cenocepacia genome and the primary transcription start site of 2089 genes expressed in B. cenocepacia biofilms were defined. For 64 genes a start codon alternative to the annotated one was proposed. Substantial antisense transcription for 105 genes and two novel protein coding sequences were identified. The distribution of internal transcription start sites can be used to identify genomic islands in B. cenocepacia. A potassium pump strongly induced only under biofilm conditions was found and 15 non-coding small RNAs highly expressed in biofilms were discovered.
Mapping transcription start sites across the B. cenocepacia genome added relevant information to the J2315 annotation. Genes and novel regulatory RNAs putatively involved in B. cenocepacia biofilm formation were identified. These findings will help in understanding regulation of B. cenocepacia biofilm formation.
Electronic supplementary material
The online version of this article (doi:10.1186/s12864-015-1993-3) contains supplementary material, which is available to authorized users.
PMCID: PMC4603805  PMID: 26462475
Burkholderia cenocepacia; Biofilms; dRNA-Seq; Transcription start site; Small RNAs; Antisense RNA; Genomic islands
17.  Genome Sequence of Devriesea agamarum, Isolated from Agamid Lizards with Dermatitis 
Genome Announcements  2015;3(4):e00949-15.
We report the genome sequence of Devriesea agamarum strain IMP2, isolated from the liver of a female Agama impalearis. This actinobacterium is associated with septicemia and dermatitis in agamid lizards. Availability of this genome sequence will contribute to the understanding of this pathogen’s virulence.
PMCID: PMC4543515  PMID: 26294637
18.  Integrated DNA walking system to characterize a broad spectrum of GMOs in food/feed matrices 
BMC Biotechnology  2015;15:76.
In order to provide a system fully integrated with qPCR screening, usually used in GMO routine analysis, as well as being able to detect, characterize and identify a broad spectrum of GMOs in food/feed matrices, two bidirectional DNA walking methods targeting p35S or tNOS, the most common transgenic elements found in GM crops, were developed. These newly developed DNA walking methods are completing the previously implemented DNA walking method targeting the t35S pCAMBIA element.
Food/feed matrices containing transgenic crops (Bt rice or MON863 maize) were analysed using the integrated DNA walking system.
First, the newly developed DNA walking methods, anchored on the sequences used for the p35S or tNOS qPCR screening, were tested on Bt rice that contains these two transgenic elements. Second, the methods were assessed on a maize sample containing a low amount of the GM MON863 event, representing a more complex matrix in terms of genome size and sensitivity. Finally, to illustrate its applicability in GMO routine analysis by enforcement laboratories, the entire workflow of the integrated strategy, including qPCR screening to detect the potential presence of GMOs and the subsequent DNA walking methods to characterize and identify the detected GMOs, was applied on a GeMMA Scheme Proficiency Test matrix. Via the characterization of the transgene flanking region between the transgenic cassette and the plant genome as well as of a part of the transgenic cassette, the presence of GMOs was properly confirmed or infirmed in all tested samples.
Due to their simple procedure and their short time-frame to get results, the developed DNA walking methods proposed here can be easily implemented in GMO routine analysis by the enforcement laboratories. In providing crucial information about the transgene flanking regions and/or the transgenic cassettes, this DNA walking strategy is a key molecular tool to prove the presence of GMOs in any given food/feed matrix.
Electronic supplementary material
The online version of this article (doi:10.1186/s12896-015-0191-3) contains supplementary material, which is available to authorized users.
PMCID: PMC4535744  PMID: 26272331
19.  Improved canine exome designs, featuring ncRNAs and increased coverage of protein coding genes 
Scientific Reports  2015;5:12810.
By limiting sequencing to those sequences transcribed as mRNA, whole exome sequencing is a cost-efficient technique often used in disease-association studies. We developed two target enrichment designs based on the recently released annotation of the canine genome: the exome-plus design and the exome-CDS design. The exome-plus design combines the exons of the CanFam 3.1 Ensembl annotation, more recently discovered protein-coding exons and a variety of non-coding RNA regions (microRNAs, long non-coding RNAs and antisense transcripts), leading to a total size of ≈152 Mb. The exome-CDS was designed as a subset of the exome-plus by omitting all 3’ and 5’ untranslated regions. This reduced the size of the exome-CDS to ≈71 Mb. To test the capturing performance, four exome-plus captures were sequenced on a NextSeq 500 with each capture containing four pre-capture pooled, barcoded samples. At an average sequencing depth of 68.3x, 80% of the regions and well over 90% of the targeted base pairs were completely covered at least 5 times with high reproducibility. Based on the performance of the exome-plus, we estimated the performance of the exome-CDS. Overall, these designs provide flexible solutions for a variety of research questions and are likely to be reliable tools in disease studies.
