Search tips
Search criteria

Results 1-25 (108)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
author:("Korber, cette")
1.  Prevalence of broadly neutralizing antibody responses during chronic HIV-1 infection 
AIDS (London, England)  2014;28(2):163-169.
Studies of neutralizing antibodies in HIV-1 infected individuals provide insights into the quality of the response that should be possible to elicit with vaccines and ways to design effective immunogens. Some individuals make high titres of exceptional broadly reactive neutralizing antibodies that are of particular interest; however, more modest responses may be a reasonable goal for vaccines. We performed a large cross-sectional study to determine the spectrum of neutralization potency and breadth that is seen during chronic HIV-1 infection.
Neutralization potency and breadth were assessed with genetically and geographically diverse panels of 205 chronic HIV-1 sera and 219 Env-pseudotyped viruses representing all major genetic subtypes of HIV-1.
Neutralization was measured by using Tat-regulated luciferase reporter gene expression in TZM-bl cells. Serum-neutralizing activity was compared with a diverse set of human mAbs that are widely considered to be broadly neutralizing.
We observed a uniform continuum of responses, with most sera displaying some level of cross-neutralization, and approximately 50% of sera neutralizing more than 50% of viruses. Titres of neutralization (potency) were highly correlated with breadth. Many sera had breadth comparable to several of the less potent broadly neutralizing human mAbs.
These results help clarify the spectrum of serum-neutralizing activity induced by HIV-1 infection and that should be possible to elicit with vaccines. Importantly, most people appear capable of making low to moderate titres of broadly neutralizing antibodies. Additional studies of these relatively common responses might provide insights for practical and feasible vaccine designs.
PMCID: PMC4042313  PMID: 24361678
HIV-1; immunity; neutralizing antibodies; serum; vaccines
2.  Proteome-wide analysis of HIV-specific naive and memory CD4+ T cells in unexposed blood donors 
The Journal of Experimental Medicine  2014;211(7):1273-1280.
Healthy, uninfected individuals harbor HIV-specific naive and memory CD4+ T cells, and many memory T cell epitopes are similar in sequence to peptides expressed by natural commensal bacteria, suggesting potential cross-reactivity.
The preexisting HIV-1–specific T cell repertoire must influence both the immunodominance of T cells after infection and immunogenicity of vaccines. We directly compared two methods for measuring the preexisting CD4+ T cell repertoire in healthy HIV-1–negative volunteers, the HLA-peptide tetramer enrichment and T cell library technique, and show high concordance (r = 0.989). Using the library technique, we examined whether naive, central memory, and/or effector memory CD4+ T cells specific for overlapping peptides spanning the entire HIV-1 proteome were detectable in 10 HLA diverse, HIV-1–unexposed, seronegative donors. HIV-1–specific cells were detected in all donors at a mean of 55 cells/million naive cells and 38.9 and 34.1 cells/million in central and effector memory subsets. Remarkably, peptide mapping showed most epitopes recognized by naive (88%) and memory (56%) CD4+ T cells had been previously reported in natural HIV-1 infection. Furthermore, 83% of epitopes identified in preexisting memory subsets shared epitope length matches (8–12 amino acids) with human microbiome proteins, suggestive of a possible cross-reactive mechanism. These results underline the power of a proteome-wide analysis of peptide recognition by human T cells for the identification of dominant antigens and provide a baseline for optimizing HIV-1–specific helper cell responses by vaccination.
PMCID: PMC4076590  PMID: 24958850
3.  Construction and Evaluation of Novel Rhesus Monkey Adenovirus Vaccine Vectors 
Journal of Virology  2014;89(3):1512-1522.
Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. The phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. Here we describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved to have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors.
IMPORTANCE Although there have been substantial efforts in the development of vaccine vectors from human and chimpanzee adenoviruses, far less is known about rhesus monkey adenoviruses. In this report, we describe the isolation and vectorization of three novel rhesus monkey adenoviruses. These vectors exhibit virologic and immunologic characteristics that make them attractive as potential candidate vaccine vectors for both HIV-1 and other pathogens.
PMCID: PMC4300752  PMID: 25410856
4.  Protective Efficacy of a Global HIV-1 Mosaic Vaccine Against Heterologous SHIV Challenges in Rhesus Monkeys 
Cell  2013;155(3):10.1016/j.cell.2013.09.061.
