Search tips
Search criteria

Results 1-25 (86)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Elastin Governs the Mechanical Response of Medial Collateral Ligament Under Shear and Transverse Tensile Loading 
Acta biomaterialia  2015;25:304-312.
Elastin is a highly extensible structural protein network that provides near-elastic resistance to deformation in biological tissues. In ligament, elastin is localized between and along the collagen fibers and fascicles. When ligament is stretched along the primary collagen axis, elastin supports a relatively high percentage of load. We hypothesized that elastin may also provide significant load support under deformation transverse to the primary collagen axis. Quasi-static transverse tensile and simple shear material tests were performed to quantify the mechanical contributions of elastin during deformation of porcine medial collateral ligament. Dose response studies were conducted to determine the level of elastase enzymatic degradation required to produce a maximal change in the mechanical response. Maximal changes in peak stress occurred after 3 hours of treatment with 2 U/ml porcine pancreatic elastase. Elastin degradation resulted in a 60-70% reduction in peak stress and a 2-3× reduction in modulus for both test protocols. These results demonstrate that elastin provides significant resistance to deformation transverse to the collagen axis while only constituting 4% of the tissue dry weight. The magnitudes of the elastin contribution to peak transverse and shear stress were approximately 0.03 MPa, as compared to 2 MPa for axial tensile tests, suggesting that elastin provides a highly anisotropic contribution to the mechanical response of ligament and is the dominant structural protein resisting transverse and shear deformation of the tissue.
PMCID: PMC4629914  PMID: 26162584
ligament; elastin; transverse tensile; shear; elastase
2.  Primary Care-Based Hepatitis C Treatment Outcomes With First-Generation Direct-Acting Agents 
Journal of addiction medicine  2015;9(5):405-410.
Vulnerable, urban populations with a history of substance use disorders have a high prevalence of hepatitis C virus (HCV). Primary care-based treatment has been proposed to improve access to care. In this study, we present outcomes from our urban, primary care-based HCV treatment program in patients treated with telaprevir or boceprevir in combination with pegylated-interferon and ribavirin (‘‘triple therapy’’).
We collected data from 126 consecutive patients with genotype 1 HCV monoinfection seen in our treatment program (2011–2013). Among the 40 who initiated treatment, we analyzed factors associated with achieving a sustained viral response (SVR).
During the study period, 40 patients initiated triple therapy (32%), 80% with recent or past substance use disorders. Patients initiating treatment were younger than untreated patients (P = 0.002), but otherwise did not differ demographically, or in the severity of their liver fibrosis (P >0.05). An SVR was achieved in 18 patients (45%) and was less likely in patients with recent or past substance use disorders or psychiatric illness (both P <0.01).
Nearly one third of patients initiated triple therapy with SVR rates comparable to other HCV treatment settings, despite a significant burden of mental illness and substance dependence. Our experience demonstrates that a primary care-based practice can successfully deliver HCV care to a vulnerable population. Additional interventions may be needed to improve outcomes in patients with recent or past substance use disorders or psychiatric illness.
PMCID: PMC4672248  PMID: 26291545
antiviral therapy; health services research; hepatitis C; outcomes; primary care; substance abuse
3.  Stem Cell Ophthalmology Treatment Study (SCOTS): bone marrow-derived stem cells in the treatment of Leber's hereditary optic neuropathy 
Neural Regeneration Research  2016;11(10):1685-1694.
The Stem Cell Ophthalmology Treatment Study (SCOTS) is currently the largest-scale stem cell ophthalmology trial registered at (identifier: NCT01920867). SCOTS utilizes autologous bone marrow-derived stem cells (BMSCs) to treat optic nerve and retinal diseases. Treatment approaches include a combination of retrobulbar, subtenon, intravitreal, intra-optic nerve, subretinal, and intravenous injection of autologous BMSCs according to the nature of the disease, the degree of visual loss, and any risk factors related to the treatments. Patients with Leber's hereditary optic neuropathy had visual acuity gains on the Early Treatment Diabetic Retinopathy Study (ETDRS) of up to 35 letters and Snellen acuity improvements from hand motion to 20/200 and from counting fingers to 20/100. Visual field improvements were noted. Macular and optic nerve head nerve fiber layer typically thickened. No serious complications were seen. The increases in visual acuity obtained in our study were encouraging and suggest that the use of autologous BMSCs as provided in SCOTS for ophthalmologic mitochondrial diseases including Leber's hereditary optic neuropathy may be a viable treatment option.
PMCID: PMC5116851  PMID: 27904503
nerve regeneration; Leber's hereditary optic neuropathy; mitochondrial disease; optic neuropathy; bone marrow derived stem cells; blindness; visual loss; neural regeneration
4.  Mechanical properties vary for different regions of the finger extensor apparatus 
Journal of biomechanics  2014;47(12):3094-3099.
