PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Cellular senescence mediated by p16INK4A-coupled miRNA pathways 
Nucleic Acids Research  2013;42(3):1606-1618.
p16 is a key regulator of cellular senescence, yet the drivers of this stable state of proliferative arrest are not well understood. Here, we identify 22 senescence-associated microRNAs (SA-miRNAs) in normal human mammary epithelial cells. We show that SA-miRNAs-26b, 181a, 210 and 424 function in concert to directly repress expression of Polycomb group (PcG) proteins CBX7, embryonic ectoderm development (EED), enhancer of zeste homologue 2 (EZH2) and suppressor of zeste 12 homologue (Suz12), thereby activating p16. We demonstrate the existence of a tight positive feedback loop in which SA-miRNAs activate and re-enforce the expression of other SA-miRNA members. In contrast, PcG members restrain senescence by epigenetically repressing the expression of these SA-miRNAs. Importantly, loss of p16 leads to repression of SA-miRNA expression, intimately coupling this effector of senescence to the SA-miRNA/PcG self-regulatory loop. Taken together, our findings illuminate an important regulatory axis that underpins the transition from proliferation to cellular senescence.
doi:10.1093/nar/gkt1096
PMCID: PMC3919591  PMID: 24217920
2.  Monitoring Tumorigenesis and Senescence In Vivo with a p16INK4a-Luciferase Model 
Cell  2013;152(0):340-351.
SUMMARY
Monitoring cancer and aging in vivo remains experimentally challenging. Here, we describe a luciferase knockin mouse (p16LUC), which faithfully reports expression of p16INK4a, a tumor suppressor and aging biomarker. Lifelong assessment of luminescence in p16+/LUC mice revealed an exponential increase with aging, which was highly variable in a cohort of contemporaneously housed, syngeneic mice. Expression of p16INK4a with aging did not predict cancer development, suggesting that the accumulation of senescent cells is not a principal determinant of cancer-related death. In 14 of 14 tested tumor models, expression of p16LUC was focally activated by early neoplastic events, enabling visualization of tumors with sensitivity exceeding other imaging modalities. Activation of p16INK4a was noted in the emerging neoplasm and surrounding stromal cells. This work suggests that p16INK4a activation is a characteristic of all emerging cancers, making the p16LUC allele a sensitive, unbiased reporter of neoplastic transformation.
doi:10.1016/j.cell.2012.12.010
PMCID: PMC3718011  PMID: 23332765
3.  Myc confers androgen-independent prostate cancer cell growth 
Journal of Clinical Investigation  2003;112(11):1724-1731.
Prostate cancer is one of the most diagnosed and mortal cancers in western countries. A major clinical problem is the development of androgen-independent prostate cancer (AIPC) during antihormonal treatment. The molecular mechanisms underlying the change from androgen dependence to independence of these tumors are poorly understood and represent a challenge to develop new therapies. Based on genetic data showing amplification of the c-myc gene in AIPC, we studied the ability of c-myc to confer AIPC cell growth. Human androgen-dependent prostate cancer cells overexpressing c-myc grew independently of androgens and presented tumorigenic properties in androgen-depleted conditions. Analysis of signalling pathways by pharmacological inhibitors of the androgen receptor (AR) or by RNA interference directed against AR or c-myc showed that c-myc acted downstream of AR through multiple growth effectors. Thus c-myc is required for androgen-dependent growth and following ectopic expression can induce androgen-independent growth. Moreover, RNA interference directed against c-myc showed that growth of human AIPC cells, AR-positive or -negative, required c-myc expression. Furthermore, we showed that c-myc–overexpressing cells retain a functional p53 pathway and thus respond to etoposide.
doi:10.1172/JCI200319035
PMCID: PMC281646  PMID: 14660748
4.  Clinical Isolates of Trichomonas vaginalis Concurrently Infected by Strains of Up to Four Trichomonasvirus Species (Family Totiviridae)▿† 
Journal of Virology  2011;85(9):4258-4270.