The global diversity of HIV-1 represents a critical challenge facing HIV-1 vaccine development. HIV-1 mosaic antigens are bioinformatically optimized immunogens designed for improved coverage of HIV-1 diversity. However, the protective efficacy of global HIV-1 vaccine antigens has not previously been evaluated. Here we demonstrate the capacity of bivalent HIV-1 mosaic antigens to protect rhesus monkeys against acquisition of heterologous challenges with the difficult-to-neutralize simian-human immunodeficiency virus SHIV-SF162P3. Adenovirus/poxvirus and adenovirus/adenovirus vector-based vaccines expressing HIV-1 mosaic Env, Gag, and Pol afforded a significant reduction in the per-exposure acquisition risk following repetitive, intrarectal SHIV-SF162P3 challenges. Protection against acquisition of infection was correlated with vaccine-elicited binding, neutralizing, and functional non-neutralizing antibodies. These data demonstrate the protective efficacy of HIV-1 mosaic antigens and suggest a potential strategy towards the development of a global HIV-1 vaccine. Moreover, our findings suggest that the coordinated activity of multiple antibody functions may contribute to protection against difficult-to-neutralize viruses.
PMCID: PMC3846288  PMID: 24243013
5.  A computational framework for the analysis of peptide microarray antibody binding data with application to HIV vaccine profiling 
We present an integrated analytical method for analyzing peptide microarray antibody binding data, from normalization through subject-specific positivity calls and data integration and visualization. Current techniques for the normalization of such data sets do not account for non-specific binding activity. A novel normalization technique based on peptide sequence information quickly and effectively reduced systematic biases. We also employed a sliding mean window technique that borrows strength from peptides sharing similar sequences, resulting in reduced signal variability. A smoothed signal aided in the detection of weak antibody binding hotspots. A new principled FDR method of setting positivity thresholds struck a balance between sensitivity and specificity. In addition, we demonstrate the utility and importance of using baseline control measurements when making subject-specific positivity calls. Data sets from two human clinical trials of candidate HIV-1 vaccines were used to validate the effectiveness of our overall computational framework.
PMCID: PMC3999921  PMID: 23770318
Peptide microarrays; Antibodies; Normalization; Positivity calls; Software; Visualization
6.  Recombination-mediated escape from primary CD8+ T cells in acute HIV-1 infection 
Retrovirology  2014;11(1):69.
A major immune evasion mechanism of HIV-1 is the accumulation of non-synonymous mutations in and around T cell epitopes, resulting in loss of T cell recognition and virus escape.
Here we analyze primary CD8+ T cell responses and virus escape in a HLA B*81 expressing subject who was infected with two T/F viruses from a single donor. In addition to classic escape through non-synonymous mutation/s, we also observed rapid selection of multiple recombinant viruses that conferred escape from T cells specific for two epitopes in Nef.
Our study shows that recombination between multiple T/F viruses provide greater options for acute escape from CD8+ T cell responses than seen in cases of single T/F virus infection. This process may contribute to the rapid disease progression in patients infected by multiple T/F viruses.
Electronic supplementary material
The online version of this article (doi:10.1186/s12977-014-0069-9) contains supplementary material, which is available to authorized users.
PMCID: PMC4180588  PMID: 25212771
HIV-1; T cell; Multiple infection; Recombination; Immunodominance; Acute infection
7.  Global Panel of HIV-1 Env Reference Strains for Standardized Assessments of Vaccine-Elicited Neutralizing Antibodies 
Journal of Virology  2014;88(5):2489-2507.
Standardized assessments of HIV-1 vaccine-elicited neutralizing antibody responses are complicated by the genetic and antigenic variability of the viral envelope glycoproteins (Envs). To address these issues, suitable reference strains are needed that are representative of the global epidemic. Several panels have been recommended previously, but no clear answers have been available on how many and which strains are best suited for this purpose. We used a statistical model selection method to identify a global panel of reference Env clones from among 219 Env-pseudotyped viruses assayed in TZM-bl cells with sera from 205 HIV-1-infected individuals. The Envs and sera were sampled globally from diverse geographic locations and represented all major genetic subtypes and circulating recombinant forms of the virus. Assays with a panel size of only nine viruses adequately represented the spectrum of HIV-1 serum neutralizing activity seen with the larger panel of 219 viruses. An optimal panel of nine viruses was selected and augmented with three additional viruses for greater genetic and antigenic coverage. The spectrum of HIV-1 serum neutralizing activity seen with the final 12-virus panel closely approximated the activity seen with subtype-matched viruses. Moreover, the final panel was highly sensitive for detection of many of the known broadly neutralizing antibodies. For broader assay applications, all 12 Env clones were converted to infectious molecular clones using a proviral backbone carrying a Renilla luciferase reporter gene (Env.IMC.LucR viruses). This global panel should facilitate highly standardized assessments of vaccine-elicited neutralizing antibodies across multiple HIV-1 vaccine platforms in different parts of the world.
