Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Designing and Testing Broadly-Protective Filoviral Vaccines Optimized for Cytotoxic T-Lymphocyte Epitope Coverage 
PLoS ONE  2012;7(10):e44769.
We report the rational design and in vivo testing of mosaic proteins for a polyvalent pan-filoviral vaccine using a computational strategy designed for the Human Immunodeficiency Virus type 1 (HIV-1) but also appropriate for Hepatitis C virus (HCV) and potentially other diverse viruses. Mosaics are sets of artificial recombinant proteins that are based on natural proteins. The recombinants are computationally selected using a genetic algorithm to optimize the coverage of potential cytotoxic T lymphocyte (CTL) epitopes. Because evolutionary history differs markedly between HIV-1 and filoviruses, we devised an adapted computational technique that is effective for sparsely sampled taxa; our first significant result is that the mosaic technique is effective in creating high-quality mosaic filovirus proteins. The resulting coverage of potential epitopes across filovirus species is superior to coverage by any natural variants, including current vaccine strains with demonstrated cross-reactivity. The mosaic cocktails are also robust: mosaics substantially outperformed natural strains when computationally tested against poorly sampled species and more variable genes. Furthermore, in a computational comparison of cross-reactive potential a design constructed prior to the Bundibugyo outbreak performed nearly as well against all species as an updated design that included Bundibugyo. These points suggest that the mosaic designs would be more resilient than natural-variant vaccines against future Ebola outbreaks dominated by novel viral variants. We demonstrate in vivo immunogenicity and protection against a heterologous challenge in a mouse model. This design work delineates the likely requirements and limitations on broadly-protective filoviral CTL vaccines.
PMCID: PMC3463593  PMID: 23056184
2.  GenBank 
Nucleic Acids Research  1992;20(Suppl):2065-2069.
The GenBank nucleotide sequence database now contains sequence data and associated annotation corresponding to 85,000,000 nucleotides in 67,000 entries from a total of 3,000 organisms. The input stream of data coming into the database is primarily as direct submissions from the scientific community on electronic media, with little or no data being keyboarded from the printed page by the databank staff. The data are maintained in a relational database management system and are made available in flatfile form through on-line access, and through various network and off-line computer-readable media. The data are also distributed in relational form through satellite copies at a number of institutions in the U.S. and elsewhere. In addition, GenBank provides the U.S. distribution center for the BIOSCI electronic bulletin board service.
PMCID: PMC333982  PMID: 1598235

Results 1-2 (2)