The extensor apparatus, an aponeurosis that covers the dorsal side of each finger, transmits force from a number of musculotendons to the phalanges. Multiple tendons integrate directly into the structure at different sites and the extensor apparatus attaches to the phalanges at multiple points. Thus, prediction of the force distribution within the extensor apparatus, or hood, and the transmission to the phalanges is challenging, especially as knowledge of the underlying mechanical properties of the tissue is limited. We undertook quantification of some of these properties through material testing of cadaver specimens. We punched samples at specified locations from 19 extensor hood specimens. Material testing was performed to failure for each sample with a custom material testing device. Testing revealed significant differences in ultimate load, ultimate strain, thickness, and tangent modulus along the length of the extensor hood. Specifically, thickness, ultimate load, and ultimate strain were greater in the more proximal sections of the extensor hood, while the tangent modulus was greater in the more distal sections. The variations in mechanical properties within the hood may impact prediction of force transmission and, thus, should be considered when modeling the action of the extensor apparatus. Across the extensor hood, tangent modulus values were substantially smaller than values reported for other soft tissues, such as the Achilles tendon and knee ligaments, while ultimate strains were much greater. Thus, the tissue in the extensor apparatus seems to have greater elasticity, which should be modeled accordingly.
PMCID: PMC5034858  PMID: 25042330
extensor apparatus; material properties; soft tissue mechanics; tensile
5.  Stem Cell Ophthalmology Treatment Study (SCOTS): improvement in serpiginous choroidopathy following autologous bone marrow derived stem cell treatment 
Neural Regeneration Research  2016;11(9):1512-1516.
We report results in a 77-year-old male patient with visual loss from long-standing serpiginous choroidopathy treated with bone marrow derived stem cells (BMSC) within the Stem Cell Ophthalmology Treatment Study (SCOTS). SCOTS is an Institutional Review Board approved clinical trial and the largest ophthalmology stem cell study registered at the National Institutes of Health to date ( Identifier: NCT01920867). Eight months after treatment by a combination of retrobulbar, subtenon, intravitreal and intravenous injection of BMSC, the patient's best corrected Snellen acuity improved from 20/80– to 20/60+1 in the right eye and from 20/50– to 20/20–3 in the left eye. The Early Treatment of Diabetic Retinopathy Study (ETDRS) visual acuity continued to improve over the succeeding 8 months and the optical coherence tomography macular volume increased. The increases in visual acuity and macular volume are encouraging and suggest that the use of BMSC as provided in SCOTS may be a viable approach to treating serpiginous choroidopathy.
PMCID: PMC5090858  PMID: 27857759
serpiginous choroidopathy; serpigionous choroiditis; geographic helicoid peripapillary chroidopathy; retina; macula; stem cell therapy; uveitis
6.  A Coupled Model of Neovessel Growth and Matrix Mechanics Describes and Predicts Angiogenesis In Vitro 
During angiogenesis, sprouting microvessels interact with the extracellular matrix (ECM) by degrading and reorganizing the matrix, applying traction forces and producing deformation. Morphometric features of the resulting microvascular network are affected by the interaction between the matrix and angiogenic microvessels. The objective of this study was to develop a continuous-discrete modeling approach to simulate mechanical interactions between growing neovessels and the deformation of the matrix in vitro. This was accomplished by coupling an existing angiogenesis growth model which uses properties of the ECM to regulate angiogenic growth with the nonlinear finite element software FEBio ( FEBio solves for the deformation and remodeling of the matrix caused by active stress generated by neovessel sprouts, and this deformation was used to update the ECM into the current configuration. After mesh resolution and parameter sensitivity studies, the model was used to accurately predict vascular alignment for various gel boundary conditions. Alignment primarily arises passively as microvessels convect with the deformation of the matrix, but active alignment along collagen fibrils plays a role as well. Predictions of alignment were most sensitive to the range over which active stresses were applied and the viscoelastic time constant in the material model. The computational framework provides a flexible platform for interpreting in vitro investigations of vessel-matrix interactions, predicting new experiments, and simulating conditions that are outside current experimental capabilities.
PMCID: PMC4447608  PMID: 25429840
Angiogenesis; morphogenesis; extracellular matrix; cellular mechanics; cell-matrix interactions; finite element modeling; growth modeling
7.  In Silico Investigation of Angiogenesis with Growth and Stress Generation Coupled to Local Extracellular Matrix Density 
Annals of biomedical engineering  2015;43(7):1531-1542.