IMPORTANCE An effective HIV-1 vaccine will need to overcome the extraordinary genetic variability of the virus, where most variation occurs in the viral envelope glycoproteins that are the sole targets for neutralizing antibodies. Efforts to elicit broadly cross-reactive neutralizing antibodies that will protect against infection by most circulating strains of the virus are guided in part by in vitro assays that determine the ability of vaccine-elicited antibodies to neutralize genetically diverse HIV-1 variants. Until now, little information was available on how many and which strains of the virus are best suited for this purpose. We applied robust statistical methods to evaluate a large neutralization data set and identified a small panel of viruses that are a good representation of the global epidemic. The neutralization properties of this new panel of reference strains should facilitate the development of an effective HIV-1 vaccine.
PMCID: PMC3958090  PMID: 24352443
8.  Characterization and Immunogenicity of a Novel Mosaic M HIV-1 gp140 Trimer 
Journal of Virology  2014;88(17):9538-9552.
The extraordinary diversity of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein poses a major challenge for the development of an HIV-1 vaccine. One strategy to circumvent this problem utilizes bioinformatically optimized mosaic antigens. However, mosaic Env proteins expressed as trimers have not been previously evaluated for their stability, antigenicity, and immunogenicity. Here, we report the production and characterization of a stable HIV-1 mosaic M gp140 Env trimer. The mosaic M trimer bound CD4 as well as multiple broadly neutralizing monoclonal antibodies, and biophysical characterization suggested substantial stability. The mosaic M trimer elicited higher neutralizing antibody (nAb) titers against clade B viruses than a previously described clade C (C97ZA.012) gp140 trimer in guinea pigs, whereas the clade C trimer elicited higher nAb titers than the mosaic M trimer against clade A and C viruses. A mixture of the clade C and mosaic M trimers elicited nAb responses that were comparable to the better component of the mixture for each virus tested. These data suggest that combinations of relatively small numbers of immunologically complementary Env trimers may improve nAb responses.
IMPORTANCE The development of an HIV-1 vaccine remains a formidable challenge due to multiple circulating strains of HIV-1 worldwide. This study describes a candidate HIV-1 Env protein vaccine whose sequence has been designed by computational methods to address HIV-1 diversity. The characteristics and immunogenicity of this Env protein, both alone and mixed together with a clade C Env protein vaccine, are described.
PMCID: PMC4136343  PMID: 24965452
9.  Immunological and Virological Mechanisms of Vaccine-Mediated Protection Against SIV and HIV 
Nature  2013;505(7484):502-508.
A major challenge for the development of a highly effective AIDS vaccine is the identification of mechanisms of protective immunity. To address this question, we used a non-human primate challenge model with simian immunodeficiency virus (SIV). We show that antibodies to the SIV Envelope are necessary and sufficient to prevent infection. Moreover, sequencing of viruses from breakthrough infections revealed selective pressure against neutralization-sensitive viruses; we identified a two amino acid signature that alters antigenicity and confers neutralization resistance. A similar signature confers resistance of HIV-1 to neutralization by monoclonal antibodies against variable regions 1 and 2 (V1V2), suggesting that SIV and HIV share a fundamental mechanism of immune escape from vaccine- or naturally-elicited antibodies. These analyses provide insight into the limited efficacy seen in HIV vaccine trials.
PMCID: PMC3946913  PMID: 24352234
10.  Modeling sequence evolution in HIV-1 infection with recombination 
Previously we proposed two simplified models of early HIV-1 evolution. Both showed that under a model of neutral evolution and exponential growth, the mean Hamming distance (HD) between genetic sequences grows linearly with time. In this paper we describe a more realistic continuous-time, age-dependent mathematical model of infection and viral replication, and show through simulations that even in this more complex description, the mean Hamming distance grows linearly with time. This remains unchanged when we introduce recombination, though the confidence intervals of the mean HD obtained ignoring recombination are overly conservative.
PMCID: PMC3667750  PMID: 23567647
HIV; population dynamics; viral evolution
11.  Comparison of Viral Env Proteins from Acute and Chronic Infections with Subtype C Human Immunodeficiency Virus Type 1 Identifies Differences in Glycosylation and CCR5 Utilization and Suggests a New Strategy for Immunogen Design 
Journal of Virology  2013;87(13):7218-7233.
