PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("gets, Robert")
1.  Serum microRNA expression as an early marker for breast cancer risk in prospectively collected samples from the Sister Study cohort 
Introduction
MicroRNAs (miRNAs) are small, non-coding, single-stranded RNAs between 18-22 nucleotides long that regulate gene expression. Expression of miRNAs is altered in tumor compared to normal tissue; there is some evidence that these changes may be reflected in the serum of cancer cases compared to healthy individuals. This has yet to be examined in a prospective study where samples are collected before diagnosis.
Methods
We used Affymetrix arrays to examine serum miRNA expression profiles in 410 participants in the Sister Study, a prospective cohort study of 50,884 women. All women in the cohort had never been diagnosed with breast cancer at the time of enrollment. We compared global miRNA expression patterns in 205 women who subsequently developed breast cancer and 205 women who remained breast cancer-free. In addition within the case group we examined the association of miRNA expression in serum with different tumor characteristics, including hormone status (ER, PR, and HER-2) and lymph node status.
Results
Overall, 414 of 1,105 of the human miRNAs on the chip were expressed above background levels in 50 or more women. When the average expression among controls was compared to cases using conditional logistic regression, 21 miRNAs were found to be differentially expressed (P≤.05). Using qRT-PCR on a small, independent sample of 5 cases and 5 controls we verified overexpression of the 3 highest expressing miRNAs among cases, miR-18a, miR-181a, and miR-222; the differences were not statistically significant in this small set. The 21 differentially expressed miRNAs are known to target at least 82 genes; using the gene list for pathway analysis we found enrichment of genes involved in cancer-related processes. In a separate case-case analyses restricted to the 21 miRNAs, we found 7 miRNAs with differential expression for women whose breast tumors differed by HER-2 expression, and 10 miRNAs with differential expression by nodal status.
Conclusions
miRNA levels in serum show a number of small differences between women who later develop cancer versus those who remain cancer-free.
doi:10.1186/bcr3428
PMCID: PMC3706791  PMID: 23705859
2.  Genome-Wide Maps of Circulating miRNA Biomarkers for Ulcerative Colitis 
PLoS ONE  2012;7(2):e31241.
Inflammatory Bowel Disease – comprised of Crohn's Disease and Ulcerative Colitis (UC) - is a complex, multi-factorial inflammatory disorder of the gastrointestinal tract. In this study we have explored the utility of naturally occurring circulating miRNAs as potential blood-based biomarkers for non-invasive prediction of UC incidences. Whole genome maps of circulating miRNAs in micro-vesicles, Peripheral Blood Mononuclear Cells and platelets have been constructed from a cohort of 20 UC patients and 20 normal individuals. Through Significance Analysis of Microarrays, a signature of 31 differentially expressed platelet-derived miRNAs has been identified and biomarker performance estimated through a non-probabilistic binary linear classification using Support Vector Machines. Through this approach, classifier measurements reveal a predictive score of 92.8% accuracy, 96.2% specificity and 89.5% sensitivity in distinguishing UC patients from normal individuals. Additionally, the platelet-derived biomarker signature can be validated at 88% accuracy through qPCR assays, and a majority of the miRNAs in this panel can be demonstrated to sub-stratify into 4 highly correlated intensity based clusters. Analysis of predicted targets of these biomarkers reveal an enrichment of pathways associated with cytoskeleton assembly, transport, membrane permeability and regulation of transcription factors engaged in a variety of regulatory cascades that are consistent with a cell-mediated immune response model of intestinal inflammation. Interestingly, comparison of the miRNA biomarker panel and genetic loci implicated in IBD through genome-wide association studies identifies a physical linkage between hsa-miR-941 and a UC susceptibility loci located on Chr 20. Taken together, analysis of these expression maps outlines a promising catalog of novel platelet-derived miRNA biomarkers of clinical utility and provides insight into the potential biological function of these candidates in disease pathogenesis.
doi:10.1371/journal.pone.0031241
PMCID: PMC3281076  PMID: 22359580
3.  Impact of Cellular miRNAs on Circulating miRNA Biomarker Signatures 
PLoS ONE  2011;6(6):e20769.
