PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-16 (16)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Authors
more »
Year of Publication
1.  The immunological, environmental, and phylogenetic perpetrators of metastatic leishmaniasis 
Trends in parasitology  2014;30(8):412-422.
Cutaneous leishmaniases have persisted for centuries as chronically disfiguring parasitic infections affecting millions of people across the subtropics. Symptoms range from the more prevalent single, self-healing cutaneous lesion to a persistent, metastatic disease, where ulcerations and granulomatous nodules can affect multiple secondary sites of the skin and delicate facial mucosa, even sometimes diffusing throughout the cutaneous system as a papular rash. The basis for such diverse pathologies is multifactorial, ranging from parasite phylogeny to host immunocompetence and various environmental factors. Although complex, these pathologies often prey on weaknesses in the innate immune system and its pattern recognition receptors. This review explores the observed and potential associations among the multifactorial perpetrators of infectious metastasis and components of the innate immune system.
doi:10.1016/j.pt.2014.05.006
PMCID: PMC4287268  PMID: 24954794
cutaneous leishmaniasis; metastatic leishmaniasis; post-kala-azar dermal leishmaniasis; Leishmania RNA virus; pattern recognition receptor; Toll-like receptor
2.  MyD88 and TLR9 Dependent Immune Responses Mediate Resistance to Leishmania guyanensis Infections, Irrespective of Leishmania RNA Virus Burden 
PLoS ONE  2014;9(5):e96766.
Infections with Leishmania parasites of the Leishmania Viannia subgenus give rise to both localized cutaneous (CL), and metastatic leishmaniasis. Metastasizing disease forms including disseminated (DCL) and mutocutaneous (MCL) leishmaniasis result from parasitic dissemination and lesion formation at sites distal to infection and have increased inflammatory responses. The presence of Leishmania RNA virus (LRV) in L. guyanensis parasites contributes to the exacerbation of disease and impacts inflammatory responses via activation of TLR3 by the viral dsRNA. In this study we investigated other innate immune response adaptor protein modulators and demonstrated that both MyD88 and TLR9 played a crucial role in the development of Th1-dependent healing responses against L. guyanensis parasites regardless of their LRV status. The absence of MyD88- or TLR9-dependent signaling pathways resulted in increased Th2 associated cytokines (IL-4 and IL-13), which was correlated with low transcript levels of IL-12p40. The reliance of IL-12 was further confirmed in IL12AB−/− mice, which were completely susceptible to infection. Protection to L. guyanensis infection driven by MyD88- and TLR9-dependent immune responses arises independently to those induced due to high LRV burden within the parasites.
doi:10.1371/journal.pone.0096766
PMCID: PMC4011865  PMID: 24801628
3.  Leishmania aethiopica Field Isolates Bearing an Endosymbiontic dsRNA Virus Induce Pro-inflammatory Cytokine Response 
Background
Infection with Leishmania parasites causes mainly cutaneous lesions at the site of the sand fly bite. Inflammatory metastatic forms have been reported with Leishmania species such as L. braziliensis, guyanensis and aethiopica. Little is known about the factors underlying such exacerbated clinical presentations.
Leishmania RNA virus (LRV) is mainly found within South American Leishmania braziliensis and guyanensis. In a mouse model of L. guyanensis infection, its presence is responsible for an hyper-inflammatory response driven by the recognition of the viral dsRNA genome by the host Toll-like Receptor 3 leading to an exacerbation of the disease. In one instance, LRV was reported outside of South America, namely in the L. major ASKH strain from Turkmenistan, suggesting that LRV appeared before the divergence of Leishmania subgenera. LRV presence inside Leishmania parasites could be one of the factors implicated in disease severity, providing rationale for LRV screening in L. aethiopica.
