Search tips
Search criteria

Results 1-25 (66)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
2.  Transplantation of human amniotic epithelial cells repairs brachial plexus injury: pathological and biomechanical analyses 
Neural Regeneration Research  2014;9(24):2159-2163.
A brachial plexus injury model was established in rabbits by stretching the C6 nerve root. Immediately after the stretching, a suspension of human amniotic epithelial cells was injected into the injured brachial plexus. The results of tensile mechanical testing of the brachial plexus showed that the tensile elastic limit strain, elastic limit stress, maximum stress, and maximum strain of the injured brachial plexuses were significantly increased at 24 weeks after the injection. The treatment clearly improved the pathological morphology of the injured brachial plexus nerve, as seen by hematoxylin eosin staining, and the functions of the rabbit forepaw were restored. These data indicate that the injection of human amniotic epithelial cells contributed to the repair of brachial plexus injury, and that this technique may transform into current clinical treatment strategies.
PMCID: PMC4316449  PMID: 25657737
nerve regeneration; peripheral nerve injury; brachial plexus injury; animal model; human amniotic epithelial cells; forepaw function; morphology; tensile mechanics; neural regeneration
3.  Hyperbaric oxygen therapy improves local microenvironment after spinal cord injury 
Neural Regeneration Research  2014;9(24):2182-2188.
Clinical studies have shown that hyperbaric oxygen therapy improves motor function in patients with spinal cord injury. In the present study, we explored the mechanisms associated with the recovery of neurological function after hyperbaric oxygen therapy in a rat model of spinal cord injury. We established an acute spinal cord injury model using a modification of the free-falling object method, and treated the animals with oxygen at 0.2 MPa for 45 minutes, 4 hours after injury. The treatment was administered four times per day, for 3 days. Compared with model rats that did not receive the treatment, rats exposed to hyperbaric oxygen had fewer apoptotic cells in spinal cord tissue, lower expression levels of aquaporin 4/9 mRNA and protein, and more NF-200 positive nerve fibers. Furthermore, they had smaller spinal cord cavities, rapid recovery of somatosensory and motor evoked potentials, and notably better recovery of hindlimb motor function than model rats. Our findings indicate that hyperbaric oxygen therapy reduces apoptosis, downregulates aquaporin 4/9 mRNA and protein expression in injured spinal cord tissue, improves the local microenvironment for nerve regeneration, and protects and repairs the spinal cord after injury.
PMCID: PMC4316452  PMID: 25657740
nerve regeneration; spinal cord injury; hyperbaric oxygen; motor function; rats; microenvironment; aquaporin 4; aquaporin 9; neural regeneration
4.  Relationship between red cell distribution width and serum uric acid in patients with untreated essential hypertension 
Scientific Reports  2014;4:7291.
We assessed whether red cell distribution width (RDW) is associated with serum uric acid (UA) level in a group of 512 patients with newly diagnosed hypertension, recruited in Beijing. Patients were divided into high uric acid group and low uric acid group according to the median (334.9 μmol/L) of serum uric acid. Compared with the low uric acid group, the patients with high uric acid had higher red blood cell count (P < 0.001) and RDW (P = 0.032). The multiple linear regression analysis showed that RDW (P = 0.001) was positively correlated with uric acid level after the adjustment of related factors. Stepwise multiple logistic regression model confirmed that RDW (odds ratio: OR = 1.75) was independent determinants of high serum uric acid as well as sex (OR = 6.03), triglycerides (OR = 1.84), and Blood Urea Nitrogen (BUN, OR = 1.30). RDW may be independently associated with serum UA level in patients with newly diagnosed hypertension. To firmly establish the causal role of RDW in the incidence of high uric acid level among hypertensive patients, large cohort studies are needed.
PMCID: PMC4252898  PMID: 25464864
5.  Searching the Cytochrome P450 Enzymes for the Metabolism of Meranzin Hydrate: A Prospective Antidepressant Originating from Chaihu-Shugan-San 
PLoS ONE  2014;9(11):e113819.
Meranzin hydrate (MH), an absorbed bioactive compound from the Traditional Chinese Medicine (TCM) Chaihu-Shugan-San (CSS), was first isolated in our laboratory and was found to possess anti-depression activity. However, the role of cytochrome P450s (CYPs) in the metabolism of MH was unclear. In this study, we screened the CYPs for the metabolism of MH in vitro by human liver microsomes (HLMs) or human recombinant CYPs. MH inhibited the enzyme activities of CYP1A2 and CYP2C19 in a concentration-dependent manner in the HLMs. The Km and Vmax values of MH were 10.3±1.3 µM and 99.1±3.3 nmol/mg protein/min, respectively, for the HLMs; 8.0±1.6 µM and 112.4±5.7 nmol/nmol P450/min, respectively, for CYP1A2; and 25.9±6.6 µM and 134.3±12.4 nmol/nmol P450/min, respectively, for CYP2C19. Other human CYP isoforms including CYP2A6, CYP2C9, CYP2D6, CYP2E1 and CYP3A4 showed minimal or no effect on MH metabolism. The results suggested that MH was simultaneously a substrate and an inhibitor of CYP1A2 and CYP2C9, and MH had the potential to perpetrate drug-drug interactions with other CYP1A2 and CYP2C19 substrates.
