Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Interrogation of the Burkholderia pseudomallei Genome to Address Differential Virulence among Isolates 
PLoS ONE  2014;9(12):e115951.
Infection by the Gram-negative pathogen Burkholderia pseudomallei results in the disease melioidosis, acquired from the environment in parts of southeast Asia and northern Australia. Clinical symptoms of melioidosis range from acute (fever, pneumonia, septicemia, and localized infection) to chronic (abscesses in various organs and tissues, most commonly occurring in the lungs, liver, spleen, kidney, prostate and skeletal muscle), and persistent infections in humans are difficult to cure. Understanding the basic biology and genomics of B. pseudomallei is imperative for the development of new vaccines and therapeutic interventions. This formidable task is becoming more tractable due to the increasing number of B. pseudomallei genomes that are being sequenced and compared.
Here, we compared three B. pseudomallei genomes, from strains MSHR668, K96243 and 1106a, to identify features that might explain why MSHR668 is more virulent than K96243 and 1106a in a mouse model of B. pseudomallei infection. Our analyses focused on metabolic, virulence and regulatory genes that were present in MSHR668 but absent from both K96243 and 1106a. We also noted features present in K96243 and 1106a but absent from MSHR668, and identified genomic differences that may contribute to variations in virulence noted among the three B. pseudomallei isolates. While this work contributes to our understanding of B. pseudomallei genomics, more detailed experiments are necessary to characterize the relevance of specific genomic features to B. pseudomallei metabolism and virulence. Functional analyses of metabolic networks, virulence and regulation shows promise for examining the effects of B. pseudomallei on host cell metabolism and will lay a foundation for future prediction of the virulence of emerging strains. Continued emphasis in this area will be critical for protection against melioidosis, as a better understanding of what constitutes a fully virulent Burkholderia isolate may provide for better diagnostic and medical countermeasure strategies.
PMCID: PMC4275268  PMID: 25536074
2.  Immunization of Mice with Formalin-Inactivated Spores from Avirulent Bacillus cereus Strains Provides Significant Protection from Challenge with Bacillus anthracis Ames 
Bacillus anthracis spores are the infectious form of the organism for humans and animals. However, the approved human vaccine in the United States is derived from a vegetative culture filtrate of a toxigenic, nonencapsulated B. anthracis strain that primarily contains protective antigen (PA). Immunization of mice with purified spore proteins and formalin-inactivated spores (FIS) from a nonencapsulated, nontoxigenic B. anthracis strain confers protection against B. anthracis challenge when PA is also administered. To investigate the capacity of the spore particle to act as a vaccine without PA, we immunized mice subcutaneously with FIS from nontoxigenic, nonencapsulated B. cereus strain G9241 pBCXO1−/pBC210− (dcG9241), dcG9241 ΔbclA, or 569-UM20 or with exosporium isolated from dcG9241. FIS vaccination provided significant protection of mice from intraperitoneal or intranasal challenge with spores of the virulent B. anthracis Ames or Ames ΔbclA strain. Immunization with dcG9241 ΔbclA FIS, which are devoid of the immunodominant spore protein BclA, provided greater protection from challenge with either Ames strain than did immunization with FIS from BclA-producing strains. In addition, we used prechallenge immune antisera to probe a panel of recombinant B. anthracis Sterne spore proteins to identify novel immunogenic vaccine candidates. The antisera were variably reactive with BclA and with 10 other proteins, four of which were previously tested as vaccine candidates. Overall our data show that immunization with FIS from nontoxigenic, nonencapsulated B. cereus strains provides moderate to high levels of protection of mice from B. anthracis Ames challenge and that neither PA nor BclA is required for this protection.
PMCID: PMC3535783  PMID: 23114705
3.  Allelic Variation on Murine Chromosome 11 Modifies Host Inflammatory Responses and Resistance to Bacillus anthracis 
PLoS Pathogens  2011;7(12):e1002469.