Methodology/Principal Findings
A new LRV member was identified in four L. aethiopica strains (LRV-Lae). Three LRV-Lae genomes were sequenced and compared to L. guyanensis LRV1 and L. major LRV2. LRV-Lae more closely resembled LRV2. Despite their similar genomic organization, a notable difference was observed in the region where the capsid protein and viral polymerase open reading frames overlap, with a unique −1 situation in LRV-Lae. In vitro infection of murine macrophages showed that LRV-Lae induced a TLR3-dependent inflammatory response as previously observed for LRV1.
Conclusions/Significance
In this study, we report the presence of an immunogenic dsRNA virus in L. aethiopica human isolates. This is the first observation of LRV in Africa, and together with the unique description of LRV2 in Turkmenistan, it confirmed that LRV was present before the divergence of the L. (Leishmania) and (Viannia) subgenera. The potential implication of LRV-Lae on disease severity due to L. aethiopica infections is discussed.
Author Summary
Leishmania RNA virus (LRV) has been detected in Leishmania (Viannia) braziliensis and guyanensis species, parasites causing not only cutaneous but also mucosal and disseminated leishmaniases. In a mouse model, the viral dsRNA genome within L. guyanensis parasites is recognized by host Toll-like receptor 3 (TLR3) and induces pro-inflammatory cytokines and chemokines, typically IL-6 and TNF-α, which are hallmarks of human mucosal leishmaniasis. Metastatisic complications such as mucosal and diffuse cutaneous leishmaniasis have also been described in other parts of the world, e.g. in Ethiopia. We detected LRV within L. aethiopica human isolates. Sequencing of three L. aethiopica LRVs (LRV-Lae) genomes confirmed that LRV-Lae belongs to the same Totiviridae family of LRVs found in South American species (LRV1) and present in a single L. major isolate from Turkmenistan (LRV2). LRV-Lae genomic organization is similar but not identical to the other LRVs, with a unique −1 frameshift situation in the overlapping region of the capsid protein/polymerase genes. Finally and similarly to L. guyanensis LRV1, LRV-Lae induced a TLR3-dependent inflammatory response in infected macrophages. The presence of LRV and its detection could be a crucial step towards better understanding the pathology spectrum of L. aethiopica infections.
doi:10.1371/journal.pntd.0002836
PMCID: PMC3998932  PMID: 24762979
4.  Role of Toll-Like Receptor 9 Signaling in Experimental Leishmania braziliensis Infection 
Infection and Immunity  2013;81(5):1575-1584.
Infection with Leishmania braziliensis causes cutaneous or mucocutaneous leismaniasis in humans. Toll-like receptor 9 (TLR9) expression has been found in granulomas of lesions in L. braziliensis-infected individuals. L. braziliensis inoculation in mice induces very small lesions that are self-healing, whereas deficiency in the TLR adaptor molecule, MyD88, renders mice susceptible to infection. The TLR involved has not been identified, prompting us to investigate if TLR9 triggering by the parasite contributes to the strong resistance to infection observed in L. braziliensis-inoculated mice. The parasites activated wild-type (WT) dendritic cells (DCs) in vitro but not DCs derived from TLR9−/− mice. TLR9−/− mice inoculated with L. braziliensis exhibited a transient susceptibility characterized by increased lesion size and parasite burden compared to those of WT mice. Surprisingly, elevated levels of gamma interferon (IFN-γ) were measured at the site of infection and in draining lymph node T cells of TLR9−/− mice at the peak of susceptibility, suggesting that unlike observations in vitro, the parasite could induce DC activation leading to the development of Th1 cells in the absence of TLR9 expression. Taken together, these data show that TLR9 signaling is important for the early control of lesion development and parasite burden but is dispensable for the differentiation of Th1 cells secreting IFN-γ, and the high levels of this cytokine are not sufficient to control early parasite replication following L. braziliensis infection.