PMCID: PMC4245237  PMID: 25427198
6.  Redundant kinase activation and resistance of EGFR-tyrosine kinase inhibitors 
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have shown dramatic effects against that tumors harboring EGFR activating mutations in the EGFR intracytoplasmic tyrosine kinase domain and resulted in cell apoptosis. Unfortunately, a number of patients ultimately developed resistance by multiple mechanisms. Thus, elucidation of the mechanism of resistance to EGFR-TKIs can provide strategies for blocking or reversing the situation. Recent studies suggested that redundant kinase activation plays pivotal roles in escaping from the effects of EGFR-TKIs. Herein, we aimed to characterize several molecular events involved in the resistance to EGFR-TKIs mediated by redundant kinase activation.
PMCID: PMC4266699  PMID: 25520855
EGFR; redundant kinase activation; resistance to EGFR-TKIs
7.  Effects of let-7b and TLX on the proliferation and differentiation of retinal progenitor cells in vitro 
Scientific Reports  2014;4:6671.
MicroRNAs manifest significant functions in brain neural stem cell (NSC) self-renewal and differentiation through the post-transcriptional regulation of neurogenesis genes. Let-7b is expressed in the mammalian brain and regulates NSC proliferation and differentiation by targeting the nuclear receptor TLX, which is an essential regulator of NSC self-renewal. Whether let-7b and TLX act as important regulators in retinal progenitor cell (RPC) proliferation and differentiation remains unknown. Here, our data show that let-7b and TLX play important roles in controlling RPC fate determination in vitro. Let-7b suppresses TLX expression to negatively regulate RPC proliferation and accelerate the neuronal and glial differentiation of RPCs. The overexpression of let-7b downregulates TLX levels in RPCs, leading to reduced RPC proliferation and increased neuronal and glial differentiation, whereas antisense knockdown of let-7b produces robust TLX expression,enhanced RPC proliferation and decreased differentiation. Moreover, the inhibition of endogenous TLX by small interfering RNA suppresses RPC proliferation and promotes RPC differentiation. Furthermore, overexpression of TLX rescues let-7b-induced proliferation deficiency and weakens the RPC differentiation enhancement caused by let-7b alone. These results suggest that let-7b, by forming a negative feedback loop with TLX, provides a novel model to regulate the proliferation and differentiation of retinal progenitors in vitro.
PMCID: PMC4202307  PMID: 25327364
8.  Maintenance of Large Numbers of Virus Genomes in Human Cytomegalovirus-Infected T98G Glioblastoma Cells 
Journal of Virology  2014;88(7):3861-3873.
After infection, human cytomegalovirus (HCMV) persists for life. Primary infections and reactivation of latent virus can both result in congenital infection, a leading cause of central nervous system birth defects. We previously reported long-term HCMV infection in the T98G glioblastoma cell line (1). HCMV infection has been further characterized in T98Gs, emphasizing the presence of HCMV DNA over an extended time frame. T98Gs were infected with either HCMV Towne or AD169-IE2-enhanced green fluorescent protein (eGFP) strains. Towne infections yielded mixed IE1 antigen-positive and -negative (Ag+/Ag−) populations. AD169-IE2-eGFP infections also yielded mixed populations, which were sorted to obtain an IE2− (Ag−) population. Viral gene expression over the course of infection was determined by immunofluorescent analysis (IFA) and reverse transcription-PCR (RT-PCR). The presence of HCMV genomes was determined by PCR, nested PCR (n-PCR), and fluorescence in situ hybridization (FISH). Compared to the HCMV latency model, THP-1, Towne-infected T98Gs expressed IE1 and latency-associated transcripts for longer periods, contained many more HCMV genomes during early passages, and carried genomes for a greatly extended period of passaging. Large numbers of HCMV genomes were also found in purified Ag− AD169-infected cells for the first several passages. Interestingly, latency transcripts were observed from very early times in the Towne-infected cells, even when IE1 was expressed at low levels. Although AD169-infected Ag− cells expressed no detectable levels of either IE1 or latency transcripts, they also maintained large numbers of genomes within the cell nuclei for several passages. These results identify HCMV-infected T98Gs as an attractive new model in the study of the long-term maintenance of virus genomes in the context of neural cell types.
