Search tips
Search criteria

Results 1-15 (15)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Paradoxical Immune Responses in Non-HIV Cryptococcal Meningitis 
PLoS Pathogens  2015;11(5):e1004884.
The fungus Cryptococcus is a major cause of meningoencephalitis in HIV-infected as well as HIV-uninfected individuals with mortalities in developed countries of 20% and 30%, respectively. In HIV-related disease, defects in T-cell immunity are paramount, whereas there is little understanding of mechanisms of susceptibility in non-HIV related disease, especially that occurring in previously healthy adults. The present description is the first detailed immunological study of non-HIV-infected patients including those with severe central nervous system (s-CNS) disease to 1) identify mechanisms of susceptibility as well as 2) understand mechanisms underlying severe disease. Despite the expectation that, as in HIV, T-cell immunity would be deficient in such patients, cerebrospinal fluid (CSF) immunophenotyping, T-cell activation studies, soluble cytokine mapping and tissue cellular phenotyping demonstrated that patients with s-CNS disease had effective microbiological control, but displayed strong intrathecal expansion and activation of cells of both the innate and adaptive immunity including HLA-DR+ CD4+ and CD8+ cells and NK cells. These expanded CSF T cells were enriched for cryptococcal-antigen specific CD4+ cells and expressed high levels of IFN-γ as well as a lack of elevated CSF levels of typical T-cell specific Th2 cytokines -- IL-4 and IL-13. This inflammatory response was accompanied by elevated levels of CSF NFL, a marker of axonal damage, consistent with ongoing neurological damage. However, while tissue macrophage recruitment to the site of infection was intact, polarization studies of brain biopsy and autopsy specimens demonstrated an M2 macrophage polarization and poor phagocytosis of fungal cells. These studies thus expand the paradigm for cryptococcal disease susceptibility to include a prominent role for macrophage activation defects and suggest a spectrum of disease whereby severe neurological disease is characterized by immune-mediated host cell damage.
Author Summary
Cryptococcus is an important cause of fungal meningitis with significant mortality globally. Susceptibility to the fungus in humans has been related to T-lymphocyte defects in HIV-infected individuals, but little is known about possible immune defects in non HIV-infected patients including previously healthy individuals. This latter group also has some of the worst response rates to therapy with almost a third dying in the United States, despite available therapy. Here we conducted the first detailed immunological analysis of non-HIV apparently immunocompetent individuals with active cryptococcal disease. In contrast to HIV-infected individuals, these studies identified a highly activated antigen-presenting dendritic cell population within CSF, accompanied by a highly active T-lymphocyte population with potentially damaging inflammatory cytokine responses. Furthermore, elevated levels of CSF neurofilament light chains (NFL), a marker of axonal damage in severe central nervous system infections suggest a dysfunctional role to this acute inflammatory state. Paradoxically, CSF macrophage proportions were reduced in patients with severe disease and biopsy and autopsy samples identified alternatively activated tissue macrophage populations that failed to appropriately phagocytose fungal cells. Our study thus provides new insights into the susceptibility to human cryptococcal disease and identifies a paradoxically active T-lymphocyte response that may be amenable to adjunctive immunomodulation to improve treatment outcomes in this high-mortality disease.
PMCID: PMC4447450  PMID: 26020932
2.  Applying the ARRIVE Guidelines to an In Vivo Database 
PLoS Biology  2015;13(5):e1002151.
The Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines were developed to address the lack of reproducibility in biomedical animal studies and improve the communication of research findings. While intended to guide the preparation of peer-reviewed manuscripts, the principles of transparent reporting are also fundamental for in vivo databases. Here, we describe the benefits and challenges of applying the guidelines for the International Mouse Phenotyping Consortium (IMPC), whose goal is to produce and phenotype 20,000 knockout mouse strains in a reproducible manner across ten research centres. In addition to ensuring the transparency and reproducibility of the IMPC, the solutions to the challenges of applying the ARRIVE guidelines in the context of IMPC will provide a resource to help guide similar initiatives in the future.