PMCID: PMC4522663  PMID: 26235384
20.  Whole genome amplification with SurePlex results in better copy number alteration detection using sequencing data compared to the MALBAC method 
Scientific Reports  2015;5:11711.
Current whole genome amplification (WGA) methods lead to amplification bias resulting in over- and under-represented regions in the genome. Nevertheless, certain WGA methods, such as SurePlex and subsequent arrayCGH analysis, make it possible to detect copy number alterations (CNAs) at a 10 Mb resolution. A more uniform WGA combined with massive parallel sequencing (MPS), however, could allow detection at higher resolution and lower cost. Recently, MALBAC, a new WGA method, claims unparalleled performance. Here, we compared the well-established SurePlex and MALBAC WGA for their ability to detect CNAs in MPS generated data and, in addition, compared PCR-free MPS library preparation with the standard enrichment PCR library preparation. Results showed that SurePlex amplification led to more uniformity across the genome, allowing for a better CNA detection with less false positives compared to MALBAC amplified samples. An even more uniform coverage was observed in samples following a PCR-free library preparation. In general, the combination of SurePlex and MPS led to the same chromosomal profile compared to a reference arrayCGH from unamplified genomic DNA, underlining the large potential of MPS techniques in CNA detection from a limited number of DNA material.
PMCID: PMC4485032  PMID: 26122179
21.  A Doubling of Microphytobenthos Biomass Coincides with a Tenfold Increase in Denitrifier and Total Bacterial Abundances in Intertidal Sediments of a Temperate Estuary 
PLoS ONE  2015;10(5):e0126583.
Surface sediments are important systems for the removal of anthropogenically derived inorganic nitrogen in estuaries. They are often characterized by the presence of a microphytobenthos (MPB) biofilm, which can impact bacterial communities in underlying sediments for example by secretion of extracellular polymeric substances (EPS) and competition for nutrients (including nitrogen). Pyrosequencing and qPCR was performed on two intertidal surface sediments of the Westerschelde estuary characterized by a two-fold difference in MPB biomass but no difference in MPB composition. Doubling of MPB biomass was accompanied by a disproportionately (ten-fold) increase in total bacterial abundances while, unexpectedly, no difference in general community structure was observed, despite significantly lower bacterial richness and distinct community membership, mostly for non-abundant taxa. Denitrifier abundances corresponded likewise while community structure, both for nirS and nirK denitrifiers, remained unchanged, suggesting that competition with diatoms for nitrate is negligible at concentrations in the investigated sediments (appr. 1 mg/l NO3-). This study indicates that MPB biomass increase has a general, significantly positive effect on total bacterial and denitrifier abundances, with stimulation or inhibition of specific bacterial groups that however do not result in a re-structured community.
PMCID: PMC4427305  PMID: 25961719
22.  Phospho-iTRAQ data article: Assessing isobaric labels for the large-scale study of phosphopeptide stoichiometry 
Data in Brief  2015;4:60-65.
The ability to distinguish between phosphopeptides of high and low stoichiometry is essential to discover the true extent of protein phosphorylation. We here extend the strategy whereby a peptide sample is briefly split in two identical parts and differentially labeled preceding the phosphatase treatment of one part (Pflieger et al., 2008. Mol. Cell. Proteomics, 7: 326–46 [1]; Wu et al., 2011. Nat. Methods, 8: 677–83 [2]). Our Phospho-iTRAQ method focuses on the unmodified counterparts of phosphorylated peptides, which thus circumvents the ionization, fragmentation, and phospho-enrichment difficulties that hamper quantitation of stoichiometry in most common phosphoproteomics methods. Since iTRAQ enables multiplexing, simultaneous (phospho)proteome comparison between internal replicates and multiple samples is possible. The technique was validated on multiple instrument platforms by adding internal standards of high stoichiometry to a complex lysate of control and EGF-stimulated HeLa cells. To demonstrate the flexibility of PhosphoiTRAQ with regards to the experimental setup and data mining, the proteome coverage was extended through gel fractionation, while an internal replicate measurement creates more stringent data analysis opportunities. The latter allows other researchers to set their own threshold for selecting potential phosphorylation events in the dataset presented here, depending on the biological question or corroboration under investigation. The latest developments in MS instrumentation promise to further increase the resolution of the stoichiometric measurement of Phospho-iTRAQ in the future. The data accompanying the manuscript on this approach (Glibert et al., 2015, J. Proteome Res.14: 2015, 839–49 [5]) have been deposited to the ProteomeXchange with identifier PXD001574.