doi:10.1128/IAI.01401-12
PMCID: PMC3648021  PMID: 23439309
6.  Detection of Leishmania RNA Virus in Leishmania Parasites 
Background
Patients suffering from cutaneous leishmaniasis (CL) caused by New World Leishmania (Viannia) species are at high risk of developing mucosal (ML) or disseminated cutaneous leishmaniasis (DCL). After the formation of a primary skin lesion at the site of the bite by a Leishmania-infected sand fly, the infection can disseminate to form secondary lesions. This metastatic phenotype causes significant morbidity and is often associated with a hyper-inflammatory immune response leading to the destruction of nasopharyngeal tissues in ML, and appearance of nodules or numerous ulcerated skin lesions in DCL. Recently, we connected this aggressive phenotype to the presence of Leishmania RNA virus (LRV) in strains of L. guyanensis, showing that LRV is responsible for elevated parasitaemia, destructive hyper-inflammation and an overall exacerbation of the disease. Further studies of this relationship and the distribution of LRVs in other Leishmania strains and species would benefit from improved methods of viral detection and quantitation, especially ones not dependent on prior knowledge of the viral sequence as LRVs show significant evolutionary divergence.
Methodology/Principal Findings
This study reports various techniques, among which, the use of an anti-dsRNA monoclonal antibody (J2) stands out for its specific and quantitative recognition of dsRNA in a sequence-independent fashion. Applications of J2 include immunofluorescence, ELISA and dot blot: techniques complementing an arsenal of other detection tools, such as nucleic acid purification and quantitative real-time-PCR. We evaluate each method as well as demonstrate a successful LRV detection by the J2 antibody in several parasite strains, a freshly isolated patient sample and lesion biopsies of infected mice.
Conclusions/Significance
We propose that refinements of these methods could be transferred to the field for use as a diagnostic tool in detecting the presence of LRV, and potentially assessing the LRV-related risk of complications in cutaneous leishmaniasis.
Author Summary
The endosymbiosis of viruses in microbes is a well-described and prevalent environmental partnership, where viruses offer their cellular host incentives of fitness in exchange for the use of their metabolic machinery. We have recently exposed this as an important factor in certain metastatic leishmaniases of South America, where the nucleic acid of a virus residing within some Leishmania parasites acts as a potent innate immunogen causing a destructive inflammatory response, which worsens disease. Leishmania RNA Virus (LRV) exists within many species of Leishmania as a stable infection; these LRV positive strains have been found throughout South America in cutaneous leishmaniases that are often complicated by the occurrence of infectious metastasis with an underlying hyperinflammatory response. In this report, we describe the use of an anti-dsRNA monoclonal antibody (J2), which specifically recognizes dsRNA in a quantitative and sequence-independent fashion. Refined versions of these methods could be transferred to the field as diagnostic tools for detecting the presence of LRV (or other dsRNA viruses), and potentially assessing the LRV-related risk of complicated cutaneous leishmaniasis.
doi:10.1371/journal.pntd.0002006
PMCID: PMC3542153  PMID: 23326619
7.  Muco-cutaneous leishmaniasis in the New World 
Virulence  2011;2(6):547-552.
Infection by the human protozoan parasite Leishmania can lead, depending primarily on the parasite species, to either cutaneous or mucocutaneous lesions, or fatal generalized visceral infection. In the New World, Leishmania (Viannia) species can cause mucocutaneous leishmaniasis (MCL). Clinical MCL involves a strong hyper-inflammatory response and parasitic dissemination (metastasis) from a primary lesion to distant sites, leading to destructive metastatic secondary lesions especially in the nasopharyngal areas. Recently, we reported that metastasizing, but not non-metastatic strains of Leishmania (Viannia) guyanensis, have high burden of a non-segmented dsRNA virus, Leishmania RNA Virus (LRV). Viral dsRNA is sensed by the host Toll-like Receptor 3 (TLR3) thereby inducing a pro-inflammatory response and exacerbating the disease. The presence of LRV in Leishmania opens new perspectives not only in basic understanding of the intimate relation between the parasite and LRV, but also in understanding the importance of the inflammatory response in MCL patients.
doi:10.4161/viru.2.6.17839
PMCID: PMC3260548  PMID: 21971185
leishmaniasis; Leishmania RNA virus; hyperinflammation; TLR-3; IFNβ
8.  Leishmania RNA Virus Controls the Severity of Mucocutaneous Leishmaniasis 
Science (New York, N.y.)  2011;331(6018):775-778.