Transparent reporting is key to ensuring reproducibility of animal research. This article examines the challenges of applying the ARRIVE guidelines to a large-scale, collaborative, in vivo research initiative—the International Mouse Phenotyping Consortium.
PMCID: PMC4439173  PMID: 25992600
3.  The BioMart community portal: an innovative alternative to large, centralized data repositories 
Smedley, Damian | Haider, Syed | Durinck, Steffen | Pandini, Luca | Provero, Paolo | Allen, James | Arnaiz, Olivier | Awedh, Mohammad Hamza | Baldock, Richard | Barbiera, Giulia | Bardou, Philippe | Beck, Tim | Blake, Andrew | Bonierbale, Merideth | Brookes, Anthony J. | Bucci, Gabriele | Buetti, Iwan | Burge, Sarah | Cabau, Cédric | Carlson, Joseph W. | Chelala, Claude | Chrysostomou, Charalambos | Cittaro, Davide | Collin, Olivier | Cordova, Raul | Cutts, Rosalind J. | Dassi, Erik | Genova, Alex Di | Djari, Anis | Esposito, Anthony | Estrella, Heather | Eyras, Eduardo | Fernandez-Banet, Julio | Forbes, Simon | Free, Robert C. | Fujisawa, Takatomo | Gadaleta, Emanuela | Garcia-Manteiga, Jose M. | Goodstein, David | Gray, Kristian | Guerra-Assunção, José Afonso | Haggarty, Bernard | Han, Dong-Jin | Han, Byung Woo | Harris, Todd | Harshbarger, Jayson | Hastings, Robert K. | Hayes, Richard D. | Hoede, Claire | Hu, Shen | Hu, Zhi-Liang | Hutchins, Lucie | Kan, Zhengyan | Kawaji, Hideya | Keliet, Aminah | Kerhornou, Arnaud | Kim, Sunghoon | Kinsella, Rhoda | Klopp, Christophe | Kong, Lei | Lawson, Daniel | Lazarevic, Dejan | Lee, Ji-Hyun | Letellier, Thomas | Li, Chuan-Yun | Lio, Pietro | Liu, Chu-Jun | Luo, Jie | Maass, Alejandro | Mariette, Jerome | Maurel, Thomas | Merella, Stefania | Mohamed, Azza Mostafa | Moreews, Francois | Nabihoudine, Ibounyamine | Ndegwa, Nelson | Noirot, Céline | Perez-Llamas, Cristian | Primig, Michael | Quattrone, Alessandro | Quesneville, Hadi | Rambaldi, Davide | Reecy, James | Riba, Michela | Rosanoff, Steven | Saddiq, Amna Ali | Salas, Elisa | Sallou, Olivier | Shepherd, Rebecca | Simon, Reinhard | Sperling, Linda | Spooner, William | Staines, Daniel M. | Steinbach, Delphine | Stone, Kevin | Stupka, Elia | Teague, Jon W. | Dayem Ullah, Abu Z. | Wang, Jun | Ware, Doreen | Wong-Erasmus, Marie | Youens-Clark, Ken | Zadissa, Amonida | Zhang, Shi-Jian | Kasprzyk, Arek
Nucleic Acids Research  2015;43(Web Server issue):W589-W598.
The BioMart Community Portal ( is a community-driven effort to provide a unified interface to biomedical databases that are distributed worldwide. The portal provides access to numerous database projects supported by 30 scientific organizations. It includes over 800 different biological datasets spanning genomics, proteomics, model organisms, cancer data, ontology information and more. All resources available through the portal are independently administered and funded by their host organizations. The BioMart data federation technology provides a unified interface to all the available data. The latest version of the portal comes with many new databases that have been created by our ever-growing community. It also comes with better support and extensibility for data analysis and visualization tools. A new addition to our toolbox, the enrichment analysis tool is now accessible through graphical and web service interface. The BioMart community portal averages over one million requests per day. Building on this level of service and the wealth of information that has become available, the BioMart Community Portal has introduced a new, more scalable and cheaper alternative to the large data stores maintained by specialized organizations.
