PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Venezuelan Equine Encephalitis Virus Replicon Particle Vaccine Protects Nonhuman Primates from Intramuscular and Aerosol Challenge with Ebolavirus 
Journal of Virology  2013;87(9):4952-4964.
There are no vaccines or therapeutics currently approved for the prevention or treatment of ebolavirus infection. Previously, a replicon vaccine based on Venezuelan equine encephalitis virus (VEEV) demonstrated protective efficacy against Marburg virus in nonhuman primates. Here, we report the protective efficacy of Sudan virus (SUDV)- and Ebola virus (EBOV)-specific VEEV replicon particle (VRP) vaccines in nonhuman primates. VRP vaccines were developed to express the glycoprotein (GP) of either SUDV or EBOV. A single intramuscular vaccination of cynomolgus macaques with VRP expressing SUDV GP provided complete protection against intramuscular challenge with SUDV. Vaccination against SUDV and subsequent survival of SUDV challenge did not fully protect cynomolgus macaques against intramuscular EBOV back-challenge. However, a single simultaneous intramuscular vaccination with VRP expressing SUDV GP combined with VRP expressing EBOV GP did provide complete protection against intramuscular challenge with either SUDV or EBOV in cynomolgus macaques. Finally, intramuscular vaccination with VRP expressing SUDV GP completely protected cynomolgus macaques when challenged with aerosolized SUDV, although complete protection against aerosol challenge required two vaccinations with this vaccine.
doi:10.1128/JVI.03361-12
PMCID: PMC3624300  PMID: 23408633
2.  Protection of Nonhuman Primates against Two Species of Ebola Virus Infection with a Single Complex Adenovirus Vector▿  
Ebola viruses are highly pathogenic viruses that cause outbreaks of hemorrhagic fever in humans and other primates. To meet the need for a vaccine against the several types of Ebola viruses that cause human diseases, we developed a multivalent vaccine candidate (EBO7) that expresses the glycoproteins of Zaire ebolavirus (ZEBOV) and Sudan ebolavirus (SEBOV) in a single complex adenovirus-based vector (CAdVax). We evaluated our vaccine in nonhuman primates against the parenteral and aerosol routes of lethal challenge. EBO7 vaccine provided protection against both Ebola viruses by either route of infection. Significantly, protection against SEBOV given as an aerosol challenge, which has not previously been shown, could be achieved with a boosting vaccination. These results demonstrate the feasibility of creating a robust, multivalent Ebola virus vaccine that would be effective in the event of a natural virus outbreak or biological threat.
doi:10.1128/CVI.00467-09
PMCID: PMC2849326  PMID: 20181765
3.  Vaccine To Confer to Nonhuman Primates Complete Protection against Multistrain Ebola and Marburg Virus Infections▿  
Filoviruses (Ebola and Marburg viruses) are among the deadliest viruses known to mankind, with mortality rates nearing 90%. These pathogens are highly infectious through contact with infected body fluids and can be easily aerosolized. Additionally, there are currently no licensed vaccines available to prevent filovirus outbreaks. Their high mortality rates and infectious capabilities when aerosolized and the lack of licensed vaccines available to prevent such infectious make Ebola and Marburg viruses serious bioterrorism threats, placing them both on the category A list of bioterrorism agents. Here we describe a panfilovirus vaccine based on a complex adenovirus (CAdVax) technology that expresses multiple antigens from five different filoviruses de novo. Vaccination of nonhuman primates demonstrated 100% protection against infection by two species of Ebola virus and three Marburg virus subtypes, each administered at 1,000 times the lethal dose. This study indicates the feasibility of vaccination against all current filovirus threats in the event of natural hemorrhagic fever outbreak or biological attack.
doi:10.1128/CVI.00431-07
PMCID: PMC2268273  PMID: 18216185
4.  Activation of Triggering Receptor Expressed on Myeloid Cells-1 on Human Neutrophils by Marburg and Ebola Viruses 
Journal of Virology  2006;80(14):7235-7244.