Effective diagnosis and surveillance of complex multi-factorial disorders such as cancer can be improved by screening of easily accessible biomarkers. Highly stable cell free Circulating Nucleic Acids (CNA) present as both RNA and DNA species have been discovered in the blood and plasma of humans. Correlations between tumor-associated genomic/epigenetic/transcriptional changes and alterations in CNA levels are strong predictors of the utility of this biomarker class as promising clinical indicators. Towards this goal microRNAs (miRNAs) representing a class of naturally occurring small non-coding RNAs of 19–25 nt in length have emerged as an important set of markers that can associate their specific expression profiles with cancer development. In this study we investigate some of the pre-analytic considerations for isolating plasma fractions for the study of miRNA biomarkers. We find that measurement of circulating miRNA levels are frequently confounded by varying levels of cellular miRNAs of different hematopoietic origins. In order to assess the relative proportions of this cell-derived class, we have fractionated whole blood into plasma and its ensuing sub-fractions. Cellular miRNA signatures in cohorts of normal individuals are catalogued and the abundance and gender specific expression of bona fide circulating markers explored after calibrating the signal for this interfering class. A map of differentially expressed profiles is presented and the intrinsic variability of circulating miRNA species investigated in subsets of healthy males and females.
doi:10.1371/journal.pone.0020769
PMCID: PMC3117799  PMID: 21698099
4.  Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies 
Molecular Cancer  2006;5:24.
Background
Recent studies indicate that microRNAs (miRNAs) are mechanistically involved in the development of various human malignancies, suggesting that they represent a promising new class of cancer biomarkers. However, previously reported methods for measuring miRNA expression consume large amounts of tissue, prohibiting high-throughput miRNA profiling from typically small clinical samples such as excision or core needle biopsies of breast or prostate cancer. Here we describe a novel combination of linear amplification and labeling of miRNA for highly sensitive expression microarray profiling requiring only picogram quantities of purified microRNA.
Results
Comparison of microarray and qRT-PCR measured miRNA levels from two different prostate cancer cell lines showed concordance between the two platforms (Pearson correlation R2 = 0.81); and extension of the amplification, labeling and microarray platform was successfully demonstrated using clinical core and excision biopsy samples from breast and prostate cancer patients. Unsupervised clustering analysis of the prostate biopsy microarrays separated advanced and metastatic prostate cancers from pooled normal prostatic samples and from a non-malignant precursor lesion. Unsupervised clustering of the breast cancer microarrays significantly distinguished ErbB2-positive/ER-negative, ErbB2-positive/ER-positive, and ErbB2-negative/ER-positive breast cancer phenotypes (Fisher exact test, p = 0.03); as well, supervised analysis of these microarray profiles identified distinct miRNA subsets distinguishing ErbB2-positive from ErbB2-negative and ER-positive from ER-negative breast cancers, independent of other clinically important parameters (patient age; tumor size, node status and proliferation index).
Conclusion
In sum, these findings demonstrate that optimized high-throughput microRNA expression profiling offers novel biomarker identification from typically small clinical samples such as breast and prostate cancer biopsies.
doi:10.1186/1476-4598-5-24
PMCID: PMC1563474  PMID: 16784538
5.  Evaluation of sense-strand mRNA amplification by comparative quantitative PCR 
BMC Genomics  2004;5:76.
Background
RNA amplification is required for incorporating laser-capture microdissection techniques into microarray assays. However, standard oligonucleotide microarrays contain sense-strand probes, so traditional T7 amplification schemes producing anti-sense RNA are not appropriate for hybridization when combined with conventional reverse transcription labeling methods. We wished to assess the accuracy of a new sense-strand RNA amplification method by comparing ratios between two samples using quantitative real-time PCR (qPCR), mimicking a two-color microarray assay.
Results
We performed our validation using qPCR. Three samples of rat brain RNA and three samples of rat liver RNA were amplified using several kits (Ambion messageAmp, NuGen Ovation, and several versions of Genisphere SenseAmp). Results were assessed by comparing the liver/brain ratio for 192 mRNAs before and after amplification. In general, all kits produced strong correlations with unamplified RNAs. The SenseAmp kit produced the highest correlation, and was also able to amplify a partially degraded sample accurately.
Conclusion
We have validated an optimized sense-strand RNA amplification method for use in comparative studies such as two-color microarrays.
doi:10.1186/1471-2164-5-76
PMCID: PMC524485  PMID: 15469607
6.  Visualizing the Needle in the Haystack: In Situ Hybridization With Fluorescent Dendrimers 
In situ hybridization with 3DNA™ dendrimers is a novel tool for detecting low levels of mRNA in tissue sections and whole embryos. Fluorescently labeled dendrimers were used to identify cells that express mRNA for the skeletal muscle transcription factor MyoD in the early chick embryo. A small population of MyoD mRNA positive cells was found in the epiblast prior to the initiation of gastrulation, two days earlier than previously detected using enzymatic or radiolabeled probes for mRNA. When isolated from the epiblast and placed in culture, the MyoD mRNA positive cells were able to differentiate into skeletal muscle cells. These results demonstrate that DNA dendrimers are sensitive and precise tools for identifying low levels of mRNA in single cells and tissues.
doi:10.1251/bpo84
PMCID: PMC481046  PMID: 15272365
MyoD protein; In situ hybridization
7.  DNA-PK-dependent binding of DNA ends to plasmids containing nuclear matrix attachment region DNA sequences: evidence for assembly of a repair complex 
Nucleic Acids Research  2002;30(18):4075-4087.