PMCID: PMC4489294  PMID: 25897122
4.  Daclizumab reverses intrathecal immune cell abnormalities in multiple sclerosis 
Novel treatments such as natalizumab and fingolimod achieve their therapeutic efficacy in multiple sclerosis (MS) by blocking access of subsets of immune cells into the central nervous system, thus creating nonphysiological intrathecal immunity. In contrast, daclizumab, a humanized monoclonal antibody against the alpha chain of the IL-2 receptor, has a unique mechanism of action with multiple direct effects on innate immunity. As cellular intrathecal abnormalities corresponding to MS have been well defined, we asked how daclizumab therapy affects these immunological hallmarks of the MS disease process.
Nineteen subpopulations of immune cells were assessed in a blinded fashion in the blood and 50-fold concentrated cerebrospinal fluid (CSF) cell pellet in 32 patients with untreated relapsing-remitting MS (RRMS), 22 daclizumab-treated RRMS patients, and 11 healthy donors (HDs) using 12-color flow cytometry.
Long-term daclizumab therapy normalized all immunophenotyping abnormalities differentiating untreated RRMS patients from HDs. Specifically, strong enrichment of adaptive immune cells (CD4+ and CD8+ T cells and B cells) in the CSF was reversed. Similarly, daclizumab controlled MS-related increases in the innate lymphoid cells (ILCs) and lymphoid tissue inducer cells in the blood and CSF, and reverted the diminished proportion of intrathecal monocytes. The only marker that distinguished daclizumab-treated MS patients from HDs was the expansion of immunoregulatory CD56bright NK cells.
Normalization of immunological abnormalities associated with MS by long-term daclizumab therapy suggests that this drug's effects on ILCs, NK cells, and dendritic cell-mediated antigen presentation to CD4+ and CD8+ T cells are critical in regulating the MS disease process.
PMCID: PMC4435700  PMID: 26000318
5.  The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data 
Nucleic Acids Research  2013;42(Database issue):D802-D809.
The International Mouse Phenotyping Consortium (IMPC) web portal ( provides the biomedical community with a unified point of access to mutant mice and rich collection of related emerging and existing mouse phenotype data. IMPC mouse clinics worldwide follow rigorous highly structured and standardized protocols for the experimentation, collection and dissemination of data. Dedicated ‘data wranglers’ work with each phenotyping center to collate data and perform quality control of data. An automated statistical analysis pipeline has been developed to identify knockout strains with a significant change in the phenotype parameters. Annotation with biomedical ontologies allows biologists and clinicians to easily find mouse strains with phenotypic traits relevant to their research. Data integration with other resources will provide insights into mammalian gene function and human disease. As phenotype data become available for every gene in the mouse, the IMPC web portal will become an invaluable tool for researchers studying the genetic contributions of genes to human diseases.
PMCID: PMC3964955  PMID: 24194600
6.  A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains 
Genome Biology  2013;14(7):R82.
The mouse inbred line C57BL/6J is widely used in mouse genetics and its genome has been incorporated into many genetic reference populations. More recently large initiatives such as the International Knockout Mouse Consortium (IKMC) are using the C57BL/6N mouse strain to generate null alleles for all mouse genes. Hence both strains are now widely used in mouse genetics studies. Here we perform a comprehensive genomic and phenotypic analysis of the two strains to identify differences that may influence their underlying genetic mechanisms.
