PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
2.  A Multisystem Approach for Development and Evaluation of Inactivated Vaccines for Venezuelan Equine Encephalitis Virus (VEEV) 
A multisystem approach was used to assess the efficiency of several methods for inactivation of Venezuelan equine encephalitis virus (VEEV) vaccine candidates. A combination of diverse assays (plaque, in vitro cytopathology and mouse neurovirulence) was used to verify virus inactivation, along with the use of a specific ELISA to measure retention of VEEV envelope glycoprotein epitopes in the development of several inactivated VEEV candidate vaccines derived from an attenuated strain of VEEV (V3526). Incubation of V3526 aliquots at temperatures in excess of 64°C for periods >30 minutes inactivated the virus, but substantially reduced VEEV specific monoclonal antibody binding of the inactivated material. In contrast, V3526 treated either with formalin at concentrations of 0.1% or 0.5% v/v for 4 or 24 hours, or irradiated with 50 kilogray gamma radiation rendered the virus non-infectious while retaining significant levels of monoclonal antibody binding. Loss of infectivity of both the formalin inactivated (fV3526) and gamma irradiated (gV3526) preparations was confirmed via five successive blind passages on BHK-21 cells. Similarly, loss of neurovirulence for fV3526 and gV3526 was demonstrated via intracerebral inoculation of suckling BALB/c mice. Excellent protection against subcutaneous challenge with VEEV IA/B Trinidad donkey strain was demonstrated using a two dose immunization regimen with either fV3526 or gV3526. The combination of in vitro and in vivo assays provides a practical approach to optimize manufacturing process parameters for development of other inactivated viral vaccines.
doi:10.1016/j.jviromet.2009.11.006
PMCID: PMC2815040  PMID: 19903494
Venezuelan equine encephalitis virus (VEEV); Formalin inactivated vaccines; Gamma irradiated vaccines; Neurovirulence; Alphavirus
4.  Telemetric analysis to detect febrile responses in mice following vaccination with a live-attenuated virus vaccine 
Vaccine  2009;27(49):6814-6823.
Nonhuman primates (NHP) are considered to be the most appropriate model for predicting how humans will respond to many infectious diseases. Due to ethical and monetary concerns associated with the use of NHP, rodent models that are as predictive of responses likely to be seen in human vaccine recipients are warranted. Using implanted telemetry devices, body temperature and activity were monitored in inbred and outbred mouse strains following administration of the live-attenuated vaccine for Venezuelan equine encephalitis virus (VEEV), V3526. Following analysis of individual mouse data, only outbred mouse strains showed changes in diurnal temperature and activity profiles following vaccination. Similar changes were observed following VEEV challenge of vaccinated outbred mice. From these studies, we conclude, outbred mouse strains implanted with telemeters are a sensitive model for predicting responses in humans following vaccination.
doi:10.1016/j.vaccine.2009.09.013
PMCID: PMC2783281  PMID: 19761841
vaccine; mouse; telemetry

Results 1-4 (4)