Marburg virus (MARV) and Ebola virus (EBOV), members of the viral family Filoviridae, cause fatal hemorrhagic fevers in humans and nonhuman primates. High viral burden is coincident with inadequate adaptive immune responses and robust inflammatory responses, and virus-mediated dysregulation of early host defenses has been proposed. Recently, a novel class of innate receptors called the triggering receptors expressed in myeloid cells (TREM) has been discovered and shown to play an important role in innate inflammatory responses and sepsis. Here, we report that MARV and EBOV activate TREM-1 on human neutrophils, resulting in DAP12 phosphorylation, TREM-1 shedding, mobilization of intracellular calcium, secretion of proinflammatory cytokines, and phenotypic changes. A peptide specific to TREM-1 diminished the release of tumor necrosis factor alpha by filovirus-activated human neutrophils in vitro, and a soluble recombinant TREM-1 competitively inhibited the loss of cell surface TREM-1 that otherwise occurred on neutrophils exposed to filoviruses. These data imply direct activation of TREM-1 by filoviruses and also indicate that neutrophils may play a prominent role in the immune and inflammatory responses to filovirus infections.
doi:10.1128/JVI.00543-06
PMCID: PMC1489070  PMID: 16809329
5.  Development of a cAdVax-Based Bivalent Ebola Virus Vaccine That Induces Immune Responses against both the Sudan and Zaire Species of Ebola Virus 
Journal of Virology  2006;80(6):2738-2746.
Ebola virus (EBOV) causes a severe hemorrhagic fever for which there are currently no vaccines or effective treatments. While lethal human outbreaks have so far been restricted to sub-Saharan Africa, the potential exploitation of EBOV as a biological weapon cannot be ignored. Two species of EBOV, Sudan ebolavirus (SEBOV) and Zaire ebolavirus (ZEBOV), have been responsible for all of the deadly human outbreaks resulting from this virus. Therefore, it is important to develop a vaccine that can prevent infection by both lethal species. Here, we describe the bivalent cAdVaxE(GPs/z) vaccine, which includes the SEBOV glycoprotein (GP) and ZEBOV GP genes together in a single complex adenovirus-based vaccine (cAdVax) vector. Vaccination of mice with the bivalent cAdVaxE(GPs/z) vaccine led to efficient induction of EBOV-specific antibody and cell-mediated immune responses to both species of EBOV. In addition, the cAdVax technology demonstrated induction of a 100% protective immune response in mice, as all vaccinated C57BL/6 and BALB/c mice survived challenge with a lethal dose of ZEBOV (30,000 times the 50% lethal dose). This study demonstrates the potential efficacy of a bivalent EBOV vaccine based on a cAdVax vaccine vector design.
doi:10.1128/JVI.80.6.2738-2746.2006
PMCID: PMC1395467  PMID: 16501083
6.  Gene-Specific Countermeasures against Ebola Virus Based on Antisense Phosphorodiamidate Morpholino Oligomers 
PLoS Pathogens  2006;2(1):e1.
The filoviruses Marburg virus and Ebola virus (EBOV) quickly outpace host immune responses and cause hemorrhagic fever, resulting in case fatality rates as high as 90% in humans and nearly 100% in nonhuman primates. The development of an effective therapeutic for EBOV is a daunting public health challenge and is hampered by a paucity of knowledge regarding filovirus pathogenesis. This report describes a successful strategy for interfering with EBOV infection using antisense phosphorodiamidate morpholino oligomers (PMOs). A combination of EBOV-specific PMOs targeting sequences of viral mRNAs for the viral proteins (VPs) VP24, VP35, and RNA polymerase L protected rodents in both pre- and post-exposure therapeutic regimens. In a prophylactic proof-of-principal trial, the PMOs also protected 75% of rhesus macaques from lethal EBOV infection. The work described here may contribute to development of designer, “druggable” countermeasures for filoviruses and other microbial pathogens.
Synopsis
Ebola virus (EBOV) causes a highly lethal hemorrhagic fever that results in up to 50%–90% mortality in humans. There are currently no available vaccines or therapeutics to treat EBOV infection. To date, multiple pre- and post-exposure therapeutic strategies, primarily focused on bolstering the host immune response or inhibiting viral replication, have been undertaken with limited success. Here, Bavari and colleagues report the development of a successful therapeutic regimen for EBOV infection based on antisense phosphorodiamidate morpholino oligomers (PMOs). PMOs are a subclass of chemically modified antisense oligonucleotides that interfere with the translation of viral mRNA, thus inhibiting viral amplification. Using a cell-free translation system, a cell-based assay, and survival studies in rodents, we identified several efficacious EBOV-specific PMOs. Further, prophylactic administration of a combination of three EBOV-specific PMOs specifically targeting VP24, VP35, and the viral polymerase L protected rhesus macaques from lethal EBOV infection. This is the first successful antiviral intervention against filoviruses in nonhuman primates. These findings may serve as the basis for a new strategy to quickly develop virus-specific therapies in defense against known, emerging, and genetically engineered bioterrorism threats.
doi:10.1371/journal.ppat.0020001
PMCID: PMC1326218  PMID: 16415982

Results 1-6 (6)