We undertake genome sequence comparisons of C57BL/6J and C57BL/6N to identify SNPs, indels and structural variants, with a focus on identifying all coding variants. We annotate 34 SNPs and 2 indels that distinguish C57BL/6J and C57BL/6N coding sequences, as well as 15 structural variants that overlap a gene. In parallel we assess the comparative phenotypes of the two inbred lines utilizing the EMPReSSslim phenotyping pipeline, a broad based assessment encompassing diverse biological systems. We perform additional secondary phenotyping assessments to explore other phenotype domains and to elaborate phenotype differences identified in the primary assessment. We uncover significant phenotypic differences between the two lines, replicated across multiple centers, in a number of physiological, biochemical and behavioral systems.
Comparison of C57BL/6J and C57BL/6N demonstrates a range of phenotypic differences that have the potential to impact upon penetrance and expressivity of mutational effects in these strains. Moreover, the sequence variants we identify provide a set of candidate genes for the phenotypic differences observed between the two strains.
PMCID: PMC4053787  PMID: 23902802
Mouse inbred lines; sequence variation; mouse phenotyping; gene knockout; C57BL/6
7.  BioMart Central Portal: an open database network for the biological community 
BioMart Central Portal is a first of its kind, community-driven effort to provide unified access to dozens of biological databases spanning genomics, proteomics, model organisms, cancer data, ontology information and more. Anybody can contribute an independently maintained resource to the Central Portal, allowing it to be exposed to and shared with the research community, and linking it with the other resources in the portal. Users can take advantage of the common interface to quickly utilize different sources without learning a new system for each. The system also simplifies cross-database searches that might otherwise require several complicated steps. Several integrated tools streamline common tasks, such as converting between ID formats and retrieving sequences. The combination of a wide variety of databases, an easy-to-use interface, robust programmatic access and the array of tools make Central Portal a one-stop shop for biological data querying. Here, we describe the structure of Central Portal and show example queries to demonstrate its capabilities.
Database URL:
PMCID: PMC3263598  PMID: 21930507
8.  Thymic Nurse Cells Exhibit Epithelial Progenitor Phenotype and Create Unique Extra-Cytoplasmic Membrane Space for Thymocyte Selection 
Cellular immunology  2009;261(2):81-92.
Thymic nurse cells (TNCs) are epithelial cells in the thymic cortex that contain as many as fifty thymocytes within specialized cytoplasmic vacuoles. The function of this cell-in-cell interaction has created controversy since their discovery in 1980. Further, some skepticism exists about the idea that apoptotic thymocytes within the TNC complex result from negative selection, a process believed to occur exclusively within the medulla. In this report, we have microscopic evidence that defines a unique membranous environment wherein lipid raft aggregates around the αβTCR expressed on captured thymocytes and class II MHC molecules expressed on TNCs. Further, immunohistological examination of thymic sections show TNCs located within the cortico-medullary junction to express cytokeratins five and eight (K5 and K8), and the transcription factor Trp-63, the phenotype defined elsewhere as the thymic epithelial progenitor subset. Our results suggest that the microenvironment provided by TNCs plays an important role in thymocyte selection as well as the potential for TNCs to be involved in the maintenance of thymic epithelia.
PMCID: PMC2830717  PMID: 20035931
Thymic nurse cell; epithelial progenitor; membrane extensions; cytokeratins; heterotypic internalization; MHC restriction; Trp 63
9.  Meeting Report from the Second “Minimum Information for Biological and Biomedical Investigations” (MIBBI) workshop 
Standards in Genomic Sciences  2010;3(3):259-266.