Anthrax is a potentially fatal disease resulting from infection with Bacillus anthracis. The outcome of infection is influenced by pathogen-encoded virulence factors such as lethal toxin (LT), as well as by genetic variation within the host. To identify host genes controlling susceptibility to anthrax, a library of congenic mice consisting of strains with homozygous chromosomal segments from the LT-responsive CAST/Ei strain introgressed on a LT-resistant C57BL/6 (B6) background was screened for response to LT. Three congenic strains containing CAST/Ei regions of chromosome 11 were identified that displayed a rapid inflammatory response to LT similar to, but more severe than that driven by a LT-responsive allele of the inflammasome constituent NRLP1B. Importantly, increased response to LT in congenic mice correlated with greater resistance to infection by the Sterne strain of B. anthracis. The genomic region controlling the inflammatory response to LT was mapped to 66.36–74.67 Mb on chromosome 11, a region that encodes the LT-responsive CAST/Ei allele of Nlrp1b. However, known downstream effects of NLRP1B activation, including macrophage pyroptosis, cytokine release, and leukocyte infiltration could not fully explain the response to LT or the resistance to B. anthracis Sterne in congenic mice. Further, the exacerbated response in congenic mice is inherited in a recessive manner while the Nlrp1b-mediated response to LT is dominant. Finally, congenic mice displayed increased responsiveness in a model of sepsis compared with B6 mice. In total, these data suggest that allelic variation of one or more chromosome 11 genes in addition to Nlrp1b controls the severity of host response to multiple inflammatory stimuli and contributes to resistance to B. anthracis Sterne. Expression quantitative trait locus analysis revealed 25 genes within this region as high priority candidates for contributing to the host response to LT.
Author Summary
We show that genetic variation within an 8.3 Mb region on mouse chromosome 11 controls host response to anthrax lethal toxin (LT) and resistance to infection by the Sterne strain of Bacillus anthracis. Specifically, congenic C57BL/6 mice in which this region of chromosome 11 is derived from a genetically divergent CAST/Ei strain presented with a rapid and strong innate immune response to LT and displayed increased survival following infection with Sterne spores. CAST/Ei chromosome 11 encodes a dominant LT-responsive allele of Nlrp1b that may partially account for the severe response to LT. However, the strength of this response was attenuated in mice with only one copy of chromosome 11 derived from CAST/Ei indicating the existence of a recessive modifier of the inflammatory response to LT. In addition, congenic mice displayed a pronounced immune response using an experimental model of sepsis, indicating that one or more genes within the chromosome 11 region control host response to multiple inflammatory stimuli. Analyzing the influence of allelic variation on gene expression identified 25 genes as candidates for controlling these responses. In summary, we report a genetic model to study inflammatory responses beneficial to the host during anthrax.
PMCID: PMC3248472  PMID: 22241984
4.  Advanced Development of the rF1V and rBV A/B Vaccines: Progress and Challenges 
The development of vaccines for microorganisms and bacterial toxins with the potential to be used as biowarfare and bioterrorism agents is an important component of the US biodefense program. DVC is developing two vaccines, one against inhalational exposure to botulinum neurotoxins A1 and B1 and a second for Yersinia pestis, with the ultimate goal of licensure by the FDA under the Animal Rule. Progress has been made in all technical areas, including manufacturing, nonclinical, and clinical development and testing of the vaccines, and in assay development. The current status of development of these vaccines, and remaining challenges are described in this chapter.
PMCID: PMC3199075  PMID: 22028978
5.  Resistance to Bacillus anthracis Infection Mediated by a Lethal Toxin Sensitive Allele of Nalp1b/Nlrp1b1 
Pathogenesis of Bacillus anthracis is associated with the production of lethal toxin (LT), which activates the murine Nalp1b/Nlrp1b inflammasome and induces caspase-1-dependent pyroptotic death in macrophages and dendritic cells. Here, we investigated the effect of allelic variation of Nlrp1b on the outcome of LT challenge and infection by B. anthracis spores. Nlrp1b allelic variation did not alter the kinetics or pathology of end stage disease induced by purified LT, suggesting that, in contrast to previous reports, macrophage lysis does not contribute directly to LT-mediated pathology. However, animals expressing LT-sensitive alleles of Nlrp1b showed an early inflammatory response to LT and increased resistance to infection by B. anthracis. Data presented here support a model whereby LT-mediated activation of Nlrp1b and subsequent lysis of macrophages is not a mechanism used by B. anthracis to promote virulence but rather a protective host-mediated innate immune response.