Mucocutaneous leishmaniasis is caused by infections with intracellular parasites of the Leishmania Viannia subgenus, including Leishmania guyanensis. The pathology develops after parasite dissemination to nasopharyngeal tissues, where destructive metastatic lesions form with chronic inflammation. Currently, the mechanisms involved in lesion development are poorly understood. Here we show that metastasizing parasites have a high Leishmania RNA virus–1 (LRV1) burden that is recognized by the host Toll-like receptor 3 (TLR3) to induce proinflammatory cytokines and chemokines. Paradoxically, these TLR3-mediated immune responses rendered mice more susceptible to infection, and the animals developed an increased footpad swelling and parasitemia. Thus, LRV1 in the metastasizing parasites subverted the host immune response to Leishmania and promoted parasite persistence.
doi:10.1126/science.1199326
PMCID: PMC3253482  PMID: 21311023
9.  Leishmania RNA virus: when the host pays the toll 
The presence of an RNA virus in a South American subgenus of the Leishmania parasite, L. (Viannia), was detected several decades ago but its role in leishmanial virulence and metastasis was only recently described. In Leishmania guyanensis, the nucleic acid of Leishmania RNA virus (LRV1) acts as a potent innate immunogen, eliciting a hyper-inflammatory immune response through toll-like receptor 3 (TLR3). The resultant inflammatory cascade has been shown to increase disease severity, parasite persistence, and perhaps even resistance to anti-leishmanial drugs. Curiously, LRVs were found mostly in clinical isolates prone to infectious metastasis in both their human source and experimental animal model, suggesting an association between the viral hyperpathogen and metastatic complications such as mucocutaneous leishmaniasis (MCL). MCL presents as chronic secondary lesions in the mucosa of the mouth and nose, debilitatingly inflamed and notoriously refractory to treatment. Immunologically, this outcome has many of the same hallmarks associated with the reaction to LRV: production of type 1 interferons, bias toward a chronic Th1 inflammatory state and an impaired ability of host cells to eliminate parasites through oxidative stress. More intriguing, is that the risk of developing MCL is found almost exclusively in infections of the L. (Viannia) subtype, further indication that leishmanial metastasis is caused, at least in part, by a parasitic component. LRV present in this subgenus may contribute to the destructive inflammation of metastatic disease either by acting in concert with other intrinsic “metastatic factors” or by independently preying on host TLR3 hypersensitivity. Because LRV amplifies parasite virulence, its presence may provide a unique target for diagnostic and clinical intervention of metastatic leishmaniasis. Taking examples from other members of the Totiviridae virus family, this paper reviews the benefits and costs of endosymbiosis, specifically for the maintenance of LRV infection in Leishmania parasites, which is often at the expense of its human host.
doi:10.3389/fcimb.2012.00099
PMCID: PMC3417650  PMID: 22919688
Leishmania; Totiviridae; mucocutaneous leishmaniasis; dsRNA virus; toll-like receptor
10.  Plasmodium falciparum Metacaspase PfMCA-1 Triggers a z-VAD-fmk Inhibitable Protease to Promote Cell Death 
PLoS ONE  2011;6(8):e23867.
