Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Prevalence and Pathogenic Potential of Campylobacter Isolates from Free-Living, Human-Commensal American Crows 
Recent studies have suggested a potential role for wild birds in zoonotic transmission of Campylobacter jejuni, the leading cause of gastroenteritis in humans worldwide. In this study, we detected Campylobacter spp. in 66.9% (85/127) of free-ranging American crows (Corvus brachyrhyncos) sampled in the Sacramento Valley of California in 2012 and 2013. Biochemical testing and sequence analysis of 16S rRNA revealed that 93% of isolates (n = 70) were C. jejuni, with cytolethal distending toxin (CDT) and flagellin A genes detected by PCR in 20% and 46% of the C. jejuni isolates (n = 59), respectively. The high prevalence of C. jejuni, coupled with the occurrence of known virulence markers CDT and flagellin A, demonstrates that crows shed Campylobacter spp. in their feces that are potentially pathogenic to humans. Crows are abundant in urban, suburban, and agricultural settings, and thus further study to determine their role in zoonotic transmission of Campylobacter will inform public health.
PMCID: PMC3957608  PMID: 24375131
2.  Catecholamine stress alters neutrophil trafficking and impairs wound healing by β2 adrenergic receptor mediated upregulation of IL-6 
Stress-induced hormones can alter the inflammatory response to tissue injury, however, the precise mechanism by which epinephrine influences inflammatory response and wound healing is not well defined. Here we demonstrate that epinephrine alters the neutrophil (PMN)-dependent inflammatory response to a cutaneous wound. Using non-invasive real-time imaging of genetically-tagged PMNs in a murine skin wound, chronic, epinephrine-mediated stress was modeled by sustained delivery of epinephrine. Prolonged systemic exposure of epinephrine resulted in persistent PMN trafficking to the wound site via an IL-6 mediated mechanism, and this in turn impaired wound repair. Further, we demonstrate that β2 adrenergic receptor-dependent activation of pro-inflammatory macrophages is critical for epinephrine-mediated IL-6 production. This study expands our current understanding of stress hormone-mediated impairment of wound healing and provides an important mechanistic link to explain how epinephrine stress exacerbates inflammation via increased number and lifetime of PMNs.
PMCID: PMC4013292  PMID: 24121404
3.  Burkholderia pseudomallei Isolates in 2 Pet Iguanas, California, USA 
Emerging Infectious Diseases  2014;20(2):304-306.
Burkholderia pseudomallei, the causative agent of melioidosis, was isolated from abscesses of 2 pet green iguanas in California, USA. The international trade in iguanas may contribute to importation of this pathogen into countries where it is not endemic and put persons exposed to these animals at risk for infection.
PMCID: PMC3901496  PMID: 24447394
Burkholderia pseudomallei; iguana; zoonoses; abscess; melioidosis; bacteria
4.  Genotypic Characterization of Streptococcus infantarius subsp. coli Isolates from Sea Otters with Infective Endocarditis and/or Septicemia and from Environmental Mussel Samples 
Journal of Clinical Microbiology  2012;50(12):4131-4133.
Pulsed-field gel electrophoresis (PFGE) was used to type 128 Streptococcus infantarius subsp. coli isolates from sea otters and mussels. Six SmaI PFGE groups were detected, with one predominant group representing 57% of the isolates collected over a wide geographic region. Several sea otter and mussel isolates were highly related, suggesting that an environmental infection source is possible.
PMCID: PMC3503019  PMID: 23052307
5.  Longitudinal Poisson Regression To Evaluate the Epidemiology of Cryptosporidium, Giardia, and Fecal Indicator Bacteria in Coastal California Wetlands 
Applied and Environmental Microbiology  2012;78(10):3606-3613.
Fecal pathogen contamination of watersheds worldwide is increasingly recognized, and natural wetlands may have an important role in mitigating fecal pathogen pollution flowing downstream. Given that waterborne protozoa, such as Cryptosporidium and Giardia, are transported within surface waters, this study evaluated associations between fecal protozoa and various wetland-specific and environmental risk factors. This study focused on three distinct coastal California wetlands: (i) a tidally influenced slough bordered by urban and agricultural areas, (ii) a seasonal wetland adjacent to a dairy, and (iii) a constructed wetland that receives agricultural runoff. Wetland type, seasonality, rainfall, and various water quality parameters were evaluated using longitudinal Poisson regression to model effects on concentrations of protozoa and indicator bacteria (Escherichia coli and total coliform). Among wetland types, the dairy wetland exhibited the highest protozoal and bacterial concentrations, and despite significant reductions in microbe concentrations, the wetland could still be seen to influence water quality in the downstream tidal wetland. Additionally, recent rainfall events were associated with higher protozoal and bacterial counts in wetland water samples across all wetland types. Notably, detection of E. coli concentrations greater than a 400 most probable number (MPN) per 100 ml was associated with higher Cryptosporidium oocyst and Giardia cyst concentrations. These findings show that natural wetlands draining agricultural and livestock operation runoff into human-utilized waterways should be considered potential sources of pathogens and that wetlands can be instrumental in reducing pathogen loads to downstream waters.