Mechanical interactions during angiogenesis, i.e., traction applied by neovessels to the extracellular matrix and the corresponding deformation, are important regulators of growth and neovascularization. We have previously designed, implemented, and validated a coupled model of angiogenesis in which a discrete microvessel growth model interacts with a continuous finite element mesh through the application of local remodeling sprout stresses (Edgar et al. in Biomech Model Mechanobiol, 2014). However, the initial implementation of this framework does not take matrix density into account when determined these remodeling stresses and is therefore insufficient for the study of angiogenesis within heterogeneous matrix environments such as those found in vivo. The objective of this study was to implement sensitivity to matrix density in the active stress generation within AngioFE in order to allow the study of angiogenic growth within a heterogeneous density environment. We accomplished this by scaling active sprout stresses relative to local matrix density using a scaling factor previously determined from experimental data. We then exercised the new functionality of the model by simulating angiogenesis within four different scenarios: homogeneous density, a narrow gap model, and matrix density gradient, and a construct subjected to repeated loading/unloading and preconditioning. These numerical experiments predicted heterogeneous matrix density in the initially homogeneous case, the closure and alignment of microvessels along a low-density gap, the formation of a unique cap-like structure during angiogenesis within a density gradient, and the alignment of microvessels in the absence of applied load due to preconditioning. The result of these in silico investigations demonstrate how matrix heterogeneity affects neovascularization and matrix deformation and provides a platform for studying angiogenesis in complicated and multi-faceted mechanical environments that microvessels experience in vivo.
PMCID: PMC4629919  PMID: 25994280
Angiogenesis; Extracellular matrix; Cellular mechanics; Cell–matrix interactions; Finite element modeling; Growth modeling
8.  Large Scale Time Series Microscopy of Neovessel Growth During Angiogenesis 
Angiogenesis  2015;18(3):219-232.
During angiogenesis, growing neovessels must effectively navigate through the tissue space as they elongate and subsequently integrate into a microvascular network. While time series microscopy has provided insight into the cell activities within single growing neovessel sprouts, less in known concerning neovascular dynamics within a large angiogenic tissue bed. Here we developed a time lapse imaging technique that allowed visualization and quantification of sprouting neovessels as they form and grow away from adult parent microvessels in 3-dimensions over cubic millimeters of matrix volume, over the course of up to 5 days on the microscope. Using a new image acquisition procedure and novel morphometric analysis tools, we quantified the elongation dynamics of growing neovessels and found an episodic growth pattern accompanied by fluctuations in neovessel diameter. Average elongation rate was 5 microns/hour for individual vessels, but we also observed considerable dynamic variability in growth character including retraction and complete regression of entire neovessels. We observed neovessel-to-neovessel directed growth over tens to hundreds of microns preceding tip-to-tip inosculation. As we have previously described via static 3D imaging at discrete time points, we identified different collagen fibril structures associated with the growing neovessel tip and stalk, and observed the coordinated alignment of growing neovessels in a deforming matrix. Overall analysis of the entire image volumes demonstrated that although individual neovessels exhibited episodic growth and regression, there was a monotonic increase in parameters associated with the entire vascular bed such as total network length and number of branch points. This new time-lapse imaging approach corroborated morphometric changes in individual neovessels described by us and others, as well as captured dynamic neovessel behaviors unique to days-long angiogenesis within the forming neovascular network.
PMCID: PMC4782613  PMID: 25795217
5D imaging; angiogenesis; extracellular matrix; inosculation; matrix remodeling; sprouting; regression; neovessel
9.  Toward patient-specific articular contact mechanics 
Journal of biomechanics  2014;48(5):779-786.
The mechanics of contacting cartilage layers is fundamentally important to understanding the development, homeostasis and pathology of diarthrodial joints. Because of the highly nonlinear nature of both the materials and the contact problem itself, numerical methods such as the finite element method are typically incorporated to obtain solutions. Over the course of five decades, we have moved from an initial qualitative understanding of articular cartilage material behavior to the ability to perform complex, three-dimensional contact analysis, including multiphasic material representations. This history includes the development of analytical and computational contact analysis methods that now provide the ability to perform highly nonlinear analyses. Numerical implementations of contact analysis based on the finite element method are rapidly advancing and will soon enable patient-specific analysis of joint contact mechanics using models based on medical image data. In addition to contact stress on the articular surfaces, these techniques can predict variations in strain and strain through the cartilage layers, providing the basis to predict damage and failure. This opens up exciting areas for future research and application to patient-specific diagnosis and treatment planning applied to a variety of pathologies that affect joint function and cartilage homeostasis.
PMCID: PMC4416416  PMID: 25698236
10.  Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping 
Recent studies have shown that brain-machine interfaces (BMIs) offer great potential for restoring upper limb function. However, grasping objects is a complicated task and the signals extracted from the brain may not always be capable of driving these movements reliably. Vision-guided robotic assistance is one possible way to improve BMI performance. We describe a method of shared control where the user controls a prosthetic arm using a BMI and receives assistance with positioning the hand when it approaches an object.
Two human subjects with tetraplegia used a robotic arm to complete object transport tasks with and without shared control. The shared control system was designed to provide a balance between BMI-derived intention and computer assistance. An autonomous robotic grasping system identified and tracked objects and defined stable grasp positions for these objects. The system identified when the user intended to interact with an object based on the BMI-controlled movements of the robotic arm. Using shared control, BMI controlled movements and autonomous grasping commands were blended to ensure secure grasps.