PMCID: PMC2811128  PMID: 19949100
6.  Roles of the Bacillus anthracis Spore Protein ExsK in Exosporium Maturation and Germination ▿  
Journal of Bacteriology  2009;191(24):7587-7596.
The Bacillus anthracis spore is the causative agent of the disease anthrax. The outermost structure of the B. anthracis spore, the exosporium, is a shell composed of approximately 20 proteins. The function of the exosporium remains poorly understood and is an area of active investigation. In this study, we analyzed the previously identified but uncharacterized exosporium protein ExsK. We found that, in contrast to other exosporium proteins, ExsK is present in at least two distinct locations, i.e., the spore surface as well as a more interior location underneath the exosporium. In spores that lack the exosporium basal layer protein ExsFA/BxpB, ExsK fails to encircle the spore and instead is present at only one spore pole, indicating that ExsK assembly to the spore is partially dependent on ExsFA/BxpB. In spores lacking the exosporium surface protein BclA, ExsK fails to mature into high-molecular-mass species observed in wild-type spores. These data suggest that the assembly and maturation of ExsK within the exosporium are dependent on ExsFA/BxpB and BclA. We also found that ExsK is not required for virulence in murine and guinea pig models but that it does inhibit germination. Based on these data, we propose a revised model of exosporium maturation and assembly and suggest a novel role for the exosporium in germination.
PMCID: PMC2786611  PMID: 19837802
7.  In Vitro Intracellular Trafficking of Virulence Antigen during Infection by Yersinia pestis 
PLoS ONE  2009;4(7):e6281.
Yersinia pestis, the causative agent of plague, encodes several essential virulence factors on a 70 kb plasmid, including the Yersinia outer proteins (Yops) and a multifunctional virulence antigen (V). V is uniquely able to inhibit the host immune response; aid in the expression, secretion, and injection of the cytotoxic Yops via a type III secretion system (T3SS)-dependent mechanism; be secreted extracellularly; and enter the host cell by a T3SS-independent mechanism, where its activity is unknown. To elucidate the intracellular trafficking and target(s) of V, time-course experiments were performed with macrophages (MΦs) infected with Y. pestis or Y. pseudotuberculosis at intervals from 5 min to 6 h. The trafficking pattern was discerned from results of parallel microscopy, immunoblotting, and flow cytometry experiments. The MΦs were incubated with fluorescent or gold conjugated primary or secondary anti-V (antibodies [Abs]) in conjunction with organelle-associated Abs or dyes. The samples were observed for co-localization by immuno-fluorescence and electron microscopy. For fractionation studies, uninfected and infected MΦs were lysed and subjected to density gradient centrifugation coupled with immunoblotting with Abs to V or to organelles. Samples were also analyzed by flow cytometry after lysis and dual-staining with anti-V and anti-organelle Abs. Our findings indicate a co-localization of V with (1) endosomal proteins between 10–45 min of infection, (2) lysosomal protein(s) between 1–2 h of infection, (3) mitochondrial proteins between 2.5–3 h infection, and (4) Golgi protein(s) between 4–6 h of infection. Further studies are being performed to determine the specific intracellular interactions and role in pathogenesis of intracellularly localized V.
PMCID: PMC2707630  PMID: 19609450
8.  Bacillus anthracis Spores of the bclA Mutant Exhibit Increased Adherence to Epithelial Cells, Fibroblasts, and Endothelial Cells but Not to Macrophages▿  
Infection and Immunity  2007;75(9):4498-4505.
Bacillus anthracis is the causative agent of anthrax, and the spore form of the bacterium represents the infectious particle introduced into a host. The spore is surrounded by an exosporium, a loose-fitting membrane composed of proteins and carbohydrates from which hair-like projections extend. These projections are composed mainly of BclA (Bacillus-collagen-like protein of B. anthracis). To date, exact roles of the exosporium structure and BclA protein remain undetermined. We examined differences in spore binding of wild-type Ames and a bclA mutant of B. anthracis to bronchial epithelial cells as well as to the following other epithelial cells: A549, CHO, and Caco-2 cells; the IMR-90 fibroblast line; and human umbilical vein vascular endothelium cells. The binding of wild-type Ames spores to bronchial epithelial cells appeared to be a dose-dependent, receptor-ligand-mediated event. There were similar findings for the bclA mutant, with an additional nonspecific binding component likely leading to significantly more adherence to all nonprofessional phagocytic cell types. In contrast, we detected no difference in adherence and uptake of spores by macrophages for either the wild-type Ames or the bclA mutant strain. These results suggest that one potential role of the BclA fibers may be to inhibit nonspecific interactions between B. anthracis spores with nonprofessional phagocytic cells and thus direct the spores towards uptake by macrophages during initiation of infection in mammals.