PMCID: PMC3346375  PMID: 22427504
6.  Presence of Bacteroidales as a Predictor of Pathogens in Surface Waters of the Central California Coast ▿  
Applied and Environmental Microbiology  2010;76(17):5802-5814.
The value of Bacteroidales genetic markers and fecal indicator bacteria (FIB) to predict the occurrence of waterborne pathogens was evaluated in ambient waters along the central California coast. Bacteroidales host-specific quantitative PCR (qPCR) was used to quantify fecal bacteria in water and provide insights into contributing host fecal sources. Over 140 surface water samples from 10 major rivers and estuaries within the Monterey Bay region were tested over 14 months with four Bacteroidales-specific assays (universal, human, dog, and cow), three FIB (total coliforms, fecal coliforms, and enterococci), two protozoal pathogens (Cryptosporidium and Giardia spp.), and four bacterial pathogens (Campylobacter spp., Escherichia coli O157:H7, Salmonella spp., and Vibrio spp.). Indicator and pathogen distribution was widespread, and detection was not highly seasonal. Vibrio cholerae was detected most frequently, followed by Giardia, Cryptosporidium, Salmonella, and Campylobacter spp. Bayesian conditional probability analysis was used to characterize the Bacteroidales performance assays, and the ratios of concentrations determined using host-specific and universal assays were used to show that fecal contamination from human sources was more common than livestock or dog sources in coastal study sites. Correlations were seen between some, but not all, indicator-pathogen combinations. The ability to predict pathogen occurrence in relation to indicator threshold cutoff levels was evaluated using a weighted measure that showed the universal Bacteroidales genetic marker to have a comparable or higher mean predictive potential than standard FIB. This predictive ability, in addition to the Bacteroidales assays providing information on contributing host fecal sources, supports using Bacteroidales assays in water quality monitoring programs.
PMCID: PMC2935056  PMID: 20639358
7.  A unified approach to molecular epidemiology investigations: tools and patterns in California as a case study for endemic shigellosis 
Shigellosis causes diarrheal disease in humans from both developed and developing countries, and multi-drug resistance is an emerging problem. The objective of this study is to present a unified approach that can be used to characterize endemic and outbreak patterns of shigellosis using use a suite of epidemiologic and molecular techniques. The approach is applied to a California case study example of endemic shigellosis at the population level.
Epidemiologic patterns were evaluated with respect to demographics, multi-drug resistance, antimicrobial resistance genes, plasmid profiles, and pulsed-field gel electrophoresis (PFGE) fingerprints for the 43 Shigella isolates obtained by the Monterey region health departments over the two year period from 2004-2005.
The traditional epidemiologic as well as molecular epidemiologic findings were consistent with endemic as compared to outbreak shigellosis in this population. A steady low level of cases was observed throughout the study period and high diversity was observed among strains. In contrast to most studies in developed countries, the predominant species was Shigella flexneri (51%) followed closely by S. sonnei (49%). Over 95% of Shigella isolates were fully resistant to three or more antimicrobial drug subclasses, and 38% of isolates were resistant to five or more subclasses. More than half of Shigella strains tested carried the tetB, catA, or blaTEM genes for antimicrobial resistance to tetracycline, chloramphenicol, and ampicillin, respectively.
This study shows how epidemiologic patterns at the host and bacterial population levels can be used to investigate endemic as compared to outbreak patterns of shigellosis in a community. Information gathered as part of such investigations will be instrumental in identifying emerging antimicrobial resistance, for developing treatment guidelines appropriate for that community, and to provide baseline data with which to compare outbreak strains in the future.
PMCID: PMC2788569  PMID: 19930709
8.  Enteric bacterial pathogen detection in southern sea otters (Enhydra lutris nereis) is associated with coastal urbanization and freshwater runoff 
Veterinary Research  2009;41(1):01.