IMPORTANCE Our previous work showed that T98G glioblastoma cells were semipermissive to HCMV infection; virus trafficked to the nucleus, and yet only a proportion of cells stained positive for viral antigens, thus allowing continual subculturing and passaging. The cells eventually transitioned to a state where viral genomes were maintained without viral antigen expression or virion production. Here we report that during long-term T98G infection, large numbers of genomes were maintained within all of the cells' nuclei for the first several passages (through passage 4 [P4]), even in the presence of continual cellular division. Surprisingly, genomes were maintained, albeit at a lower level, through day 41. This is decidedly longer than in any other latency model system that has been described to date. We believe that this system offers a useful model to aid in unraveling the cellular components involved in viral genome maintenance (and presumably replication) in cells carrying long-term latent genomes in a neural context.
PMCID: PMC3993548  PMID: 24453365
9.  Structural Determinants of Oligomerization of !1-Pyrroline-5-Carboxylate Dehydrogenase: Identification of a Hexamerization Hot Spot 
Journal of molecular biology  2013;425(17):3106-3120.
The aldehyde dehydrogenase (ALDH) superfamily member !1-pyrroline-5-carboxylate dehydrogenase (P5CDH) catalyzes the NAD+-dependent oxidation of glutamate semialdehyde to glutamate, which is the final step of proline catabolism. Defects in P5CDH activity lead to the metabolic disorder type II hyperprolinemia, P5CDH is essential for virulence of the fungal pathogen Cryptococcus neoformans, and bacterial P5CDHs have been targeted for vaccine development. Although the enzyme oligomeric state is known to be important for ALDH function, the oligomerization of P5CDH has remained relatively unstudied. Here we determine the oligomeric states and quaternary structures of four bacterial P5CDHs using a combination of small-angle X-ray scattering, X-ray crystallography, and dynamic light scattering. The P5CDHs from Thermus thermophilus and Deinococcus radiodurans form trimer-of-dimers hexamers in solution, which is the first observation of a hexameric ALDH in solution. In contrast, two Bacillus P5CDHs form dimers in solution but do not assemble into a higher order oligomer. Site-directed mutagenesis was used to identify a hexamerization hot spot that is centered on an arginine residue in the NAD+-binding domain. Mutation of this critical Arg residue to Ala in either of the hexameric enzymes prevents hexamer formation in solution. Paradoxically, the dimeric Arg-to-Ala T. thermophilus mutant enzyme packs as a hexamer in the crystal state, which illustrates the challenges associated with predicting the biological assembly in solution from crystal structures. The observation of different oligomeric states among P5CDHs suggests potential differences in cooperativity and protein-protein interactions.
PMCID: PMC3743950  PMID: 23747974
proline catabolism; aldehyde dehydrogenase; small-angle X-ray scattering; X-ray crystallography
10.  Bone Morphogenetic Protein 9 Overexpression Reduces Osteosarcoma Cell Migration and Invasion 
Molecules and Cells  2013;36(2):119-126.
Transforming growth factor-β (TGF-β) is known to promote tumor migration and invasion. Bone morphogenetic proteins (BMPs) are members of the TGF-β family expressed in a variety of human carcinoma cell lines. The role of bone morphogenetic protein 9 (BMP9), the most powerful osteogenic factor, in osteosarcoma (OS) progression has not been fully clarified. The expression of BMP9 and its receptors in OS cell lines was analyzed by RT-PCR. We found that BMP9 and its receptors were expressed in OS cell lines. We further investigated the influence of BMP9 on the biological behaviors of OS cells. BMP9 overexpression in the OS cell lines 143B and MG63 inhibited in vitro cell migration and invasion. We further investigated the expression of a panel of cancer-related genes and found that BMP9 overexpression increased the phosphorylation of Smad1/5/8 proteins, increased the expression of ID1, and reduced the expression and activity of matrix metalloproteinase 9 (MMP9) in OS cells. BMP9 silencing induced the opposite effects. We also found that BMP9 may not affect the chemokine (C-X-C motif) ligand 12 (CXCL12)/C-X-C chemokine receptor type 4 (CXCR4) axis to regulate the invasiveness and metastatic capacity of OS cells. Interestingly, CXCR4 was expressed in both 143B and MG63 cells, while CXCL12 was only detected in MG63 cells. Taken together, we hypothesize that BMP9 inhibits the migration and invasiveness of OS cells through a Smad-dependent pathway by downregulating the expression and activity of MMP9.
PMCID: PMC3887952  PMID: 23807047
BMP9; invasion; migration; MMP9; osteosarcoma
11.  Ca2+ Cycling in Heart Failure 
Circulation research  2013;113(6):690-708.