PMCID: PMC1951178  PMID: 17606596
9.  Roles of Macrophages and Neutrophils in the Early Host Response to Bacillus anthracis Spores in a Mouse Model of Infection  
Infection and Immunity  2006;74(1):469-480.
The development of new approaches to combat anthrax requires that the pathogenesis and host response to Bacillus anthracis spores be better understood. We investigated the roles that macrophages and neutrophils play in the progression of infection by B. anthracis in a mouse model. Mice were treated with a macrophage depletion agent (liposome-encapsulated clodronate) or with a neutrophil depletion agent (cyclophosphamide or the rat anti-mouse granulocyte monoclonal antibody RB6-8C5), and the animals were then infected intraperitoneally or by aerosol challenge with fully virulent, ungerminated B. anthracis strain Ames spores. The macrophage-depleted mice were significantly more susceptible to the ensuing infection than the saline-pretreated mice, whereas the differences observed between the neutropenic mice and the saline-pretreated controls were generally not significant. We also found that augmenting peritoneal neutrophil populations before spore challenge did not increase resistance of the mice to infection. In addition, the bacterial load in macrophage-depleted mice was significantly greater and appeared significantly sooner than that observed with the saline-pretreated mice. However, the bacterial load in the neutropenic mice was comparable to that of the saline-pretreated mice. These data suggest that, in our model, neutrophils play a relatively minor role in the early host response to spores, whereas macrophages play a more dominant role in early host defenses against infection by B. anthracis spores.
PMCID: PMC1346637  PMID: 16369003
10.  Venezuelan Equine Encephalitis Virus-Vectored Vaccines Protect Mice against Anthrax Spore Challenge  
Infection and Immunity  2003;71(3):1491-1496.
Anthrax, a disease usually associated with herbivores, is caused by the bacterium Bacillus anthracis. The current vaccine licensed for human use requires a six-dose primary series and yearly boosters and causes reactogenicity in up to 30% of vaccine recipients. A minimally reactogenic vaccine requiring fewer inoculations is warranted. Venezuelan equine encephalitis (VEE) virus has been configured for use as a vaccine vector for a wide variety of immunogens. The VEE vaccine vector is composed of a self-replicating RNA (replicon) containing all of the VEE virus nonstructural genes and a multiple-cloning site in place of the VEE structural genes. Four different anthrax vaccines were constructed by cloning the protective antigen (PA) gene from B. anthracis into the VEE vaccine vector. The anthrax vaccines were produced by assembling the vectors into propagation-deficient VEE replicon particles in vitro. A/J mice inoculated subcutaneously with three doses of the mature 83-kDa PA vaccine were completely protected from challenge with the Sterne strain of B. anthracis. Similar results were obtained with vaccines composed of the PA gene fused to either the B. anthracis secretory sequence or to a tissue plasminogen activator secretory sequence in three additional mouse strains. Mice were unprotected from challenge after inoculation with the carboxy-terminal 63-kDa PA vaccine. These results suggest that these VEE-vectored vaccines may be suitable as candidate vaccines against anthrax.