Understanding human immunodeficiency virus type 1 (HIV-1) transmission is central to developing effective prevention strategies, including a vaccine. We compared phenotypic and genetic variation in HIV-1 env genes from subjects in acute/early infection and subjects with chronic infections in the context of subtype C heterosexual transmission. We found that the transmitted viruses all used CCR5 and required high levels of CD4 to infect target cells, suggesting selection for replication in T cells and not macrophages after transmission. In addition, the transmitted viruses were more likely to use a maraviroc-sensitive conformation of CCR5, perhaps identifying a feature of the target T cell. We confirmed an earlier observation that the transmitted viruses were, on average, modestly underglycosylated relative to the viruses from chronically infected subjects. This difference was most pronounced in comparing the viruses in acutely infected men to those in chronically infected women. These features of the transmitted virus point to selective pressures during the transmission event. We did not observe a consistent difference either in heterologous neutralization sensitivity or in sensitivity to soluble CD4 between the two groups, suggesting similar conformations between viruses from acute and chronic infection. However, the presence or absence of glycosylation sites had differential effects on neutralization sensitivity for different antibodies. We suggest that the occasional absence of glycosylation sites encoded in the conserved regions of env, further reduced in transmitted viruses, could expose specific surface structures on the protein as antibody targets.
PMCID: PMC3700278  PMID: 23616655
12.  Identification of broadly neutralizing antibody epitopes in the HIV-1 envelope glycoprotein using evolutionary models 
Virology Journal  2013;10:347.
Identification of the epitopes targeted by antibodies that can neutralize diverse HIV-1 strains can provide important clues for the design of a preventative vaccine.
We have developed a computational approach that can identify key amino acids within the HIV-1 envelope glycoprotein that influence sensitivity to broadly cross-neutralizing antibodies. Given a sequence alignment and neutralization titers for a panel of viruses, the method works by fitting a phylogenetic model that allows the amino acid frequencies at each site to depend on neutralization sensitivities. Sites at which viral evolution influences neutralization sensitivity were identified using Bayes factors (BFs) to compare the fit of this model to that of a null model in which sequences evolved independently of antibody sensitivity. Conformational epitopes were identified with a Metropolis algorithm that searched for a cluster of sites with large Bayes factors on the tertiary structure of the viral envelope.
We applied our method to ID50 neutralization data generated from seven HIV-1 subtype C serum samples with neutralization breadth that had been tested against a multi-clade panel of 225 pseudoviruses for which envelope sequences were also available. For each sample, between two and four sites were identified that were strongly associated with neutralization sensitivity (2ln(BF) > 6), a subset of which were experimentally confirmed using site-directed mutagenesis.
Our results provide strong support for the use of evolutionary models applied to cross-sectional viral neutralization data to identify the epitopes of serum antibodies that confer neutralization breadth.
PMCID: PMC4220805  PMID: 24295501
HIV; Antibodies; Neutralization sensitivity; Epitope prediction; Evolutionary model
13.  The Thai Phase III HIV Type 1 Vaccine Trial (RV144) Regimen Induces Antibodies That Target Conserved Regions Within the V2 Loop of gp120 
AIDS Research and Human Retroviruses  2012;28(11):1444-1457.
The Thai Phase III clinical trial (RV144) showed modest efficacy in preventing HIV-1 acquisition. Plasma collected from HIV-1-uninfected trial participants completing all injections with ALVAC-HIV (vCP1521) prime and AIDSVAX B/E boost were tested for antibody responses against HIV-1 gp120 envelope (Env). Peptide microarray analysis from six HIV-1 subtypes and group M consensus showed that vaccination induced antibody responses to the second variable (V2) loop of gp120 of multiple subtypes. We further evaluated V2 responses by ELISA and surface plasmon resonance using cyclic (Cyc) and linear V2 loop peptides. Thirty-one of 32 vaccine recipients tested (97%) had antibody responses against Cyc V2 at 2 weeks postimmunization with a reciprocal geometric mean titer (GMT) of 1100 (range: 200–3200). The frequency of detecting plasma V2 antibodies declined to 19% at 28 weeks post-last injection (GMT: 110, range: 100–200). Antibody responses targeted the mid-region of the V2 loop that contains conserved epitopes and has the amino acid sequence KQKVHALFYKLDIVPI (HXB2 Numbering sequence 169–184). Valine at position 172 was critical for antibody binding. The frequency of V3 responses at 2 weeks postimmunization was modest (18/32, 56%) with a GMT of 185 (range: 100–800). In contrast, naturally infected HIV-1 individuals had a lower frequency of antibody responses to V2 (10/20, 50%; p=0.003) and a higher frequency of responses to V3 (19/20, 95%), with GMTs of 400 (range: 100–3200) and 3570 (range: 200–12,800), respectively. RV144 vaccination induced antibodies that targeted a region of the V2 loop that contains conserved epitopes. Early HIV-1 transmission events involve V2 loop interactions, raising the possibility that anti-V2 antibodies in RV144 may have contributed to viral inhibition.