Activation of proteolytic cell death pathways may circumvent drug resistance in deadly protozoan parasites such as Plasmodium falciparum and Leishmania. To this end, it is important to define the cell death pathway(s) in parasites and thus characterize proteases such as metacaspases (MCA), which have been reported to induce cell death in plants and Leishmania parasites. We, therefore, investigated whether the cell death function of MCA is conserved in different protozoan parasite species such as Plasmodium falciparum and Leishmania major, focusing on the substrate specificity and functional role in cell survival as compared to Saccharomyces cerevisae. Our results show that, similarly to Leishmania, Plasmodium MCA exhibits a calcium-dependent, arginine-specific protease activity and its expression in yeast induced growth inhibition as well as an 82% increase in cell death under oxidative stress, a situation encountered by parasites during the host or when exposed to drugs such as artemisins. Furthermore, we show that MCA cell death pathways in both Plasmodium and Leishmania, involve a z-VAD-fmk inhibitable protease. Our data provide evidence that MCA from both Leishmania and Plasmodium falciparum is able to induce cell death in stress conditions, where it specifically activates a downstream enzyme as part of a cell death pathway. This enzymatic activity is also induced by the antimalarial drug chloroquine in erythrocytic stages of Plasmodium falciparum. Interestingly, we found that blocking parasite cell death influences their drug sensitivity, a result which could be used to create therapeutic strategies that by-pass drug resistance mechanisms by acting directly on the innate pathways of protozoan cell death.
doi:10.1371/journal.pone.0023867
PMCID: PMC3157471  PMID: 21858231
11.  Type I Interferon Drives Dendritic Cell Apoptosis via Multiple BH3-Only Proteins following Activation by PolyIC In Vivo 
PLoS ONE  2011;6(6):e20189.
Background
DC are activated by pathogen-associated molecular patterns (PAMPs), and this is pivotal for the induction of adaptive immune responses. Thereafter, the clearance of activated DC is crucial to prevent immune pathology. While PAMPs are of major interest for vaccine science due to their adjuvant potential, it is unclear whether and how PAMPs may affect DC viability. We aimed to elucidate the possible apoptotic mechanisms that control activated DC lifespan in response to PAMPs, particularly in vivo.
Methodology/Principal Findings
We report that polyinosinic:polycytidylic acid (PolyIC, synthetic analogue of dsRNA) induces dramatic apoptosis of mouse splenic conventional DC (cDC) in vivo, predominantly affecting the CD8α subset, as shown by flow cytometry-based analysis of splenic DC subsets. Importantly, while Bim deficiency conferred only minor protection, cDC depletion was prevented in mice lacking Bim plus one of three other BH3-only proteins, either Puma, Noxa or Bid. Furthermore, we show that Type I Interferon (IFN) is necessary and sufficient for DC death both in vitro and in vivo, and that TLR3 and MAVS co-operate in IFNß production in vivo to induce DC death in response to PolyIC.
Conclusions/Significance
These results demonstrate for the first time in vivo that apoptosis restricts DC lifespan following activation by PolyIC, particularly affecting the CD8α cDC subset. Such DC apoptosis is mediated by the overlapping action of pro-apoptotic BH3-only proteins, including but not solely involving Bim, and is driven by Type I IFN. While Type I IFNs are important anti-viral factors, CD8α cDC are major cross-presenting cells and critical inducers of CTL. We discuss such paradoxical finding on DC death with PolyIC/Type I IFN. These results could contribute to understand immunosuppression associated with chronic infection, and to the optimization of DC-based therapies and the clinical use of PAMPs and Type I IFNs.
doi:10.1371/journal.pone.0020189
PMCID: PMC3107228  PMID: 21674051
12.  Are protozoan metacaspases potential parasite killers? 
Parasites & Vectors  2011;4:26.