Ca2+ plays a crucial role in connecting membrane excitability with contraction in myocardium. The hallmark features of heart failure are mechanical dysfunction and arrhythmias; defective intracellular Ca2+ homeostasis is a central cause of contractile dysfunction and arrhythmias in failing myocardium. Defective Ca2+ homeostasis in heart failure can result from pathological alteration in the expression and activity of an increasingly understood collection of Ca2+ homeostatic binding proteins, ion channels and enzymes. This review focuses on the molecular mechanisms of defective Ca2+ cycling in heart failure and consider how fundamental understanding of these pathways may translate into novel and innovative therapies.
PMCID: PMC4080816  PMID: 23989713
Calcium; heart failure; excitation-contraction coupling; CaMKII; mitochondria
12.  Stress shielding effects of two prosthetic groups after total hip joint simulation replacement 
The study aims to compare the stress shielding effects of implantable anatomical and traditional prostheses after in vitro total hip joint replacement simulation. The study serves as a biomechanical basis for novel artificial prostheses and for clinical hip joint replacements.
Sixteen femoral specimens from adult male corpses were randomly divided into two groups: the traditional prosthesis group implanted into femur specimens using simulated total hip joint replacement (n = 8) and the femoral neck-preserved anatomical prosthesis implantation group that used a collum femoris preserving stem/trabeculae oriented pattern (CFP/TOP) acetabular cup (n = 8). The strain values in the two groups before and after prosthesis implantation were measured at different test points using electric resistance strain gauges. The stress shielding rate was calculated according to the related formula.
The results showed that the rates of proximal femoral stress shielding were significantly higher at test points 1–10 in the traditional femoral prosthesis transplantation group than in the anatomical prosthesis group (p < 0.05).
There were different effects of stress shielding between the anatomical and traditional prostheses. Retained femoral anatomical implants should reduce stress shielding and increase the stability of anatomical prosthesis implants.
PMCID: PMC4237889  PMID: 25174846
Hip joint; Artificial prosthesis; Replacement; Electric measurement
13.  Differential Association of the Na+/H+ Exchanger Regulatory Factor (NHERF) Family of Adaptor Proteins with the Raft-and the Non-Raft Brush Border Membrane Fractions of NHE3 
Trafficking, brush border membrane (BBM) retention, and signal-specific regulation of the Na+/H+ exchanger NHE3 is regulated by the Na+/H+ Exchanger Regulatory Factor (NHERF) family of PDZ-adaptor proteins, which enable the formation of multiprotein complexes. It is unclear, however, what determines signal specificity of these NHERFs. Thus, we studied the association of NHE3, NHERF1 (EBP50), NHERF2 (E3KARP), and NHERF3 (PDZK1) with lipid rafts in murine small intestinal BBM.
Detergent resistant membranes (“lipid rafts”) were isolated by floatation of Triton X-incubated small intestinal BBM from a variety of knockout mouse strains in an Optiprep step gradient. Acid-activated NHE3 activity was measured fluorometrically in BCECF-loaded microdissected villi, or by assessment of CO2/HCO3− mediated increase in fluid absorption in perfused jejunal loops of anethetized mice.
NHE3 was found to partially associate with lipid rafts in the native BBM, and NHE3 raft association had an impact on NHE3 transport activity and regulation in vivo. NHERF1, 2 and 3 were differentially distributed to rafts and non-rafts, with NHERF2 being most raft-associated and NHERF3 entirely non-raft associated. NHERF2 expression enhanced the localization of NHE3 to membrane rafts. The use of acid sphingomyelinase-deficient mice, which have altered membrane lipid as well as lipid raft composition, allowed us to test the validity of the lipid raft concept in vivo.
The differential association of the NHERFs with the raft-associated and the non-raft fraction of NHE3 in the brush border membrane is one component of the differential and signal-specific NHE3 regulation by the different NHERFs.
PMCID: PMC4127042  PMID: 24297041
PDZ-domain adaptor proteins; Membrane rafts; Cholesterol; Intestine; Salt absorption; Ezrin
14.  Large conserved domains of low DNA methylation maintained by Dnmt3a 
Nature genetics  2013;46(1):17-23.
Gains and losses in DNA methylation are prominent features of mammalian cell types. To gain insight into mechanisms that could promote shifts in DNA methylation and contribute to cell fate changes, including malignant transformation, we performed genome-wide mapping of 5-methylcytosine and 5-hydroxymethylcytosine in purified murine hematopoietic stem cells. We discovered extended regions of low methylation (Canyons) that span conserved domains frequently containing transcription factors and are distinct from CpG islands and shores. The genes in about half of these methylation Canyons are coated with repressive histone marks while the remainder are covered by activating histone marks and are highly expressed in HSCs. Canyon borders are demarked by 5-hydroxymethylcytosine and become eroded in the absence of DNA methyltransferase 3a (Dnmt3a). Genes dysregulated in human leukemias are enriched for Canyon-associated genes. The novel epigenetic landscape we describe may provide a mechanism for the regulation of hematopoiesis and may contribute to leukemia development.