Trichomonas vaginalis, which causes the most common nonviral sexually transmitted disease worldwide, is itself commonly infected by nonsegmented double-stranded RNA (dsRNA) viruses from the genus Trichomonasvirus, family Totiviridae. To date, cDNA sequences of one or more strains of each of three trichomonasvirus species have been reported, and gel electrophoresis showing several different dsRNA molecules obtained from a few T. vaginalis isolates has suggested that more than one virus strain might concurrently infect the same parasite cell. Here, we report the complete cDNA sequences of 3 trichomonasvirus strains, one from each of the 3 known species, infecting a single, agar-cloned clinical isolate of T. vaginalis, confirming the natural capacity for concurrent (in this case, triple) infections in this system. We furthermore report the complete cDNA sequences of 11 additional trichomonasvirus strains, from 4 other clinical isolates of T. vaginalis. These additional strains represent the three known trichomonasvirus species, as well as a newly identified fourth species. Moreover, 2 of these other T. vaginalis isolates are concurrently infected by strains of all 4 trichomonasvirus species (i.e., quadruple infections). In sum, the full-length cDNA sequences of these 14 new trichomonasviruses greatly expand the existing data set for members of this genus and substantiate our understanding of their genome organizations, protein-coding and replication signals, diversity, and phylogenetics. The complexity of this virus-host system is greater than has been previously well recognized and suggests a number of important questions relating to the pathogenesis and disease outcomes of T. vaginalis infections of the human genital mucosa.
doi:10.1128/JVI.00220-11
PMCID: PMC3126235  PMID: 21345965
5.  Loss-of-function genetics in mammalian cells: the p53 tumor suppressor model 
Nucleic Acids Research  2000;28(11):2234-2241.
Using an improved system for the functional identification of active antisense fragments, we have isolated antisense fragments which inactivate the p53 tumour suppressor gene. These antisense fragments map in two small regions between nt 350 and 700 and nt 800 and 950 of the coding sequence. These antisense fragments appear to act by inhibition of p53 mRNA translation both in vivo and in vitro. Expression of these antisense fragments overcame the p53-induced growth arrest in a cell line which expresses a thermolabile mutant of p53 and extended the in vitro lifespan of primary mouse embryonic fibroblasts. Continued expression of the p53 antisense fragment contributed to immortalisation of primary mouse fibroblasts. Subsequent elimination of the antisense fragment in these immortalised cells led to restoration of p53 expression and growth arrest, indicating that immortal cells continuously require inactivation of p53. Expression of MDM2 or SV40 large T antigen, but not E7 nor oncogenic ras, overcomes the arrest induced by restoration of p53 expression. Functional inactivation of both p21 and bax (by overexpression of Bcl2), but not either alone, allowed some bypass of p53-induced growth arrest, indicating that multiple transcriptional targets of p53 may mediate its antiproliferative action. The ability to conditionally inactivate and subsequently restore normal gene function may be extremely valuable for genetic analysis of genes for which loss-of-function is involved in specific phenotypes.
PMCID: PMC102629  PMID: 10871344
6.  A Proinflammatory Cytokine Inhibits P53 Tumor Suppressor Activity 
The Journal of Experimental Medicine  1999;190(10):1375-1382.
p53 has a key role in the negative regulation of cell proliferation, in the maintenance of genomic stability, and in the suppression of transformation and tumorigenesis. To identify novel regulators of p53, we undertook two functional screens to isolate genes which bypassed either p53-mediated growth arrest or apoptosis. In both screens, we isolated cDNAs encoding macrophage migration inhibitory factor (MIF), a cytokine that was shown previously to exert both local and systemic proinflammatory activities. Treatment with MIF overcame p53 activity in three different biological assays, and suppressed its activity as a transcriptional activator. The observation that a proinflammatory cytokine, MIF, is capable of functionally inactivating a tumor suppressor, p53, may provide a link between inflammation and tumorigenesis.
PMCID: PMC2195698  PMID: 10562313
macrophage migration inhibitory factor; p53; inflammation and cancer; growth arrest; apoptosis
7.  The Villain Team-Up or how Trichomonas vaginalis and bacterial vaginosis alter innate immunity in concert 
Sexually Transmitted Infections  2013;89(6):460-466.
Objectives
Complex interactions of vaginal microorganisms with the genital tract epithelium shape mucosal innate immunity, which holds the key to sexual and reproductive health. Bacterial vaginosis (BV), a microbiome-disturbance syndrome prevalent in reproductive-age women, occurs commonly in concert with trichomoniasis, and both are associated with increased risk of adverse reproductive outcomes and viral infections, largely attributable to inflammation. To investigate the causative relationships among inflammation, BV and trichomoniasis, we established a model of human cervicovaginal epithelial cells colonised by vaginal Lactobacillus isolates, dominant in healthy women, and common BV species (Atopobium vaginae, Gardnerella vaginalis and Prevotella bivia).