Both subjects were more successful on object transfer tasks when using shared control compared to BMI control alone. Movements made using shared control were more accurate, more efficient, and less difficult. One participant attempted a task with multiple objects and successfully lifted one of two closely spaced objects in 92 % of trials, demonstrating the potential for users to accurately execute their intention while using shared control.
Integration of BMI control with vision-guided robotic assistance led to improved performance on object transfer tasks. Providing assistance while maintaining generalizability will make BMI systems more attractive to potential users.
Trial registration
NCT01364480 and NCT01894802.
Electronic supplementary material
The online version of this article (doi:10.1186/s12984-016-0134-9) contains supplementary material, which is available to authorized users.
PMCID: PMC4797113  PMID: 26987662
Brain-machine interface; Brain-computer interface; Neuroprosthetic; Shared mode control; Assistive technology
11.  Muscle connective tissue controls development of the diaphragm and is a source of congenital diaphragmatic hernias 
Nature genetics  2015;47(5):496-504.
The diaphragm is an essential mammalian skeletal muscle, and defects in diaphragm development are the cause of congenital diaphragmatic hernias (CDH), a common and often lethal birth defect. The diaphragm is derived from multiple embryonic sources, but how these give rise to the diaphragm is unknown and, despite the identification of many CDH-associated genes, the etiology of CDH is incompletely understood. Using mouse genetics, we show that the pleuroperitoneal folds (PPFs), transient embryonic structures, are the source of the diaphragm’s muscle connective tissue, regulate muscle development, and their striking migration controls diaphragm morphogenesis. Furthermore, Gata4 mosaic mutations in PPF-derived muscle connective tissue fibroblasts result in the development of localized amuscular regions that are biomechanically weaker and more compliant and lead to CDH. Thus the PPFs and muscle connective tissue are critical for diaphragm development and mutations in PPF-derived fibroblasts are a source of CDH.
PMCID: PMC4414795  PMID: 25807280
12.  Computational modeling of chemical reactions and interstitial growth and remodeling involving charged solutes and solid-bound molecules 
Mechanobiological processes are rooted in mechanics and chemistry, and such processes may be modeled in a framework that couples their governing equations starting from fundamental principles. In many biological applications, the reactants and products of chemical reactions may be electrically charged, and these charge effects may produce driving forces and constraints that significantly influence outcomes. In this study, a novel formulation and computational implementation are presented for modeling chemical reactions in biological tissues that involve charged solutes and solid-bound molecules within a deformable porous hydrated solid matrix, coupling mechanics with chemistry while accounting for electric charges. The deposition or removal of solid-bound molecules contributes to the growth and remodeling of the solid matrix; in particular, volumetric growth may be driven by Donnan osmotic swelling, resulting from charged molecular species fixed to the solid matrix. This formulation incorporates the state of strain as a state variable in the production rate of chemical reactions, explicitly tying chemistry with mechanics for the purpose of modeling mechanobiology. To achieve these objectives, this treatment identifies the specific theoretical and computational challenges faced in modeling complex systems of interacting neutral and charged constituents while accommodating any number of simultaneous reactions where reactants and products may be modeled explicitly or implicitly. Several finite element verification problems are shown to agree with closed-form analytical solutions. An illustrative tissue engineering analysis demonstrates tissue growth and swelling resulting from the deposition of chondroitin sulfate, a charged solid-bound molecular species. This implementation is released in the open-source program FEBio ( The availability of this framework may be particularly beneficial to optimizing tissue engineering culture systems by examining the influence of nutrient availability on the evolution of inhomogeneous tissue composition and mechanical properties, the evolution of construct dimensions with growth, the influence of solute and solid matrix electric charge on the transport of cytokines, the influence of binding kinetics on transport, the influence of loading on binding kinetics, and the differential growth response to dynamically loaded versus free-swelling culture conditions.
PMCID: PMC4141041  PMID: 24558059
Chemical reactions; Charged reactants and products; Growth and remodeling; Mechanobiology; Finite element modeling
13.  Continuum Description of the Poisson's Ratio of Ligament and Tendon Under Finite Deformation 
Journal of biomechanics  2014;47(12):3201-3209.
Ligaments and tendons undergo volume loss when stretched along the primary fiber axis, which is evident by the large, strain-dependent Poisson's ratios measured during quasi-static tensile tests. Continuum constitutive models that have been used to describe ligament material behavior generally assume incompressibility, which does not reflect the volumetric material behavior seen experimentally. We developed a strain energy equation that describes large, strain dependent Poisson's ratios and nonlinear, transversely isotropic behavior using a novel method to numerically enforce the desired volumetric behavior. The Cauchy stress and spatial elasticity tensors for this strain energy equation were derived and implemented in the FEBio finite element software ( As part of this objective, we derived the Cauchy stress and spatial elasticity tensors for a compressible transversely isotropic material, which to our knowledge have not appeared previously in the literature. Elastic simulations demonstrated that the model predicted the nonlinear, upwardly concave uniaxial stress-strain behavior while also predicting a strain-dependent Poisson's ratio. Biphasic simulations of stress relaxation predicted a large outward fluid flux and substantial relaxation of the peak stress. Thus, the results of this study demonstrate that the viscoelastic behavior of ligaments and tendons can be predicted by modeling fluid movement when combined with a large Poisson's ratio. Further, the constitutive framework provides the means for accurate simulations of ligament volumetric material behavior without the need to resort to micromechanical or homogenization methods, thus facilitating its use in large scale, whole joint models.