PMCID: PMC3920905  PMID: 24270360
15.  AEG-1 Promotes Anoikis Resistance and Orientation Chemotaxis in Hepatocellular Carcinoma Cells 
PLoS ONE  2014;9(6):e100372.
Metastasis contributes to the poor prognosis of hepatocellular carcinoma (HCC). Anoikis resistance and orientation chemotaxis are two important and sequential events in tumor cell metastasis. The process of tumor metastasis is known to be regulated by AEG-1, an important oncogene that plays a critical role in tumor metastasis, though the effects of this oncogene on anoikis resistance and orientation chemotaxis in HCC cells are currently unknown. To directly assess the role of AEG-1 in these processes, we up-regulated AEG-1 expression via exogenous transfection in SMMC-7721 cells, which express low endogenous levels of AEG-1; and down-regulated AEG-1 expression via siRNA-mediated knockdown in MHCC-97H and HCC-LM3 cells, which express high endogenous levels of AEG-1. Our data directly demonstrate that AEG-1 promotes cell growth as assessed by cell proliferation/viability and cell cycle analysis. Furthermore, the prevention of anoikis by AEG-1 correlates with decreased activation of caspase-3. AEG-1-dependent anoikis resistance is activated via the PI3K/Akt pathway and is characterized by the regulation of Bcl-2 and Bad. The PI3K inhibitor LY294002 reverses the AEG-1 dependent effects on Akt phosphorylation, Bcl-2 expression and anoikis resistance. AEG-1 also promotes orientation chemotaxis of suspension-cultured cells towards supernatant from Human Pulmonary Microvascular Endothelial Cells (HPMECs). Our results show that AEG-1 activates the expression of the metastasis-associated chemokine receptor CXCR4, and that its ligand, CXCL12, is secreted by HPMECs. Furthermore, the CXCR4 antoagonist AMD3100 decreases AEG-1-induced orientation chemotaxis. These results define a pathway by which AEG-1 regulates anoikis resistance and orientation chemotaxis during HCC cell metastasis.
PMCID: PMC4062488  PMID: 24941119
16.  PPM1D is a prognostic marker and therapeutic target in colorectal cancer 
Protein phosphatase, Mg2+/Mn2+ dependent, 1D (PPM1D) has been associated with carcinogenesis. The present study investigated PPM1D expression as a potential biomarker in colorectal cancer (CRC). PPM1D expression was assessed using immunohistochemistry in 368 patients with CRC. The correlation between PPM1D expression, clinicopathological features and prognosis was analyzed. PPM1D small interfering (si)RNA-induced PPM1D silencing was performed in CRC cell lines to assess the effect of PPM1D on tumor cell proliferation and invasion in vitro. A total of 68.48% (252/368) of the CRC samples displayed high PPM1D expression. By contrast, only 9.24% (34/368) of the matched non-cancerous tissue samples exhibited high PPM1D expression. High PPM1D expression was correlated with node metastasis (P=0.0024), distant metastasis (P<0.001) and TNM stage (P=0.0016). Kaplan-Meier survival analysis revealed that patients with low PPM1D expression had significantly longer survival than those with high PPM1D expression (P=0.012). Moreover, multivariate analyses demonstrated that high PPM1D expression was an independent prognostic factor for overall survival (hazard ratio = 0.24; 95% confidence interval, 0.13–0.86; P=0.004). Furthermore, PPM1D gene silencing was found to significantly reduce the proliferation and invasion of CRC cells in vitro. These findings suggest a role for PPM1D as a prognostic marker and potential therapeutic target in CRC.
PMCID: PMC4079395  PMID: 25009596
colorectal cancer; PPM1D; prognosis; biomarker
17.  Emergence, Circulation, and Spatiotemporal Phylogenetic Analysis of Coxsackievirus A6- and Coxsackievirus A10-Associated Hand, Foot, and Mouth Disease Infections from 2008 to 2012 in Shenzhen, China 
Journal of Clinical Microbiology  2013;51(11):3560-3566.