Methods
Colonised epithelia were infected with Trichomonas vaginalis (TV) or exposed to purified TV virulence factors (membrane lipophosphoglycan (LPG), its ceramide-phosphoinositol-glycan core (CPI-GC) or the endosymbiont Trichomonas vaginalis virus (TVV)), followed by assessment of bacterial colony-forming units, the mucosal anti-inflammatory microbicide secretory leucocyte protease inhibitor (SLPI), and chemokines that drive pro-inflammatory, antigen-presenting and T cells.
Results
TV reduced colonisation by Lactobacillus but not by BV species, which were found inside epithelial cells. TV increased interleukin (IL)-8 and suppressed SLPI, likely via LPG/CPI-GC, and upregulated IL-8 and RANTES, likely via TVV as suggested by use of purified pathogenic determinants. BV species A vaginae and G vaginalis induced IL-8 and RANTES, and also amplified the pro-inflammatory responses to both LPG/CPI-GC and TVV, whereas P bivia suppressed the TV/TVV-induced chemokines.
Conclusions
These molecular host–parasite–endosymbiont–bacteria interactions explain epidemiological associations and suggest a revised paradigm for restoring vaginal immunity and preventing BV/TV-attributable inflammatory sequelae in women.
doi:10.1136/sextrans-2013-051052
PMCID: PMC3746192  PMID: 23903808
TRICHOMONAS; VAGINAL MICROBIOLOGY; IMMUNOLOGY; BACTERIAL VAGINOSIS; WOMEN
8.  Endobiont Viruses Sensed by the Human Host – Beyond Conventional Antiparasitic Therapy 
PLoS ONE  2012;7(11):e48418.
Wide-spread protozoan parasites carry endosymbiotic dsRNA viruses with uncharted implications to the human host. Among them, Trichomonas vaginalis, a parasite adapted to the human genitourinary tract, infects globally ∼250 million each year rendering them more susceptible to devastating pregnancy complications (especially preterm birth), HIV infection and HPV-related cancer. While first-line antibiotic treatment (metronidazole) commonly kills the protozoan pathogen, it fails to improve reproductive outcome. We show that endosymbiotic Trichomonasvirus, highly prevalent in T. vaginalis clinical isolates, is sensed by the human epithelial cells via Toll-like receptor 3, triggering Interferon Regulating Factor -3, interferon type I and proinflammatory cascades previously implicated in preterm birth and HIV-1 susceptibility. Metronidazole treatment amplified these proinflammatory responses. Thus, a new paradigm targeting the protozoan viruses along with the protozoan host may prevent trichomoniasis-attributable inflammatory sequelae.
doi:10.1371/journal.pone.0048418
PMCID: PMC3492353  PMID: 23144878
9.  A whole genome screen for HIV restriction factors 
Retrovirology  2011;8:94.
Background
Upon cellular entry retroviruses must avoid innate restriction factors produced by the host cell. For human immunodeficiency virus (HIV) human restriction factors, APOBEC3 (apolipoprotein-B-mRNA-editing-enzyme), p21 and tetherin are well characterised.
Results
To identify intrinsic resistance factors to HIV-1 replication we screened 19,121 human genes and identified 114 factors with significant inhibition of infection. Those with a known function are involved in a broad spectrum of cellular processes including receptor signalling, vesicle trafficking, transcription, apoptosis, cross-nuclear membrane transport, meiosis, DNA damage repair, ubiquitination and RNA processing. We focused on the PAF1 complex which has been previously implicated in gene transcription, cell cycle control and mRNA surveillance. Knockdown of all members of the PAF1 family of proteins enhanced HIV-1 reverse transcription and integration of provirus. Over-expression of PAF1 in host cells renders them refractory to HIV-1. Simian Immunodeficiency Viruses and HIV-2 are also restricted in PAF1 expressing cells. PAF1 is expressed in primary monocytes, macrophages and T-lymphocytes and we demonstrate strong activity in MonoMac1, a monocyte cell line.
Conclusions
We propose that the PAF1c establishes an anti-viral state to prevent infection by incoming retroviruses. This previously unrecognised mechanism of restriction could have implications for invasion of cells by any pathogen.
doi:10.1186/1742-4690-8-94
PMCID: PMC3228845  PMID: 22082156

Results 1-9 (9)