PMCID: PMC3484815  PMID: 23035746
14.  Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus 
Nature  2013;496(7446):469-476.
Current HIV-1 vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in ~20% of HIV-1-infected individuals, and details of their generation could provide a roadmap for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from time of infection. The mature antibody, CH103, neutralized ~55% of HIV-1 isolates, and its co-crystal structure with gp120 revealed a novel loop-based mechanism of CD4-binding site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the CH103-lineage unmutated common ancestor avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data elucidate the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies and provide insights into strategies to elicit similar antibodies via vaccination.
PMCID: PMC3637846  PMID: 23552890
15.  Antigenicity and Immunogenicity of Transmitted/Founder, Consensus, and Chronic Envelope Glycoproteins of Human Immunodeficiency Virus Type 1 
Journal of Virology  2013;87(8):4185-4201.
Human immunodeficiency virus type 1 (HIV-1) vaccine development requires selection of appropriate envelope (Env) immunogens. Twenty HIV-1 Env glycoproteins were examined for their ability to bind human anti-HIV-1 monoclonal antibodies (MAbs) and then used as immunogens in guinea pigs to identify promising immunogens. These included five Envs derived from chronically infected individuals, each representing one of five common clades and eight consensus Envs based on these five clades, as well as the consensus of the entire HIV-1 M group, and seven transmitted/founder (T/F) Envs from clades B and C. Sera from immunized guinea pigs were tested for neutralizing activity using 36 HIV-1 Env-pseudotyped viruses. All Envs bound to CD4 binding site, membrane-proximal, and V1/V2 MAbs with similar apparent affinities, although the T/F Envs bound with higher affinity to the MAb 17b, a CCR5 coreceptor binding site antibody. However, the various Envs differed in their ability to induce neutralizing antibodies. Consensus Envs elicited the most potent responses, but neutralized only a subset of viruses, including mostly easy-to-neutralize tier 1 and some more-difficult-to-neutralize tier 2 viruses. T/F Envs elicited fewer potent neutralizing antibodies but exhibited greater breadth than chronic or consensus Envs. Finally, chronic Envs elicited the lowest level and most limited breadth of neutralizing antibodies overall. Thus, each group of Env immunogens elicited a different antibody response profile. The complementary benefits of consensus and T/F Env immunogens raise the possibility that vaccines utilizing a combination of consensus and T/F Envs may be able to induce neutralizing responses with greater breadth and potency than single Env immunogens.
PMCID: PMC3624376  PMID: 23365441
16.  Plasma IgG to Linear Epitopes in the V2 and V3 Regions of HIV-1 gp120 Correlate with a Reduced Risk of Infection in the RV144 Vaccine Efficacy Trial 
PLoS ONE  2013;8(9):e75665.
Neutralizing and non-neutralizing antibodies to linear epitopes on HIV-1 envelope glycoproteins have potential to mediate antiviral effector functions that could be beneficial to vaccine-induced protection. Here, plasma IgG responses were assessed in three HIV-1 gp120 vaccine efficacy trials (RV144, Vax003, Vax004) and in HIV-1-infected individuals by using arrays of overlapping peptides spanning the entire consensus gp160 of all major genetic subtypes and circulating recombinant forms (CRFs) of the virus. In RV144, where 31.2% efficacy against HIV-1 infection was seen, dominant responses targeted the C1, V2, V3 and C5 regions of gp120. An analysis of RV144 case-control samples showed that IgG to V2 CRF01_AE significantly inversely correlated with infection risk (OR= 0.54, p=0.0042), as did the response to other V2 subtypes (OR=0.60-0.63, p=0.016-0.025). The response to V3 CRF01_AE also inversely correlated with infection risk but only in vaccine recipients who had lower levels of other antibodies, especially Env-specific plasma IgA (OR=0.49, p=0.007) and neutralizing antibodies (OR=0.5, p=0.008). Responses to C1 and C5 showed no significant correlation with infection risk. In Vax003 and Vax004, where no significant protection was seen, serum IgG responses targeted the same epitopes as in RV144 with the exception of an additional C1 reactivity in Vax003 and infrequent V2 reactivity in Vax004. In HIV-1 infected subjects, dominant responses targeted the V3 and C5 regions of gp120, as well as the immunodominant domain, heptad repeat 1 (HR-1) and membrane proximal external region (MPER) of gp41. These results highlight the presence of several dominant linear B cell epitopes on the HIV-1 envelope glycoproteins. They also generate the hypothesis that IgG to linear epitopes in the V2 and V3 regions of gp120 are part of a complex interplay of immune responses that contributed to protection in RV144.