Sporadic hand, foot, and mouth disease (HFMD) outbreaks and other infectious diseases in recent years have frequently been associated with certain human enterovirus (HEV) serotypes. This study explored the prevalences and genetic characteristics of non-HEV71 and non-coxsackievirus A16 (CV-A16) human enterovirus-associated HFMD infections in Shenzhen, China. A total of 2,411 clinical stool specimens were collected from hospital-based surveillance for HFMD from 2008 to 2012. The detection of HEV was performed by real-time reverse transcription-PCR (RT-PCR) and RT-seminested PCR, and spatiotemporal phylogenetic analysis was performed based on the VP1 genes. A total of 1,803 (74.8%) strains comprising 28 different serotypes were detected. In the past 5 years, the predominant serotypes were HEV71 (60.0%), followed by CV-A16 (21.2%) and two uncommon serotypes, CV-A6 (13.0%) and CV-A10 (3.3%). However, CV-A6 replaced CV-A16 as the second most common serotype between 2010 and 2012. As an emerging pathogen, CV-A6 became as common a causative agent of HFMD as HEV71 in Shenzhen in 2012. Phylogenetic analysis revealed that little variation occurred in the Chinese HEV71 and CV-A16 strains. The genetic characteristics of the Chinese CV-A6 and CV-A10 strains displayed geographic differences. The CV-A6 and CV-A10 strains circulating in Shenzhen likely originated in Europe. It was found that human enteroviruses have a high mutation rate due to evolutionary pressure and frequent recombination (3.2 × 10−3 to 6.4 ×10−3 substitutions per site per year for HEV71, CV-A6, CV-A16, and CV-A10). Since certain serotypes are potential threats to the public health, this study provides further insights into the significance of the epidemiological surveillance of HFMD.
PMCID: PMC3889734  PMID: 23966496
18.  Marine Compound Catunaregin Inhibits Angiogenesis through the Modulation of Phosphorylation of Akt and eNOS in vivo and in vitro 
Marine Drugs  2014;12(5):2790-2801.
Angiogenesis is the formation of blood vessels from pre-existing vasculature. Excessive or uncontrolled angiogenesis is a major contributor to many pathological conditions whereas inhibition of aberrant angiogenesis is beneficial to patients with pathological angiogenesis. Catunaregin is a core of novel marine compound isolated from mangrove associate. The potential anti-angiogenesis of catunaregin was investigated in human umbilical vein endothelial cells (HUVECs) and zebrafish. HUVECs were treated with different concentrations of catunaregin in the presence or absence of VEGF. The angiogenic phenotypes including cell invasion cell migration and tube formation were evaluated following catunaregin treatment in HUVECs. The possible involvement of AKT, eNOS and ERK1/2 in catunaregin-induced anti-angiogenesis was explored using Western blotting. The anti-angiogenesis of catunaregin was further tested in the zebrafish embryo neovascularization and caudal fin regeneration assays. We found that catunaregin dose-dependently inhibited angiogenesis in both HUVECs and zebrafish embryo neovascularization and zebrafish caudal fin regeneration assays. In addition, catunaregin significantly decreased the phosphorylation of Akt and eNOS, but not the phosphorylation of ERK1/2. The present work demonstrates that catunaregin exerts the anti-angiogenic activity at least in part through the regulation of the Akt and eNOS signaling pathways.
PMCID: PMC4052316  PMID: 24824025
anti-angiogenesis; catunaregin; VEGF; zebrafish; HUVECs
19.  mRNA stability in the nucleus*  
Eukaryotic gene expression is controlled by different levels of biological events, such as transcription factors regulating the timing and strength of transcripts production, alteration of transcription rate by RNA processing, and mRNA stability during RNA processing and translation. RNAs, especially mRNAs, are relatively vulnerable molecules in living cells for ribonucleases (RNases). The maintenance of quality and quantity of transcripts is a key issue for many biological processes. Extensive studies draw the conclusion that the stability of RNAs is dedicated-regulated, occurring co- and post-transcriptionally, and translation-coupled as well, either in the nucleus or cytoplasm. Recently, RNA stability in the nucleus has aroused much research interest, especially the stability of newly-made transcripts. In this article, we summarize recent progresses on mRNA stability in the nucleus, especially focusing on quality control of newly-made RNA by RNA polymerase II in eukaryotes.
PMCID: PMC4076601  PMID: 24793762
mRNA stability; Nuclear mRNA retention; Quality control; mRNA degradation
20.  Later Passages of Neural Progenitor Cells from Neonatal Brain Are More Permissive for Human Cytomegalovirus Infection 
Journal of Virology  2013;87(20):10968-10979.
Congenital human cytomegalovirus (HCMV) infection is the most frequent infectious cause of birth defects, primarily neurological disorders. Neural progenitor/stem cells (NPCs) are the major cell type in the subventricular zone and are susceptible to HCMV infection. In culture, the differentiation status of NPCs may change with passage, which in turn may alter susceptibility to virus infection. Previously, only early-passage (i.e., prior to passage 9) NPCs were studied and shown to be permissive to HCMV infection. In this study, NPC cultures derived at different gestational ages were evaluated after short (passages 3 to 6) and extended (passages 11 to 20) in vitro passages for biological and virological parameters (i.e., cell morphology, expression of NPC markers and HCMV receptors, viral entry efficiency, viral gene expression, virus-induced cytopathic effect, and release of infectious progeny). These parameters were not significantly influenced by the gestational age of the source tissues. However, extended-passage cultures showed evidence of initiation of differentiation, increased viral entry, and more efficient production of infectious progeny. These results confirm that NPCs are fully permissive for HCMV infection and that extended-passage NPCs initiate differentiation and are more permissive for HCMV infection. Later-passage NPCs being differentiated and more permissive for HCMV infection suggest that HCMV infection in fetal brain may cause more neural cell loss and give rise to severe neurological disabilities with advancing brain development.