This report summarizes the proceedings of the second workshop of the ‘Minimum Information for Biological and Biomedical Investigations’ (MIBBI) consortium held on Dec 1-2, 2010 in Rüdesheim, Germany through the sponsorship of the Beilstein-Institute. MIBBI is an umbrella organization uniting communities developing Minimum Information (MI) checklists to standardize the description of data sets, the workflows by which they were generated and the scientific context for the work. This workshop brought together representatives of more than twenty communities to present the status of their MI checklists and plans for future development. Shared challenges and solutions were identified and the role of MIBBI in MI checklist development was discussed. The meeting featured some thirty presentations, wide-ranging discussions and breakout groups. The top outcomes of the two-day workshop as defined by the participants were: 1) the chance to share best practices and to identify areas of synergy; 2) defining a series of tasks for updating the MIBBI Portal; 3) reemphasizing the need to maintain independent MI checklists for various communities while leveraging common terms and workflow elements contained in multiple checklists; and 4) revision of the concept of the MIBBI Foundry to focus on the creation of a core set of MIBBI modules intended for reuse by individual MI checklist projects while maintaining the integrity of each MI project. Further information about MIBBI and its range of activities can be found at
PMCID: PMC3035314  PMID: 21304730
10.  Finding and sharing: new approaches to registries of databases and services for the biomedical sciences 
The recent explosion of biological data and the concomitant proliferation of distributed databases make it challenging for biologists and bioinformaticians to discover the best data resources for their needs, and the most efficient way to access and use them. Despite a rapid acceleration in uptake of syntactic and semantic standards for interoperability, it is still difficult for users to find which databases support the standards and interfaces that they need. To solve these problems, several groups are developing registries of databases that capture key metadata describing the biological scope, utility, accessibility, ease-of-use and existence of web services allowing interoperability between resources. Here, we describe some of these initiatives including a novel formalism, the Database Description Framework, for describing database operations and functionality and encouraging good database practise. We expect such approaches will result in improved discovery, uptake and utilization of data resources.
Database URL:
PMCID: PMC2911849  PMID: 20627863
11.  EuroPhenome: a repository for high-throughput mouse phenotyping data 
Nucleic Acids Research  2009;38(Database issue):D577-D585.
The broad aim of biomedical science in the postgenomic era is to link genomic and phenotype information to allow deeper understanding of the processes leading from genomic changes to altered phenotype and disease. The EuroPhenome project ( is a comprehensive resource for raw and annotated high-throughput phenotyping data arising from projects such as EUMODIC. EUMODIC is gathering data from the EMPReSSslim pipeline ( which is performed on inbred mouse strains and knock-out lines arising from the EUCOMM project. The EuroPhenome interface allows the user to access the data via the phenotype or genotype. It also allows the user to access the data in a variety of ways, including graphical display, statistical analysis and access to the raw data via web services. The raw phenotyping data captured in EuroPhenome is annotated by an annotation pipeline which automatically identifies statistically different mutants from the appropriate baseline and assigns ontology terms for that specific test. Mutant phenotypes can be quickly identified using two EuroPhenome tools: PhenoMap, a graphical representation of statistically relevant phenotypes, and mining for a mutant using ontology terms. To assist with data definition and cross-database comparisons, phenotype data is annotated using combinations of terms from biological ontologies.
PMCID: PMC2808931  PMID: 19933761
12.  MouseBook: an integrated portal of mouse resources 
Nucleic Acids Research  2009;38(Database issue):D593-D599.
The MouseBook ( databases and web portal provide access to information about mutant mouse lines held as live or cryopreserved stocks at MRC Harwell. The MouseBook portal integrates curated information from the MRC Harwell stock resource, and other Harwell databases, with information from external data resources to provide value-added information above and beyond what is available through other routes such as International Mouse Stain Resource (IMSR). MouseBook can be searched either using an intuitive Google style free text search or using the Mammalian Phenotype (MP) ontology tree structure. Text searches can be on gene, allele, strain identifier (e.g. MGI ID) or phenotype term and are assisted by automatic recognition of term types and autocompletion of gene and allele names covered by the database. Results are returned in a tabbed format providing categorized results identified from each of the catalogs in MouseBook. Individual result lines from each catalog include information on gene, allele, chromosomal location and phenotype, and provide a simple click-through link to further information as well as ordering the strain. The infrastructure underlying MouseBook has been designed to be extensible, allowing additional data sources to be added and enabling other sites to make their data directly available through MouseBook.
PMCID: PMC2808969  PMID: 19854936
13.  Practical application of ontologies to annotate and analyse large scale raw mouse phenotype data 
BMC Bioinformatics  2009;10(Suppl 5):S2.