PMCID: PMC4179457  PMID: 25134434
ligament; Poisson's ratio; soft tissue mechanics
14.  Stem Cell Ophthalmology Treatment Study (SCOTS) for retinal and optic nerve diseases: a case report of improvement in relapsing auto-immune optic neuropathy 
Neural Regeneration Research  2015;10(9):1507-1515.
We present the results from a patient with relapsing optic neuropathy treated within the Stem Cell Ophthalmology Treatment Study (SCOTS). SCOTS is an Institutional Review Board approved clinical trial and has become the largest ophthalmology stem cell study registered at the National Institutes of Health to date ( Identifier NCT 01920867). SCOTS utilizes autologous bone marrow-derived stem cells (BMSCs) for treatment of retinal and optic nerve diseases. Pre-treatment and post-treatment comprehensive eye exams of a 54 year old female patient were performed both at the Florida Study Center, USA and at The Eye Center of Columbus, USA. As a consequence of a relapsing optic neuritis, the patient's previously normal visual acuity decreased to between 20/350 and 20/400 in the right eye and to 20/70 in the left eye. Significant visual field loss developed bilaterally. The patient underwent a right eye vitrectomy with injection of BMSCs into the optic nerve of the right eyeand retrobulbar, subtenon and intravitreal injection of BMSCs in the left eye. At 15 months after SCOTS treatment, the patient's visual acuity had improved to 20/150 in the right eye and 20/20 in the left eye. Bilateral visual fields improved markedly. Both macular thickness and fast retinal nerve fiber layer thickness were maximally improved at 3 and 6 months after SCOTS treatment. The patient also reduced her mycophenylate dose from 1,500 mg per day to 500 mg per day and required no steroid pulse therapy during the 15-month follow up.
PMCID: PMC4625519  PMID: 26604914
nerve regeneration; stem cells; optic nerve; autoimmune; optic neuropathy; ophthalmology; bone marrow-derived stem cells; blindness; visual loss; Stem Cell Ophthalmology Treatment Study; neural regeneration
15.  Multiple Low-Dose Challenges in a Rhesus Macaque AIDS Vaccine Trial Result in an Evolving Host Response That Affects Protective Outcome 
Clinical and Vaccine Immunology : CVI  2014;21(12):1650-1660.
Using whole-blood transcriptional profiling, we investigated differences in the host response to vaccination and challenge in a rhesus macaque AIDS vaccine trial. Samples were collected from animals prior to and after vaccination with live, irradiated vaccine cells secreting the modified endoplasmic reticulum chaperone gp96-Ig loaded with simian immunodeficiency virus (SIV) peptides, either alone or in combination with a SIV-gp120 protein boost. Additional samples were collected following multiple low-dose rectal challenges with SIVmac251. Animals in the boosted group had a 73% reduced risk of infection. Surprisingly, few changes in gene expression were observed during the vaccination phase. Focusing on postchallenge comparisons, in particular for protected animals, we identified a host response signature of protection comprised of strong interferon signaling after the first challenge, which then largely abated after further challenges. We also identified a host response signature, comprised of early macrophage-mediated inflammatory responses, in animals with undetectable viral loads 5 days after the first challenge but with unusually high viral titers after subsequent challenges. Statistical analysis showed that prime-boost vaccination significantly lowered the probability of infection in a time-consistent manner throughout several challenges. Given that humoral responses in the prime-boost group were highly significant prechallenge correlates of protection, the strong innate signaling after the first challenge suggests that interferon signaling may enhance vaccine-induced antibody responses and is an important contributor to protection from infection during repeated low-dose exposure to SIV.
PMCID: PMC4248781  PMID: 25274805
16.  Stem Cell Ophthalmology Treatment Study (SCOTS) for retinal and optic nerve diseases: a preliminary report 
Neural Regeneration Research  2015;10(6):982-988.
In this report, we present the results of a single patient with optic neuropathy treated within the Stem Cell Ophthalmology Treatment Study (SCOTS). SCOTS is an Institutional Review Board approved clinical trial and is the largest ophthalmology stem cell study registered at the National Institutes of Health to date- Identifier NCT 01920867. SCOTS utilizes autologous bone marrow-derived stem cells in the treatment of optic nerve and retinal diseases. Pre- and post-treatment comprehensive eye exams were independently performed at the Wilmer Eye Institute at the Johns Hopkins Hospital, USA. A 27 year old female patient had lost vision approximately 5 years prior to enrollment in SCOTS. Pre-treatment best-corrected visual acuity at the Wilmer Eye Institute was 20/800 Right Eye (OD) and 20/4,000 Left Eye (OS). Four months following treatment in SCOTS, the central visual acuity had improved to 20/100 OD and 20/40 OS.