We find that nuclear protein extracts from mammalian cells contain an activity that allows DNA ends to associate with circular pUC18 plasmid DNA. This activity requires the catalytic subunit of DNA-PK (DNA-PKcs) and Ku since it was not observed in mutants lacking Ku or DNA-PKcs but was observed when purified Ku/DNA-PKcs was added to these mutant extracts. Purified Ku/DNA-PKcs alone did not produce association of DNA ends with plasmid DNA suggesting that additional factors in the nuclear extract are necessary for this activity. Competition experiments between pUC18 and pUC18 plasmids containing various nuclear matrix attachment region (MAR) sequences suggest that DNA ends preferentially associate with plasmids containing MAR DNA sequences. At a 1:5 mass ratio of MAR to pUC18, approximately equal amounts of DNA end binding to the two plasmids were observed, while at a 1:1 ratio no pUC18 end binding was observed. Calculation of relative binding activities indicates that DNA end-binding activities to MAR sequences was 7–21-fold higher than pUC18. Western analysis of proteins bound to pUC18 and MAR plasmids indicates that XRCC4, DNA ligase IV and scaffold attachment factor A preferentially associate with the MAR plasmid in the absence or presence of DNA ends. In contrast, Ku and DNA-PKcs were found on the MAR plasmid only in the presence of DNA ends suggesting that binding of these proteins to DNA ends is necessary for their association with MAR DNA. The ability of DNA-PKcs/Ku to direct DNA ends to MAR and pUC18 plasmid DNA is a new activity for DNA-PK and may be important for its function in double-strand break repair. A model for DNA repair based on these observations is presented.
PMCID: PMC137113  PMID: 12235392
8.  DNA Dendrimers Localize Myod mRNA in Presomitic Tissues of the Chick Embryo 
The Journal of Cell Biology  2000;149(4):825-834.
MyoD expression is thought to be induced in somites in response to factors released by surrounding tissues; however, reverse transcription-PCR and cell culture analyses indicate that myogenic cells are present in the embryo before somite formation. Fluorescently labeled DNA dendrimers were used to identify MyoD expressing cells in presomitic tissues in vivo. Subpopulations of MyoD positive cells were found in the segmental plate, epiblast, mesoderm, and hypoblast. Directly after laying, the epiblast of the two layered embryo contained ∼20 MyoD positive cells. These results demonstrate that dendrimers are precise and sensitive reagents for localizing low levels of mRNA in tissue sections and whole embryos, and that cells with myogenic potential are present in the embryo before the initiation of gastrulation.
PMCID: PMC2174576  PMID: 10811824
myogenesis; epiblast; segmental plate; in situ hybridization; muscle transcription factor
9.  Signal amplification through nucleotide extension and excision on a dendritic DNA platform 
Nucleic Acids Research  2000;28(7):e21.
Techniques that provide strong signal amplification are useful in diagnostic applications, especially in detecting low concentrations of non-amplifiable target molecules. A versatile and strong signal amplification method based on activities of a DNA polymerase to generate high concentrations of pyrophosphate (PPi) is described. The generation of PPi is catalyzed by nucleotide extension and excision activities of a DNA polymerase on an oligonucleotide cassette. The signal is generated upon enzymatic conversion of PPi to ATP and ATP levels subsequently detected with firefly luciferase. Bioluminesence produced by an oligonucleotide cassette consisting of just two polymerase reaction sites is sufficient to detect them at low attomole levels. The attachment of a large number of these oligonucleotide cassettes to DNA dendrimers enabled the detection of such polyvalent substrate molecules at low zeptomole (10–21 mol) concentrations. The extent of signal amplification obtained with dendrimer substrates is comparable to exponential target amplifications provided by nucleic acid amplification methods. The attachment of such PPi-generating dendritic DNA platforms to ligands that mediate target recognition would potentially permit detection of extremely low concentrations of analytes in diagnostic assays.
PMCID: PMC102804  PMID: 10710438

Results 1-9 (9)