PMCID: PMC148867  PMID: 12595467
11.  Antibiotic Treatment of Experimental Pneumonic Plague in Mice 
A mouse model was developed to evaluate the efficacy of antibiotic treatment of pneumonic plague; streptomycin was compared to antibiotics with which there is little or no clinical experience. Infection was induced by inhalation of aerosolized Yersinia pestis organisms. Antibiotics were administered by intraperitoneal injection every 6 hours for 5 days, at doses that produced levels of drug in serum comparable to those observed in humans treated for other serious infections. These studies compared in vitro to in vivo activity and evaluated the efficacy of antibiotics started at different times after exposure. Early treatment (started 24 h after challenge, when 0 of 10 mice tested had positive blood cultures) with netilmicin, ciprofloxacin, ofloxacin, ceftriaxone, ceftazidime, aztreonam, ampicillin, and rifampin (but not cefazolin, cefotetan, or ceftizoxime) demonstrated efficacy comparable to streptomycin. Late treatment (started 42 h after exposure, when five of five mice tested had positive blood cultures) with netilmicin, ciprofloxacin, ofloxacin, and a high dose (20 mg/kg of body weight every 6 h) of gentamicin produced survival rates comparable to that with streptomycin, while all of the beta-lactam antibiotics (cefazolin, cefotetan, ceftriaxone, ceftazidime, aztreonam, and ampicillin) and rifampin were significantly inferior to streptomycin. In fact, all groups of mice treated late with beta-lactam antibiotics experienced accelerated mortality rates compared to normal-saline-treated control mice. These studies indicate that netilmicin, gentamicin, ciprofloxacin, and ofloxacin may be alternatives for the treatment of pneumonic plague in humans. However, the beta-lactam antibiotics are not recommended, based upon poor efficacy in this mouse model of pneumonic plague, particularly when pneumonic plague may be associated with bacteremia.
PMCID: PMC105516  PMID: 9517950
12.  Analysis of the Yersinia pestis V Protein for the Presence of Linear Antibody Epitopes 
Infection and Immunity  1998;66(2):521-527.
The V protein expressed by pathogenic Yersinia pestis is an important virulence factor and protective immunogen. The presence of linear B-cell epitopes in the V protein was investigated by using a series of 17 overlapping linear peptides. Groups of 10 mice were immunized intraperitoneally with 30 μg of each peptide on days 0, 30, and 60. Although the V protein-specific antibody response to the peptides varied, most of the peptides elicited high antibody titers. The immunized mice were challenged subcutaneously with 60 50% lethal doses (LD50) (1 LD50 = 1.9 CFU) of a virulent Y. pestis strain, CO92. None of the peptide-immunized mice survived challenge. The animals immunized with the V protein were completely protected against challenge. The immunogenicity of some of the V peptides was increased by conjugating them to keyhole limpet hemocyanin. Only one peptide (encompassing amino acids 1 to 30) conjugate demonstrated some protection; the others were not protective. In additional experiments, V peptides that reacted well with sera from mice surviving Y. pestis infection were combined and used to immunize mice. Although the combined peptides appeared to be very immunogenic, they were not protective. Therefore, the protective B-lymphocyte epitope(s) in the V protein is most likely to be conformational.
PMCID: PMC107937  PMID: 9453605
13.  Immunochemical Studies of Diphtherial Toxin and Related Nontoxic Mutant Proteins 
Infection and Immunity  1980;30(3):835-846.
Competitive binding radioimmunoassays were used to analyze the immunochemistry of diphtherial toxin. Rabbit antisera obtained by immunization with formolized toxoid or fragment A were used to characterize purified toxin, toxoid, fragment A, and related nontoxic mutant proteins. Antitoxoid serum had a high titer of neutralizing activity. Most of the antibodies in antitoxoid bound to toxin but not to fragment A. The anti-fragment A antibodies that were present in antitoxoid recognized determinants of fragment A that were exposed on unnicked toxin. Formaldehyde treatment partially destroyed antibody-binding sites associated with the A and B domains of toxin. Anti-fragment A serum had a low titer of neutralizing activity. The specificities of the anti-fragment A antibodies in antitoxoid and anti-fragment A sera were different. Approximately half of the anti-fragment A antibodies in anti-fragment A serum recognized determinants of fragment A that were masked in toxin. Per unit of fragment A-binding activity, anti-fragment A serum was significantly more potent than antitoxoid serum as an inhibitor of the enzymatic activity of fragment A. By analyzing the antigenic structure of several nontoxic mutant proteins (cross-reacting materials) that cross-react with toxin, we distinguished three different subgroups of antigenic determinants associated with the B domain of toxin. Furthermore, the exposed antigenic determinants of the A domain of toxin were separated into two subgroups, both of which were distinct from the masked determinants of the A domain. The radioimmunoassays described here provide rapid, sensitive, quantitative, and versatile methods for immunochemical characterization of toxin or related cross-reacting proteins encoded by corynebacteriophages.
PMCID: PMC551391  PMID: 6164646

Results 1-13 (13)