PMCID: PMC4498363  PMID: 26199618
stem cells; optic nerve; optic neuropathy; ophthalmology; bone marrow-derived stem cells; blindness; visual loss
17.  Formation of microvascular networks: role of stromal interactions directing angiogenic growth 
In the adult, angiogenesis leads to an expanded microvascular network as new vessel segments are added to an existing microcirculation. Necessarily, growing neovessels must navigate through tissue stroma as they locate and grow towards other vessel elements. We have a growing body of evidence demonstrating that angiogenic neovessels reciprocally interact with the interstitial matrix of the stroma resulting in directed neovascular growth during angiogenesis. Given the compliance and the viscoelastic properties of collagen, neovessel guidance by the stroma is likely due to compressive strain transverse to the direction of primary tensile forces present during active tissue deformation. Similar stromal strains control the final network topology of the new microcirculation, including the distribution of arterioles, capillaries and venules. In this case, stromal-derived stimuli must be present during the post-angiogenesis remodeling and maturation phases of neovascularization in order to have this effect. Interestingly, the pre-existing organization of vessels prior to the start of angiogenesis has no lasting influence on the final, new network architecture. Combined, the evidence describes interplay between angiogenic neovessels and stroma that is important in directed neovessel growth and invasion. This dynamic is also likely a mechanism by which global tissue forces influence vascular form and function.
PMCID: PMC4032604  PMID: 24447042
18.  Do Foley Catheters Adequately Drain the Bladder? Evidence from CT Imaging Studies 
The Foley catheter has been widely assumed to be an effective means of draining the bladder. However, recent studies have brought into question its efficacy. The objective of our study is to further assess the adequacy of Foley catheter for complete drainage of the bladder.
Materials and Methods:
Consecutive catheterized patients were identified from a retrospective review of contrast enhanced and non-contrast enhanced computed tomo-graphic (CT) abdomen and pelvis studies completed from 7/1/2011-6/30/2012. Residual urine volume (RUV) was measured using 5mm axial CT sections as follows: The length (L) and width (W) of the bladder in the section with the greatest cross sectional area was combined with bladder height (H) as determined by multiplanar reformatted images in order to calculate RUV by applying the formula for the volume (V) of a sphere in a cube: V=(ϖ/6)*(L*W*H).
RUVs of 167 (mean age 67) consecutively catheterized men (n=72) and women (n=95) identified by CT abdomen and pelvis studies were calculated. The mean RUV was 13.2 mL (range: 0.0 mL-859.1 mL, standard deviation: 75.9 mL, margin of error at 95% confidence:11.6 mL). Four (2.4%) catheterized patients had RUVs of >50 mL, two of whom had an improperly placed catheter tip noted on their CT-reports.
Previous studies have shown that up to 43% of catheterized patients had a RUV greater than 50 mL, suggesting inadequacy of bladder drainage via the Foley catheter. Our study indicated that the vast majority of patients with Foley catheters (97.6%), had adequately drained bladders with volumes of <50 mL.
PMCID: PMC4752150  PMID: 26200550
Urinary Catheterization; Tomography, X-Ray Computed; Urinary Bladder
19.  Specimen-specific predictions of contact stress under physiological loading in the human hip: validation and sensitivity studies 
Hip osteoarthritis may be initiated and advanced by abnormal cartilage contact mechanics, and finite element (FE) modeling provides an approach with the potential to allow the study of this process. Previous FE models of the human hip have been limited by single specimen validation and the use of quasi-linear or linear elastic constitutive models of articular cartilage. The effects of the latter assumptions on model predictions are unknown, partially because data for the instantaneous behavior of healthy human hip cartilage are unavailable. The aims of this study were to develop and validate a series of specimen-specific FE models, to characterize the regional instantaneous response of healthy human hip cartilage in compression, and to assess the effects of material nonlinearity, inhomogeneity and specimen-specific material coefficients on FE predictions of cartilage contact stress and contact area. Five cadaveric specimens underwent experimental loading, cartilage material characterization and specimen-specific FE modeling. Cartilage in the FE models was represented by average neo-Hookean, average Veronda Westmann and specimen- and region-specific Veronda Westmann hyperelastic constitutive models. Experimental measurements and FE predictions compared well for all three cartilage representations, which was reflected in average RMS errors in contact stress of less than 25%. The instantaneous material behavior of healthy human hip cartilage varied spatially, with stiffer acetabular cartilage than femoral cartilage and stiffer cartilage in lateral regions than in medial regions. The Veronda Westmann constitutive model with average material coefficients accurately predicted peak contact stress, average contact stress, contact area and contact patterns. The use of subject- and region-specific material coefficients did not increase the accuracy of FE model predictions. The neo-Hookean constitutive model underpredicted peak contact stress in areas of high stress. The results of this study support the use of average cartilage material coefficients in predictions of cartilage contact stress and contact area in the normal hip. The regional characterization of cartilage material behavior provides the necessary inputs for future computational studies, to investigate other mechanical parameters that may be correlated with OA and cartilage damage in the human hip. In the future, the results of this study can be applied to subject-specific models to better understand how abnormal hip contact stress and contact area contribute to OA.