PMCID: PMC3807278  PMID: 23903847
21.  Comprehensive Analysis of Human Cytomegalovirus MicroRNA Expression during Lytic and Quiescent Infection 
PLoS ONE  2014;9(2):e88531.
Human cytomegalovirus (HCMV) encodes microRNAs (miRNAs) that function as post-transcriptional regulators of gene expression during lytic infection in permissive cells. Some miRNAs have been shown to suppress virus replication, which could help HCMV to establish or maintain latent infection. However, HCMV miRNA expression has not been comprehensively examined and compared using cell culture systems representing permissive (lytic) and semi-permissive vs. non-permissive (latent-like) infection.
Viral miRNAs levels and expression kinetics during HCMV infection were determined by miRNA-specific stem-loop RT-PCR. HCMV infected THP-1 (non-permissive), differentiated THP-1 (d-THP-1, semi-permissive) and human embryo lung fibroblasts (HELs, fully-permissive) were examined. The impact of selected miRNAs on HCMV infection (gene expression, genome replication and virus release) was determined by Western blotting, RT-PCR, qPCR, and plaque assay.
Abundant expression of 15 HCMV miRNAs was observed during lytic infection in HELs; highest peak inductions (11- to 1502-fold) occurred at 48 hpi. In d-THP-1s, fourteen mRNAs were detected with moderate induction (3- to 288-fold), but kinetics of expression was generally delayed for 24 h relative to HELs. In contrast, only three miRNAs were induced to low levels (3- to 4-fold) during quiescent infection in THP-1s. Interestingly, miR-UL70-3p was poorly induced in HEL (1.5-fold), moderately in THP-1s (4-fold), and strongly (58-fold) in d-THP-1s, suggesting a potentially specific role for miR-UL70-3p in THP-1s and d-THP-1s. MiR-US33, -UL22A and -UL70 were further evaluated for their impact on HCMV replication in HELs. Ectopic expression of miR-UL22A and miR-UL70 did not affect HCMV replication in HELs, whereas miR-US33 inhibited HCMV replication and reduced levels of HCMV US29 mRNA, confirming that US29 is a target of miR-US33.
Viral miRNA expression kinetics differs between permissive, semi-permissive and quiescent infections, and miR-US33 down-regulates HCMV replication. These results suggest that miR-US33 may function to impair entry into lytic replication and hence promote establishment of latency.
PMCID: PMC3922878  PMID: 24533100
22.  MicroRNA-10a Is Down-Regulated by DNA Methylation and Functions as a Tumor Suppressor in Gastric Cancer Cells 
PLoS ONE  2014;9(1):e88057.
MicroRNAs act as posttranscriptional regulators of gene expression in many biological processes. Their deregulations occur commonly in gastric cancer (GC). Although DNA methylation constitutes an important mechanism for microRNA deregulation in cancer, this field largely remains unexplored.
Methodology/Principal Findings
Total RNA was extracted from the tissues of 100 patients with GC and four gastric cancer cell lines. The expression levels of miR-10a were determined by real-time PCR with specific TaqMan probes. Moreover, a functional analysis of miR-10a in regulating cell proliferation, migration and invasion was performed. Subsequently, quantitative methylation-specific PCR (qMSP) was used to detect the DNA methylation status in the CpG islands upstream of miR-10a. In this study, we found that the expression of miR-10a in GC cells was lower than that in normal cells, which was due to the hypermethylation of the CpG islands upstream of miR-10a. We also validated the slightly lower expression of miR-10a in GC tissues than their adjacent non-neoplastic tissues in 100 GC patients and confirmed the hypermethylation of CpG islands upstream of miR-10a in some patients. Furthermore, re-introduction of miR-10a into GC cells was able to inhibit cell proliferation, migration and invasion. Bioinformatic and immunoblot analysis indicated that the tumor suppressor roles of miR-10a in GC cells were possibly through targeting HOXA1.
Our data indicate that miR-10a acts as a tumor suppressor in GC cells and is partially silenced by DNA hypermethylation in GC, suggesting that miR-10a may serve as a potential diagnostic or therapeutic target of GC.
PMCID: PMC3909310  PMID: 24498243
23.  Annexin A2 System in Human Biology: Cell Surface and Beyond 
Seminars in thrombosis and hemostasis  2013;39(4):10.1055/s-0033-1334143.