Mechanisms concerning life or death decisions in protozoan parasites are still imperfectly understood. Comparison with higher eukaryotes has led to the hypothesis that caspase-like enzymes could be involved in death pathways. This hypothesis was reinforced by the description of caspase-related sequences in the genome of several parasites, including Plasmodium, Trypanosoma and Leishmania. Although several teams are working to decipher the exact role of metacaspases in protozoan parasites, partial, conflicting or negative results have been obtained with respect to the relationship between protozoan metacaspases and cell death. The aim of this paper is to review current knowledge of protozoan parasite metacaspases within a drug targeting perspective.
doi:10.1186/1756-3305-4-26
PMCID: PMC3058108  PMID: 21356053
13.  Targeting essential pathways in trypanosomatids gives insights into protozoan mechanisms of cell death 
Parasites & Vectors  2010;3:107.
Apoptosis is a normal component of the development and health of multicellular organisms. However, apoptosis is now considered a prerogative of unicellular organisms, including the trypanosomatids of the genera Trypanosoma spp. and Leishmania spp., causative agents of some of the most important neglected human diseases. Trypanosomatids show typical hallmarks of apoptosis, although they lack some of the key molecules contributing to this process in metazoans, like caspase genes, Bcl-2 family genes and the TNF-related family of receptors. Despite the lack of these molecules, trypanosomatids appear to have the basic machinery to commit suicide. The components of the apoptotic execution machinery of these parasites are slowly coming into light, by targeting essential processes and pathways with different apoptogenic agents and inhibitors. This review will be confined to the events known to drive trypanosomatid parasites to apoptosis.
doi:10.1186/1756-3305-3-107
PMCID: PMC3136144  PMID: 21083891
14.  Apoptotic markers in protozoan parasites 
Parasites & Vectors  2010;3:104.
The execution of the apoptotic death program in metazoans is characterized by a sequence of morphological and biochemical changes that include cell shrinkage, presentation of phosphatidylserine at the cell surface, mitochondrial alterations, chromatin condensation, nuclear fragmentation, membrane blebbing and the formation of apoptotic bodies. Methodologies for measuring apoptosis are based on these markers. Except for membrane blebbing and formation of apoptotic bodies, all other events have been observed in most protozoan parasites undergoing cell death. However, while techniques exist to detect these markers, they are often optimised for metazoan cells and therefore may not pick up subtle differences between the events occurring in unicellular organisms and multi-cellular organisms.
In this review we discuss the markers most frequently used to analyze cell death in protozoan parasites, paying special attention to changes in cell morphology, mitochondrial activity, chromatin structure and plasma membrane structure/permeability. Regarding classical regulators/executors of apoptosis, we have reviewed the present knowledge of caspase-like and nuclease activities.
doi:10.1186/1756-3305-3-104
PMCID: PMC2993696  PMID: 21062457
16.  Processing of metacaspase into a cytoplasmic catalytic domain mediating cell death in Leishmania major 
Molecular Microbiology  2011;79(1):222-239.
Metacaspases are cysteine peptidases that could play a role similar to caspases in the cell death programme of plants, fungi and protozoa. The human protozoan parasite Leishmania major expresses a single metacaspase (LmjMCA) harbouring a central domain with the catalytic dyad histidine and cysteine as found in caspases. In this study, we investigated the processing sites important for the maturation of LmjMCA catalytic domain, the cellular localization of LmjMCA polypeptides, and the functional role of the catalytic domain in the cell death pathway of Leishmania parasites. Although LmjMCA polypeptide precursor form harbours a functional mitochondrial localization signal (MLS), we determined that LmjMCA polypeptides are mainly localized in the cytoplasm. In stress conditions, LmjMCA precursor forms were extensively processed into soluble forms containing the catalytic domain. This domain was sufficient to enhance sensitivity of parasites to hydrogen peroxide by impairing the mitochondrion. These data provide experimental evidences of the importance of LmjMCA processing into an active catalytic domain and of its role in disrupting mitochondria, which could be relevant in the design of new drugs to fight leishmaniasis and likely other protozoan parasitic diseases.
doi:10.1111/j.1365-2958.2010.07443.x
PMCID: PMC3047009  PMID: 21166905

Results 1-16 (16)