PMCID: PMC3859708  PMID: 23736783
Hip; Finite element; Validation; Constitutive models; Cartilage
20.  Clinical and biochemical outcomes of men undergoing radical prostatectomy or radiation therapy for localized prostate cancer 
Radiation Oncology Journal  2015;33(1):21-28.
We analyzed outcomes of patients with prostate cancer undergoing either radical retropubic prostatectomy (RRP) +/- salvage radiation or definitive radiation therapy (RT) +/- androgen deprivation.
Materials and Methods
From 2003-2010 there were 251 patients who underwent RRP and 469 patients who received RT (≥7,560 cGy) for prostate cancer. Kaplan-Meier analysis was performed with the log-rank test to compare biochemical control (bCR), distant metastatic-free survival (DMPFS), and prostate cancer-specific survival (PCSS) between the two groups.
The median follow-up was 70 months and 61.3% of the men were African American. For low risk disease the 6-year bCR were 90.3% for RT and 85.6% for RRP (p = 0.23) and the 6-year post-salvage bCR were 90.3% vs. 90.9%, respectively (p = 0.84). For intermediate risk disease the 6-year bCR were 82.6% for RT and 59.7% for RRP (p < 0.001) and 82.6% vs. 74.0%, respectively, after including those salvaged with RT (p = 0.06). For high risk disease, the 6-year bCR were 67.4% for RT and 41.3% for RRP (p < 0.001) and after including those salvaged with RT was 67.4% vs. 43.1%, respectively (p < 0.001). However, there were no significant differences between the two groups in regards to DMPFS or PCSS.
Treatment approaches utilizing RRP +/- salvage radiation or RT +/- androgen deprivation yielded equivalent DMPFS and PCSS outcomes. Biochemical control rates, using their respective definitions, appeared equivalent or better in those who received treatment with RT.
PMCID: PMC4394065  PMID: 25874174
Prostate cancer; Radiation therapy; Radical prostatectomy; Outcomes; Dose escalation; Comparative effectiveness
21.  Deep Transcriptional Sequencing of Mucosal Challenge Compartment from Rhesus Macaques Acutely Infected with Simian Immunodeficiency Virus Implicates Loss of Cell Adhesion Preceding Immune Activation 
Journal of Virology  2014;88(14):7962-7972.
Pathology resulting from human immunodeficiency virus (HIV) infection is driven by protracted inflammation; the primary loss of CD4+ T cells is caused by activation-driven apoptosis. Recent studies of nonhuman primates (NHPs) have suggested that during the acute phase of infection, antiviral mucosal immunity restricts viral replication in the primary infection compartment. These studies imply that HIV achieves systemic infection as a consequence of a failure in host antiviral immunity. Here, we used high-dose intrarectal inoculation of rhesus macaques with simian immunodeficiency virus (SIV) SIVmac251 to examine how the mucosal immune system is overcome by SIV during acute infection. The host response in rectal mucosa was characterized by deep mRNA sequencing (mRNA-seq) at 3 and 12 days postinoculation (dpi) in 4 animals for each time point. While we observed a strong host transcriptional response at 3 dpi, functions relating to antiviral immunity were absent. Instead, we observed a significant number of differentially expressed genes relating to cell adhesion and reorganization of the cytoskeleton. We also observed downregulation of genes encoding members of the claudin family of cell adhesion molecules, which are coexpressed with genes associated with pathology in the colorectal mucosa, and a large number of noncoding transcripts. In contrast, at 12 dpi the differentially expressed genes were enriched in those involved with immune system functions, in particular, functions relating to T cells, B cells, and NK cells. Our findings indicate that host responses that negatively affect mucosal integrity occur before inflammation. Consequently, when inflammation is activated at peak viremia, mucosal integrity is already compromised, potentially enabling rapid tissue damage, driving further inflammation.
IMPORTANCE The HIV pandemic is one of the major threats to human health, causing over a million deaths per year. Recent studies have suggested that mucosal antiviral immune responses play an important role in preventing systemic infection after exposure to the virus. Yet, despite their potential role in decreasing transmission rates between individuals, these antiviral mechanisms are poorly understood. Here, we carried out the first deep mRNA sequencing analysis of mucosal host responses in the primary infection compartment during acute SIV infection. We found that during acute infection, a significant host response was mounted in the mucosa before inflammation was triggered. Our analysis indicated that the response has a detrimental effect on tissue integrity, causing increased permeability, tissue damage, and recruitment of SIV target cells. These results emphasize the importance of mucosal host responses preceding immune activation in preventing systemic SIV infection.