PMCID: PMC3784573  PMID: 24086607
17.  A multiple-alignment based primer design algorithm for genetically highly variable DNA targets 
BMC Bioinformatics  2013;14:255.
Primer design for highly variable DNA sequences is difficult, and experimental success requires attention to many interacting constraints. The advent of next-generation sequencing methods allows the investigation of rare variants otherwise hidden deep in large populations, but requires attention to population diversity and primer localization in relatively conserved regions, in addition to recognized constraints typically considered in primer design.
Design constraints include degenerate sites to maximize population coverage, matching of melting temperatures, optimizing de novo sequence length, finding optimal bio-barcodes to allow efficient downstream analyses, and minimizing risk of dimerization. To facilitate primer design addressing these and other constraints, we created a novel computer program (PrimerDesign) that automates this complex procedure. We show its powers and limitations and give examples of successful designs for the analysis of HIV-1 populations.
PrimerDesign is useful for researchers who want to design DNA primers and probes for analyzing highly variable DNA populations. It can be used to design primers for PCR, RT-PCR, Sanger sequencing, next-generation sequencing, and other experimental protocols targeting highly variable DNA samples.
PMCID: PMC3765731  PMID: 23965160
Primer design; DNA sequencing; Amplicon sequencing; Next-generation sequencing; PCR; Primer dimer; Bio-barcodes; Multiplex
18.  Hepatitis C Genotype 1 Mosaic Vaccines Are Immunogenic in Mice and Induce Stronger T-Cell Responses than Natural Strains 
Despite improved hepatitis C virus (HCV) treatments, vaccines remain an effective and economic option for curtailing the epidemic. Mosaic protein HCV genotype 1 vaccine candidates designed to address HCV diversity were immunogenic in mice. They elicited stronger T-cell responses to NS3-NS4a and E1-E2 proteins than did natural strains, as assessed with vaccine-matched peptides.
PMCID: PMC3571268  PMID: 23221002
19.  Breadth of cellular and humoral immune responses elicited in rhesus monkeys by multi-valent mosaic and consensus immunogens 
Virology  2012;428(2):121-127.
To create an HIV-1 vaccine that generates sufficient breadth of immune recognition to protect against the genetically diverse forms of the circulating virus, we have been exploring vaccines based on consensus and mosaic protein designs. Increasing the valency of a mosaic immunogen cocktail increases epitope coverage but with diminishing returns, as increasingly rare epitopes are incorporated into the mosaic proteins. In this study we compared the immunogenicity of 2-valent and 3-valent HIV-1 envelope mosaic immunogens in rhesus monkeys. Immunizations with the 3-valent mosaic immunogens resulted in a modest increase in the breadth of vaccine-elicited T lymphocyte responses compared to the 2-valent mosaic immunogens. However, the 3-valent mosaic immunogens elicited significantly higher neutralizing responses to Tier 1 viruses than the 2-valent mosaic immunogens. These findings underscore the potential utility of polyvalent mosaic immunogens for eliciting both cellular and humoral immune responses to HIV-1.
PMCID: PMC3582221  PMID: 22521913
HIV-1 vaccine; Mosaic immunogen; T cell
20.  Distinct Evolutionary Pressures Underlie Diversity in Simian Immunodeficiency Virus and Human Immunodeficiency Virus Lineages 
Journal of Virology  2012;86(24):13217-13231.
Simian immunodeficiency virus (SIV) infection of rhesus macaques causes immune depletion and disease closely resembling human AIDS and is well recognized as the most relevant animal model for the human disease. Experimental investigations of viral pathogenesis and vaccine protection primarily involve a limited set of related viruses originating in sooty mangabeys (SIVsmm). The diversity of human immunodeficiency virus type 1 (HIV-1) has evolved in humans in about a century; in contrast, SIV isolates used in the macaque model evolved in sooty mangabeys over millennia. To investigate the possible consequences of such different evolutionary histories for selection pressures and observed diversity in SIVsmm and HIV-1, we isolated, sequenced, and analyzed 20 independent isolates of SIVsmm, including representatives of 7 distinct clades of viruses isolated from natural infection. We found SIVsmm diversity to be lower overall than HIV-1 M group diversity. Reduced positive selection (i.e., less diversifying evolution) was evident in extended regions of SIVsmm proteins, most notably in Gag p27 and Env gp120. In addition, the relative diversities of proteins in the two lineages were distinct: SIVsmm Env and Gag were much less diverse than their HIV-1 counterparts. This may be explained by lower SIV-directed immune activity in mangabeys relative to HIV-1-directed immunity in humans. These findings add an additional layer of complexity to the interpretation and, potentially, to the predictive utility of the SIV/macaque model, and they highlight the unique features of human and simian lentiviral evolution that inform studies of pathogenesis and strategies for AIDS vaccine design.