Annexin A2 (A2) is a multicompartmental, multifunctional protein that orchestrates a growing spectrum of biologic processes. At the endothelial cell surface, A2 and S100A10 (p11) form a heterotetramer, which accelerates tissue plasminogen activator–dependent activation of the fibrinolytic protease, plasmin. In antiphospholipid syndrome, anti-A2 antibodies are associated with clinical thrombosis, whereas overexpression of A2 in acute promyelocytic leukemia promotes hyperfibrinolytic bleeding. A2 is upregulated in hypoxia, and mice deficient in A2 are resistant to oxygen-induced retinal neovascularization, suggesting a role for A2 in human retinal vascular proliferation. In solid malignancies, the (A2•p11)2 tetramer may promote cancer cell invasion, whereas in multiple myeloma A2 enables malignant plasmacyte growth and predicts prognosis. In the central nervous system, the p11 enables membrane insertion of serotonin receptors that govern mood. In the peripheral nervous system, p11 directs sodium channels to the plasma membrane, enabling pain perception. In cerebral cortex neurons, A2 stabilizes the microtubule-associated tau protein, which, when mutated, is associated with frontotemporal dementia. In inflammatory dendritic cells, A2 maintains late endosomal/lysosomal membrane integrity, thus modulating inflammasome activation and cytokine secretion in a model of aseptic arthritis. Together, these findings suggest an emerging, multifaceted role for A2 in human health and disease.
PMCID: PMC3869233  PMID: 23483454
annexin A2; S100A2/protein p11; fibrinolysis; inflammation
24.  Crystal Structures and Kinetics of Monofunctional Proline Dehydrogenase Provide Insight into Substrate Recognition and Conformational Changes Associated With Flavin Reduction and Product Release 
Biochemistry  2012;51(50):10099-10108.
Proline dehydrogenase catalyzes the FAD-dependent oxidation of proline to Δ1- pyrroline-5-carboxylate, which is the first step of proline catabolism. Here, we report the structures of proline dehydrogenase from Deinococcus radiodurans in the oxidized state complexed with the proline analog L-tetrahydrofuroic acid and in the reduced state with the proline site vacant. The analog binds against the si face of the FAD isoalloxazine and is protected from bulk solvent by the α8 helix and the β1-α1 loop. The FAD ribityl chain adopts two conformations in the E-S complex, which is unprecedented for flavoenzymes. One of the conformations is novel for the PRODH superfamily and may contribute to the low substrate affinity of Deinococcus PRODH. Reduction of the crystalline enzyme-inhibitor complex causes profound structural changes, including 20° butterfly bending of the isoalloxazine, crankshaft rotation of the ribityl, shifting of α8 by 1.7 Å, reconfiguration of the β1-α1 loop, and rupture of the Arg291-Glu64 ion pair. These changes dramatically open the active site to facilitate product release and allow electron acceptors access to the reduced flavin. The structures suggest that the ion pair, which is conserved in the PRODH superfamily, functions as the active site gate. Mutagenesis of Glu64 to Ala decreases catalytic efficiency 27-fold, which demonstrates the importance of the gate. Mutation of Gly63 decreases efficiency 140-fold, which suggests that flexibility of the β1-α1 loop is essential for optimal catalysis. The large conformational changes that are required to form the E-S complex suggest that conformational selection plays a role in substrate recognition.
PMCID: PMC3525754  PMID: 23151026
25.  Bone Marrow Mesenchymal Stem Cells Stimulate Proliferation and Neuronal Differentiation of Retinal Progenitor Cells 
PLoS ONE  2013;8(9):e76157.
During retina development, retinal progenitor cell (RPC) proliferation and differentiation are regulated by complex inter- and intracellular interactions. Bone marrow mesenchymal stem cells (BMSCs) are reported to express a variety of cytokines and neurotrophic factors, which have powerful trophic and protective functions for neural tissue-derived cells. Here, we show that the expanded RPC cultures treated with BMSC-derived conditioned medium (CM) which was substantially enriched for bFGF and CNTF, expressed clearly increased levels of nuclear receptor TLX, an essential regulator of neural stem cell (NSC) self-renewal, as well as betacellulin (BTC), an EGF-like protein described as supporting NSC expansion. The BMSC CM- or bFGF-treated RPCs also displayed an obviously enhanced proliferation capability, while BMSC CM-derived bFGF knocked down by anti-bFGF, the effect of BMSC CM on enhancing RPC proliferation was partly reversed. Under differentiation conditions, treatment with BMSC CM or CNTF markedly favoured RPC differentiation towards retinal neurons, including Brn3a-positive retinal ganglion cells (RGCs) and rhodopsin-positive photoreceptors, and clearly diminished retinal glial cell differentiation. These findings demonstrate that BMSCs supported RPC proliferation and neuronal differentiation which may be partly mediated by BMSC CM-derived bFGF and CNTF, reveal potential limitations of RPC culture systems, and suggest a means for optimizing RPC cell fate determination in vitro.
PMCID: PMC3786983  PMID: 24098776

Results 1-25 (66)