PMCID: PMC4097788  PMID: 24807713
22.  Impact of hepatitis C treatment initiation on adherence to concomitant medications 
Our study investigated whether initiating hepatitis C virus (HCV) treatment affected adherence to concomitant medications. Mixed effects linear regression was used to analyze data from 57 patients (29 co-infected with HIV) in a prospective study of HCV treatment-naïve patients initiating HCV treatment. Adherence was assessed using structured self-report at the time of treatment initiation, 12 weeks, and 24 weeks into treatment. There was no change in adherence to concomitant medications over the first 24 weeks of HCV treatment. There was a significant interaction effect such that the change in adherence to concomitant medications between baseline and 12 weeks differed between the HIV-infected and HIV-uninfected patients. Adherence to concomitant medications in the HIV-infected patients was found to decrease, whereas adherence in the HIV-uninfected patients was found to increase. HIV-infected patients may be more at risk for adherence problems in the first 12 weeks of HCV treatment as compared to HIV-uninfected patients.
PMCID: PMC3947339  PMID: 24070644
adherence; concomitant medications; HCV; HIV; treatment initiation
23.  Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance 
Science (New York, N.Y.)  2014;346(6212):987-991.
Existing mouse models of lethal Ebola virus infection do not reproduce hallmark symptoms of Ebola hemorrhagic fever, neither delayed blood coagulation and disseminated intravascular coagulation, nor death from shock, thus restricting pathogenesis studies to non-human primates. Here we show that mice from the Collaborative Cross exhibit distinct disease phenotypes following mouse-adapted Ebola virus infection. Phenotypes range from complete resistance to lethal disease to severe hemorrhagic fever characterized by prolonged coagulation times and 100% mortality. Inflammatory signaling was associated with vascular permeability and endothelial activation, and resistance to lethal infection arose by induction of lymphocyte differentiation and cellular adhesion, likely mediated by the susceptibility allele Tek. These data indicate that genetic background determines susceptibility to Ebola hemorrhagic fever.
PMCID: PMC4241145  PMID: 25359852
24.  Formation of Microvascular Networks: Role of Stromal Interactions Directing Angiogenic Growth 
In the adult, angiogenesis leads to an expanded microvascular network as new vessel segments are added to an existing microcirculation. Necessarily, growing neovessels must navigate through tissue stroma as they locate and grow toward other vessel elements. We have a growing body of evidence demonstrating that angiogenic neovessels reciprocally interact with the interstitial matrix of the stroma resulting in directed neovascular growth during angiogenesis. Given the compliance and the viscoelastic properties of collagen, neovessel guidance by the stroma is likely due to compressive strain transverse to the direction of primary tensile forces present during active tissue deformation. Similar stromal strains control the final network topology of the new microcirculation, including the distribution of arterioles, capillaries, and venules. In this case, stromal-derived stimuli must be present during the post-angiogenesis remodeling and maturation phases of neovascularization to have this effect. Interestingly, the preexisting organization of vessels prior to the start of angiogenesis has no lasting influence on the final, new network architecture. Combined, the evidence describes interplay between angiogenic neovessels and stroma that is important in directed neovessel growth and invasion. This dynamic is also likely a mechanism by which global tissue forces influence vascular form and function.
PMCID: PMC4032604  PMID: 24447042
angiogenesis; stroma; matrix; neovessel; remodeling
25.  Tissue-specific transcriptome sequencing analysis expands the non-human primate reference transcriptome resource (NHPRTR) 
Nucleic Acids Research  2014;43(Database issue):D737-D742.
The non-human primate reference transcriptome resource (NHPRTR, available online at aims to generate comprehensive RNA-seq data from a wide variety of non-human primates (NHPs), from lemurs to hominids. In the 2012 Phase I of the NHPRTR project, 19 billion fragments or 3.8 terabases of transcriptome sequences were collected from pools of ∼20 tissues in 15 species and subspecies. Here we describe a major expansion of NHPRTR by adding 10.1 billion fragments of tissue-specific RNA-seq data. For this effort, we selected 11 of the original 15 NHP species and subspecies and constructed total RNA libraries for the same ∼15 tissues in each. The sequence quality is such that 88% of the reads align to human reference sequences, allowing us to compute the full list of expression abundance across all tissues for each species, using the reads mapped to human genes. This update also includes improved transcript annotations derived from RNA-seq data for rhesus and cynomolgus macaques, two of the most commonly used NHP models and additional RNA-seq data compiled from related projects. Together, these comprehensive reference transcriptomes from multiple primates serve as a valuable community resource for genome annotation, gene dynamics and comparative functional analysis.
PMCID: PMC4383927  PMID: 25392405

Results 1-25 (86)