Large-scale international projects are underway to generate collections of knockout mouse mutants and subsequently to perform high throughput phenotype assessments, raising new challenges for computational researchers due to the complexity and scale of the phenotype data. Phenotypes can be described using ontologies in two differing methodologies. Traditionally an individual phenotypic character has either been defined using a single compound term, originating from a species-specific dedicated phenotype ontology, or alternatively by a combinatorial annotation, using concepts from a range of disparate ontologies, to define a phenotypic character as an entity with an associated quality (EQ). Both methods have their merits, which include the dedicated approach allowing use of community standard terminology, and the combinatorial approach facilitating cross-species phenotypic statement comparisons. Previously databases have favoured one approach over another. The EUMODIC project will generate large amounts of mouse phenotype data, generated as a result of the execution of a set of Standard Operating Procedures (SOPs) and will implement both ontological approaches to capture the phenotype data generated.
For all SOPs a four-tier annotation is made: a high-level description of the SOP, to broadly define the type of data generated by the SOP; individual parameter annotation using the EQ model; annotation of the qualitative data generated for each mouse; and the annotation of mutant lines after statistical analysis. The qualitative assessments of phenodeviance are made at the point of data entry, using child PATO qualities to the parameter quality. To facilitate data querying by scientists more familiar with single compound terms to describe phenotypes, the mappings between the Mammalian Phenotype (MP) ontology and the EQ PATO model are exploited to allow querying via MP terms.
Well-annotated and comparable phenotype databases can be achieved through the use of ontologically derived comparable phenotypic statements and have been implemented here by means of OBO compatible EQ annotations. The implementation we describe also sees scientists working seamlessly with ontologies through the assessment of qualitative phenotypes in terms of PATO qualities and the ability to query the database using community-accepted compound MP terms. This work represents the first time the combinatorial and single-dedicated approaches have both been implemented to annotate a phenotypic dataset.
PMCID: PMC2679402  PMID: 19426459
14.  EuroPhenome and EMPReSS: online mouse phenotyping resource 
Nucleic Acids Research  2007;36(Database issue):D715-D718.
EuroPhenome ( and EMPReSS ( form an integrated resource to provide access to data and procedures for mouse phenotyping. EMPReSS describes 96 Standard Operating Procedures for mouse phenotyping. EuroPhenome contains data resulting from carrying out EMPReSS protocols on four inbred laboratory mouse strains. As well as web interfaces, both resources support web services to enable integration with other mouse phenotyping and functional genetics resources, and are committed to initiatives to improve integration of mouse phenotype databases. EuroPhenome will be the repository for a recently initiated effort to carry out large-scale phenotyping on a large number of knockout mouse lines (EUMODIC).
PMCID: PMC2238991  PMID: 17905814
15.  Mathematical modelling of animate and intentional motion. 
Our aim is to enable a machine to observe and interpret the behaviour of others. Mathematical models are employed to describe certain biological motions. The main challenge is to design models that are both tractable and meaningful. In the first part we will describe how computer vision techniques, in particular visual tracking, can be applied to recognize a small vocabulary of human actions in a constrained scenario. Mainly the problems of viewpoint and scale invariance need to be overcome to formalize a general framework. Hence the second part of the article is devoted to the question whether a particular human action should be captured in a single complex model or whether it is more promising to make extensive use of semantic knowledge and a collection of low-level models that encode certain motion primitives. Scene context plays a crucial role if we intend to give a higher-level interpretation rather than a low-level physical description of the observed motion. A semantic knowledge base is used to establish the scene context. This approach consists of three main components: visual analysis, the mapping from vision to language and the search of the semantic database. A small number of robust visual detectors is used to generate a higher-level description of the scene. The approach together with a number of results is presented in the third part of this article.
PMCID: PMC1693128  PMID: 12689374

Results 1-15 (15)