PMCID: PMC4510381  PMID: 26217764
23.  iTRAQ as a method for optimization: Enhancing peptide recovery after gel fractionation 
Proteomics  2014;14(6):680-684.
At the dawn of a new era in label-free quantitation on high-resolution MS instruments, classical methods such as iTRAQ continue to provide very useful insights in comparative proteomics. The potential to multiplex samples makes this reporter-based labeling technique highly suited for method optimization as demonstrated here by a set of standard series. Instead of studying ratios of annotated proteins, we propose an alternative method, based on the analysis of the average reporter ratios of all the spectra from a sample or a large distinct subset herein. This strategy circumvents the bias, associated with the annotation and iTRAQ quantitation, leading to increased adequacy in measuring yield differences between workflows. As gel electrophoresis prior to MS analysis is highly beneficial, for example, as a fractionation step, the approach was applied to evaluate the influence of several parameters of the established in-gel digestion protocol. We quantified the negative effect of SYPRO Ruby staining and the positive effect of gel fixation prior to digestion on peptide yield. Finally, we emphasize the benefits of adding CaCl2 and ACN to a tryptic in-gel digest, resulting in an up to tenfold enhanced peptide recovery and fewer trypsin missed cleavages.
PMCID: PMC4413792  PMID: 24449435
Gel fractionation; In-gel digestion; iTRAQ; Method optimization; Quantification; Technology
24.  16S rRNA Amplicon Sequencing Demonstrates that Indoor-Reared Bumblebees (Bombus terrestris) Harbor a Core Subset of Bacteria Normally Associated with the Wild Host 
PLoS ONE  2015;10(4):e0125152.
A MiSeq multiplexed 16S rRNA amplicon sequencing of the gut microbiota of wild and indoor-reared Bombus terrestris (bumblebees) confirmed the presence of a core set of bacteria, which consisted of Neisseriaceae (Snodgrassella), Orbaceae (Gilliamella), Lactobacillaceae (Lactobacillus), and Bifidobacteriaceae (Bifidobacterium). In wild B. terrestris we detected several non-core bacteria having a more variable prevalence. Although Enterobacteriaceae are unreported by non next-generation sequencing studies, it can become a dominant gut resident. Furthermore the presence of some non-core lactobacilli were associated with the relative abundance of bifidobacteria. This association was not observed in indoor-reared bumblebees lacking the non-core bacteria, but having a more standardized microbiota compared to their wild counterparts. The impact of the bottleneck microbiota of indoor-reared bumblebees when they are used in the field for pollination purpose is discussed.
PMCID: PMC4414509  PMID: 25923917
25.  Efficiency of Exome Sequencing for the Molecular Diagnosis of Pseudoxanthoma Elasticum 
The molecular etiology of pseudoxanthoma elasticum (PXE), an autosomal recessive connective tissue disorder, has become increasingly complex as not only mutations in ATP-binding cassette family C member 6 (ABCC6) but also ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) and gamma-glutamyl carboxylase (GGCX) can cause resembling phenotypes. Identification of modifier genes, such as vascular endothelial growth factor A, has further contributed to the molecular heterogeneity of PXE. In such heterogeneous diseases, next-generation sequencing (NGS) allows to perform mutation screening of several genes in a single reaction. We explored whole-exome sequencing (WES) as an efficient diagnostic tool to identify the causal mutations in ABCC6, GGCX, ENPP1, and vitamin K epoxide reductase complex, subunit 1 (VKORC1) in 16 PXE patients. WES identified a causal ABCC6 mutation in 30 out of 32 alleles and one GGCX mutation, whereas no causal mutations in ENPP1 or VKORC1 were detected. Exomes with insufficient reads (⩽20 depth) for the four genes and patients with single mutations were further evaluated by Sanger sequencing (SS), but no additional mutations were found. The potential of WES compared with targeted NGS is the ease to examine target genes and the opportunity to search for novel genes when targeted analysis is negative. Together with low cost, rapid and less laborious workflow, we conclude that WES complemented with SS can provide a tiered approach to molecular diagnostics of PXE.
PMCID: PMC4378258  PMID: 25264593

Results 1-25 (73)