PMCID: PMC3503124  PMID: 23055550
21.  A Mechanistic Understanding of Allosteric Immune Escape Pathways in the HIV-1 Envelope Glycoprotein 
PLoS Computational Biology  2013;9(5):e1003046.
The HIV-1 envelope (Env) spike, which consists of a compact, heterodimeric trimer of the glycoproteins gp120 and gp41, is the target of neutralizing antibodies. However, the high mutation rate of HIV-1 and plasticity of Env facilitates viral evasion from neutralizing antibodies through various mechanisms. Mutations that are distant from the antibody binding site can lead to escape, probably by changing the conformation or dynamics of Env; however, these changes are difficult to identify and define mechanistically. Here we describe a network analysis-based approach to identify potential allosteric immune evasion mechanisms using three known HIV-1 Env gp120 protein structures from two different clades, B and C. First, correlation and principal component analyses of molecular dynamics (MD) simulations identified a high degree of long-distance coupled motions that exist between functionally distant regions within the intrinsic dynamics of the gp120 core, supporting the presence of long-distance communication in the protein. Then, by integrating MD simulations with network theory, we identified the optimal and suboptimal communication pathways and modules within the gp120 core. The results unveil both strain-dependent and -independent characteristics of the communication pathways in gp120. We show that within the context of three structurally homologous gp120 cores, the optimal pathway for communication is sequence sensitive, i.e. a suboptimal pathway in one strain becomes the optimal pathway in another strain. Yet the identification of conserved elements within these communication pathways, termed inter-modular hotspots, could present a new opportunity for immunogen design, as this could be an additional mechanism that HIV-1 uses to shield vulnerable antibody targets in Env that induce neutralizing antibody breadth.
Author Summary
The Env glycoproteins, gp120 and gp41, are the viral targets of HIV neutralizing antibodies. Accordingly, vaccine studies have focused on eliciting broadly neutralizing antibodies against epitopes in these proteins. Sequence diversity and the conformational flexibility of Env have made vaccine design efforts difficult. It is well documented that mutations distant from defined epitopes can lead to escape from neutralizing antibodies. In such cases, allostery within the Env protein could play a dominant role. In this study, we characterized the dynamical network in gp120 in terms of how spatially distant regions communicate with each other. We introduced an approach based on coupling computer simulations to compare gp120 core structures of three different virus strains from two clades, clade B and C. Our study finds that the long-distance collective motions in the protein are functionally relevant and are conserved across diverse strains of gp120, the communication pathways associated with these motions are sensitive to its sequence. Importantly, we find that gp120 exhibits communication modules (communities) with key residues (hotspots) serving as conduits for communication between different communities, a possible strategy to exploit in future vaccine design efforts.
PMCID: PMC3656115  PMID: 23696718
22.  Mycobacterium tuberculosis – Heterogeneity Revealed Through Whole Genome Sequencing 
The emergence of whole genome sequencing (WGS) technologies as primary research tools has allowed for the detection of genetic diversity in Mycobacterium tuberculosis (Mtb) with unprecedented resolution. WGS has been used to address a broad range of topics, including the dynamics of evolution, transmission and treatment. Here, we have analyzed 55 publically available genomes to reconstruct the phylogeny of Mtb, and we have addressed complications that arise during the analysis of publically available WGS data. Additionally, we have reviewed the application of WGS to the study of Mtb and discuss those areas still to be addressed, moving from global (phylogeography), to local (transmission chains and circulating strain diversity), to the single patient (clonal heterogeneity) and to the bacterium itself (evolutionary studies). Finally, we discuss the current WGS approaches, their strengths and limitations.
PMCID: PMC3323677  PMID: 22218163
Whole genome sequencing; evolution; heterogeneity; Mycobacterium tuberculosis
23.  Analysis of V2 Antibody Responses Induced in Vaccinees in the ALVAC/AIDSVAX HIV-1 Vaccine Efficacy Trial 
PLoS ONE  2013;8(1):e53629.