Although protected for nearly a century, California’s sea otters have been slow to recover, in part due to exposure to fecally-associated protozoal pathogens like Toxoplasma gondii and Sarcocystis neurona. However, potential impacts from exposure to fecal bacteria have not been systematically explored. Using selective media, we examined feces from live and dead sea otters from California for specific enteric bacterial pathogens (Campylobacter, Salmonella, Clostridium perfringens, C. difficile and Escherichia coli O157:H7), and pathogens endemic to the marine environment (Vibrio cholerae, V. parahaemolyticus and Plesiomonas shigelloides). We evaluated statistical associations between detection of these pathogens in otter feces and demographic or environmental risk factors for otter exposure, and found that dead otters were more likely to test positive for C. perfringens, Campylobacter and V. parahaemolyticus than were live otters. Otters from more urbanized coastlines and areas with high freshwater runoff (near outflows of rivers or streams) were more likely to test positive for one or more of these bacterial pathogens. Other risk factors for bacterial detection in otters included male gender and fecal samples collected during the rainy season when surface runoff is maximal. Similar risk factors were reported in prior studies of pathogen exposure for California otters and their invertebrate prey, suggesting that land-sea transfer and/or facilitation of pathogen survival in degraded coastal marine habitat may be impacting sea otter recovery. Because otters and humans share many of the same foods, our findings may also have implications for human health.
PMCID: PMC2769548  PMID: 19720009
Campylobacter; Clostridium; sea otter; Salmonella; Vibrio
9.  Risk Factors for Infection with Pathogenic and Antimicrobial-Resistant Fecal Bacteria in Northern Elephant Seals in California 
Public Health Reports  2008;123(3):360-370.
The goal of this study was to identify potential environmental and demographic factors associated with Campylobacter jejuni (C. jejuni), Salmonella enterica (Salmonella spp.), and antimicrobial-resistant Escherichia coli (E. coli) infection in northern elephant seals stranded along the California coastline.
E. coli, Salmonella spp., and C. jejuni were isolated from rectal swabs from 196 juvenile northern elephant seals, which were found stranded and alive along the California coast and brought to The Marine Mammal Center in Sausalito, California, for rehabilitation. Gender, weight, county where the animal stranded, month stranded, coastal human population density, exposure to sewage outfall or freshwater outflow (river or stream), and cumulative precipitation in the previous 24 hours, seven days, 30 days, 90 days, and 180 days were analyzed as potential risk factors for infection.
The odds of C. jejuni and antimicrobial-resistant E. coli were higher in feces of seals stranded at sites with higher levels of freshwater outflow compared with lower levels of freshwater outflow. The odds of Salmonella spp. in feces were 5.4 times greater in seals stranded in locations with lower levels of 30-day cumulative precipitation, along with substantially lower odds of Salmonella shedding for seals stranded in Monterey or Santa Cruz county compared with seals stranded in regions further north or south of this central California location.
Juvenile northern elephant seals that have entered the water are being colonized by antimicrobial-resistant and pathogenic fecal bacteria that may be acquired from terrestrial sources transmitted via river and surface waters.
PMCID: PMC2289989  PMID: 19006978
10.  Human Salmonella Clinical Isolates Distinct from Those of Animal Origin▿  
The global trend toward intensive livestock production has led to significant public health risks and industry-associated losses due to an increased incidence of disease and contamination of livestock-derived food products. A potential factor contributing to these health concerns is the prospect that selective pressure within a particular host may give rise to bacterial strain variants that exhibit enhanced fitness in the present host relative to that in the parental host from which the strain was derived. Here, we assessed 184 Salmonella enterica human and animal clinical isolates for their virulence capacities in mice and for the presence of the Salmonella virulence plasmid encoding the SpvB actin cytotoxin required for systemic survival and Pef fimbriae, implicated in adherence to the murine intestinal epithelium. All (21 of 21) serovar Typhimurium clinical isolates derived from animals were virulent in mice, whereas many (16 of 41) serovar Typhimurium isolates derived from human salmonellosis patients lacked this capacity. Additionally, many (10 of 29) serovar Typhimurium isolates derived from gastroenteritis patients did not possess the Salmonella virulence plasmid, in contrast to all animal and human bacteremia isolates tested. Lastly, among serovar Typhimurium isolates that harbored the Salmonella virulence plasmid, 6 of 31 derived from human salmonellosis patients were avirulent in mice, which is in contrast to the virulent phenotype exhibited by all the animal isolates examined. These studies suggest that Salmonella isolates derived from human salmonellosis patients are distinct from those of animal origin. The characterization of these bacterial strain variants may provide insight into their relative pathogenicities as well as into the development of treatment and prophylactic strategies for salmonellosis.