The RV144 clinical trial of a prime/boost immunizing regimen using recombinant canary pox (ALVAC-HIV) and two gp120 proteins (AIDSVAX B and E) was previously shown to have a 31.2% efficacy rate. Plasma specimens from vaccine and placebo recipients were used in an extensive set of assays to identify correlates of HIV-1 infection risk. Of six primary variables that were studied, only one displayed a significant inverse correlation with risk of infection: the antibody (Ab) response to a fusion protein containing the V1 and V2 regions of gp120 (gp70-V1V2). This finding prompted a thorough examination of the results generated with the complete panel of 13 assays measuring various V2 Abs in the stored plasma used in the initial pilot studies and those used in the subsequent case-control study. The studies revealed that the ALVAC-HIV/AIDSVAX vaccine induced V2-specific Abs that cross-react with multiple HIV-1 subgroups and recognize both conformational and linear epitopes. The conformational epitope was present on gp70-V1V2, while the predominant linear V2 epitope mapped to residues 165–178, immediately N-terminal to the putative α4β7 binding motif in the mid-loop region of V2. Odds ratios (ORs) were calculated to compare the risk of infection with data from 12 V2 assays, and in 11 of these, the ORs were ≤1, reaching statistical significance for two of the variables: Ab responses to gp70-V1V2 and to overlapping V2 linear peptides. It remains to be determined whether anti-V2 Ab responses were directly responsible for the reduced infection rate in RV144 and whether anti-V2 Abs will prove to be important with other candidate HIV vaccines that show efficacy, however, the results support continued dissection of Ab responses to the V2 region which may illuminate mechanisms of protection from HIV-1 infection and may facilitate the development of an effective HIV-1 vaccine.
PMCID: PMC3547933  PMID: 23349725
24.  Vertical T cell immunodominance and epitope entropy determine HIV-1 escape 
HIV-1 accumulates mutations in and around reactive epitopes to escape recognition and killing by CD8+ T cells. Measurements of HIV-1 time to escape should therefore provide information on which parameters are most important for T cell–mediated in vivo control of HIV-1. Primary HIV-1–specific T cell responses were fully mapped in 17 individuals, and the time to virus escape, which ranged from days to years, was measured for each epitope. While higher magnitude of an individual T cell response was associated with more rapid escape, the most significant T cell measure was its relative immunodominance measured in acute infection. This identified subject-level or “vertical” immunodominance as the primary determinant of in vivo CD8+ T cell pressure in HIV-1 infection. Conversely, escape was slowed significantly by lower population variability, or entropy, of the epitope targeted. Immunodominance and epitope entropy combined to explain half of all the variability in time to escape. These data explain how CD8+ T cells can exert significant and sustained HIV-1 pressure even when escape is very slow and that within an individual, the impacts of other T cell factors on HIV-1 escape should be considered in the context of immunodominance.
PMCID: PMC3533301  PMID: 23221345
25.  Full-Length HIV-1 Immunogens Induce Greater Magnitude and Comparable Breadth of T Lymphocyte Responses to Conserved HIV-1 Regions Compared with Conserved-Region-Only HIV-1 Immunogens in Rhesus Monkeys 
Journal of Virology  2012;86(21):11434-11440.
A global HIV-1 vaccine will likely need to induce immune responses against conserved HIV-1 regions to contend with the profound genetic diversity of HIV-1. Here we evaluated the capacity of immunogens consisting of only highly conserved HIV-1 sequences that are aimed at focusing cellular immune responses on these potentially critical regions. We assessed in rhesus monkeys the breadth and magnitude of T lymphocyte responses elicited by adenovirus vectors expressing either full-length HIV-1 Gag/Pol/Env immunogens or concatenated immunogens consisting of only highly conserved HIV-1 sequences. Surprisingly, we found that the full-length immunogens induced comparable breadth (P = 1.0) and greater magnitude (P = 0.01) of CD8+ T lymphocyte responses against conserved HIV-1 regions compared with the conserved-region-only immunogens. Moreover, the full-length immunogens induced a 5-fold increased total breadth of HIV-1-specific T lymphocyte responses compared with the conserved-region-only immunogens (P = 0.007). These results suggest that full-length HIV-1 immunogens elicit a substantially increased magnitude and breadth of cellular immune responses compared with conserved-region-only HIV-1 immunogens, including greater magnitude and comparable breadth of responses against conserved sequences.
PMCID: PMC3486282  PMID: 22896617

Results 1-25 (108)