PMCID: PMC2268321  PMID: 18245251
11.  Campylobacter insulaenigrae Isolates from Northern Elephant Seals (Mirounga angustirostris) in California▿ †  
There are only two reports in the literature demonstrating the presence of Campylobacter spp. in marine mammals. One report describes the isolation of a new species, Campylobacter insulaenigrae sp. nov., from three harbor seals (Phoca vitulina) and a harbor porpoise (Phocoena phocoena) in Scotland, and the other describes the isolation of Campylobacter jejuni, Campylobacter lari, and an unknown Campylobacter species from northern elephant seals (Mirounga angustirostris) in California. In this study, 72 presumptive C. lari and unknown Campylobacter species strains were characterized using standard phenotypic methods, 16S rRNA PCR, and multilocus sequence typing (MLST). Phenotypic characterization of these isolates showed them to be variable in their ability to grow either at 42°C or on agar containing 1% glycine and in their sensitivity to nalidixic acid and cephalothin. Based on both 16S rRNA PCR and MLST, all but 1 of the 72 isolates were C. insulaenigrae, with one isolate being similar to but distinct from both Campylobacter upsaliensis and Campylobacter helveticus. Phylogenetic analysis identified two C. insulaenigrae clades: the primary clade, containing exclusively California strains, and a secondary clade, containing some California strains and all of the original Scottish strains. This study demonstrates the inability of phenotypic characterization to correctly identify all Campylobacter species and emphasizes the importance of molecular characterization via 16S rRNA sequence analysis or MLST for the identification of Campylobacter isolates from marine mammals.
PMCID: PMC1828825  PMID: 17259365
12.  Rhodococcus equi Secreted Antigens Are Immunogenic and Stimulate a Type 1 Recall Response in the Lungs of Horses Immune to R. equi Infection  
Infection and Immunity  2003;71(11):6329-6337.
Rhodococcus equi is an opportunistic pathogen in immunocompromised humans and an important primary pathogen in young horses. Although R. equi infection can produce life-threatening pyogranulomatous pneumonia, most foals develop a protective immune response that lasts throughout life. The antigen targets of this protective response are currently unknown; however, Mycobacterium tuberculosis is a closely related intracellular pathogen and provides a model system. Based on previous studies of M. tuberculosis protective antigens released into culture filtrate supernatant (CFS), a bacterial growth system was developed for obtaining R. equi CFS antigens. Potential immunogens for prevention of equine rhodococcal pneumonia were identified by using immunoblots. The 48-h CFS contained five virulence-associated protein bands that migrated between 12 and 24 kDa and were recognized by sera from R. equi-infected foals and immune adult horses. Notably, the CFS contained the previously characterized proteins VapC, VapD, and VapE, which are encoded by genes on the R. equi virulence plasmid. R. equi CFS was also examined for the ability to stimulate a type 1-like memory response in immune horses. Three adult horses were challenged with virulent R. equi, and cells from the bronchoalveolar lavage fluid were recovered before and 1 week after challenge. In vitro stimulation of pulmonary T-lymphocytes with R. equi CFS resulted in significant proliferation and a significant increase in gamma interferon mRNA expression 1 week after challenge. These results were consistent with a memory effector response in immune adult horses and provide evidence that R. equi CFS proteins are antigen targets in the immunoprotective response against R. equi infection.
PMCID: PMC219552  PMID: 14573652
13.  Virulence Plasmid of Rhodococcus equi Contains Inducible Gene Family Encoding Secreted Proteins 
Infection and Immunity  2001;69(2):650-656.
Rhodococcus equi causes severe pyogranulomatous pneumonia in foals. This facultative intracellular pathogen produces similar lesions in immunocompromised humans, particularly in AIDS patients. Virulent strains of R. equi bear a large plasmid that is required for intracellular survival within macrophages and for virulence in foals and mice. Only two plasmid-encoded proteins have been described previously; a 15- to 17-kDa surface protein designated virulence-associated protein A (VapA) and an antigenically related 20-kDa protein (herein designated VapB). These two proteins are not expressed by the same R. equi isolate. We describe here the substantial similarity between VapA and VapB. Moreover, we identify three additional genes carried on the virulence plasmid, vapC, -D, and -E, that are tandemly arranged downstream of vapA. These new genes are members of a gene family and encode proteins that are approximately 50% homologous to VapA, VapB, and each other. vapC, -D, and -E are found only in R. equi strains that express VapA and are highly conserved in VapA-positive isolates from both horses and humans. VapC, -D, and -E are secreted proteins coordinately regulated by temperature with VapA; the proteins are expressed when R. equi is cultured at 37°C but not at 30°C, a finding that is compatible with a role in virulence. As secreted proteins, VapC, -D, and -E may represent targets for the prevention of rhodococcal pneumonia. An immunologic study using VapA-specific antibodies and recombinant Vap proteins revealed no evidence of cross-reactivity despite extensive sequence similarity over the carboxy terminus of all four proteins.
PMCID: PMC97935  PMID: 11159951

Results 1-13 (13)