Search tips
Search criteria

Results 1-25 (206)

Clipboard (0)

Select a Filter Below

more »
more »
Year of Publication
more »
1.  Clinician judgment vs formal scales for predicting intracerebral hemorrhage outcomes 
Neurology  2016;86(2):126-133.
To compare the performance of formal prognostic instruments vs subjective clinical judgment with regards to predicting functional outcome in patients with spontaneous intracerebral hemorrhage (ICH).
This prospective observational study enrolled 121 ICH patients hospitalized at 5 US tertiary care centers. Within 24 hours of each patient's admission to the hospital, one physician and one nurse on each patient's clinical team were each asked to predict the patient's modified Rankin Scale (mRS) score at 3 months and to indicate whether he or she would recommend comfort measures. The admission ICH score and FUNC score, 2 prognostic scales selected for their common use in neurologic practice, were calculated for each patient. Spearman rank correlation coefficients (r) with respect to patients' actual 3-month mRS for the physician and nursing predictions were compared against the same correlation coefficients for the ICH score and FUNC score.
The absolute value of the correlation coefficient for physician predictions with respect to actual outcome (0.75) was higher than that of either the ICH score (0.62, p = 0.057) or the FUNC score (0.56, p = 0.01). The nursing predictions of outcome (r = 0.72) also trended towards an accuracy advantage over the ICH score (p = 0.09) and FUNC score (p = 0.03). In an analysis that excluded patients for whom comfort care was recommended, the 65 available attending physician predictions retained greater accuracy (r = 0.73) than either the ICH score (r = 0.50, p = 0.02) or the FUNC score (r = 0.42, p = 0.004).
Early subjective clinical judgment of physicians correlates more closely with 3-month outcome after ICH than prognostic scales.
PMCID: PMC4731687  PMID: 26674335
2.  APOL1 genotype and kidney transplantation outcomes from deceased African American donors 
Transplantation  2016;100(1):194-202.
Two apolipoprotein L1 gene (APOL1) renal-risk variants in donors and African American (AA) recipient race are associated with worse allograft survival in deceased-donor kidney transplantation (DDKT) from AA donors. To detect other factors impacting allograft survival from deceased AA kidney donors, APOL1 renal-risk variants were genotyped in additional AA kidney donors.
APOL1 genotypes were linked to outcomes in 478 newly analyzed DDKTs in the Scientific Registry of Transplant Recipients. Multivariate analyses accounting for recipient age, sex, race, panel reactive antibody level, HLA match, cold ischemia time, donor age, and expanded-criteria donation were performed. These 478 transplantations and 675 DDKTs from a prior report were jointly analyzed.
Fully-adjusted analyses limited to the new 478 DDKTs replicated shorter renal allograft survival in recipients of APOL1-two-renal-risk-variant kidneys (HR 2.00; p=0.03). Combined analysis of 1153 DDKTs from AA donors revealed donor APOL1 high-risk genotype (HR 2.05; p=3×10−4), older donor age (HR 1.18; p=0.05), and younger recipient age (HR 0.70; p=0.001) adversely impacted allograft survival. Although prolonged allograft survival was seen in many recipients of APOL1-two-renal-risk-variant kidneys, follow-up serum creatinine concentrations were higher than in recipients of zero/one APOL1-renal-risk variant kidneys. A competing risk analysis revealed that APOL1 impacted renal allograft survival, but not recipient survival. Interactions between donor age and APOL1 genotype on renal allograft survival were non-significant.
Shorter renal allograft survival is reproducibly observed after DDKT from APOL1-two-renal-risk-variant donors. Younger recipient age and older donor age have independent adverse effects on renal allograft survival.
PMCID: PMC4684443  PMID: 26566060
3.  Plasma FGF23 and Calcified Atherosclerotic Plaque in African Americans with Type 2 Diabetes Mellitus 
American journal of nephrology  2015;42(6):391-401.
Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone implicated in disorders of serum phosphorus concentration and vitamin D. The role of FGF23 in vascular calcification remains controversial.
Relationships between FGF23 and coronary artery calcified atherosclerotic plaque (CAC), aorto-iliac calcified plaque (CP), carotid artery CP, volumetric bone mineral density (vBMD), albuminuria, and estimated glomerular filtration rate (eGFR) were determined in 545 African Americans with type 2 diabetes (T2D) and preserved kidney function in African American-Diabetes Heart Study participants. Generalized linear models were fitted to test associations between FGF23 and cardiovascular, bone, and renal phenotypes, and change in measurements over time, adjusting for age, sex, African ancestry proportion, BMI, diabetes duration, HbA1c, blood pressure, renin-angiotensin-system inhibitors, statins, calcium supplements, serum calcium, and serum phosphate.
The sample was 56.7% female with mean/SD age 55.6/9.6 years, diabetes duration 10.3/8.2 years, eGFR 90.9/22.1 ml/min/1.73m2, urine albumin:creatinine ratio (UACR) 151/588 (median 13) mg/g, plasma FGF23 161/157 RU/mL, and CAC 637/1179 mg. In fully-adjusted models, FGF23 was negatively associated with eGFR (p<0.0001) and positively associated with UACR (p<0.0001) and CAC (p=0.0006), but not with carotid CP or aortic CP. Baseline FGF23 concentration did not associate with changes in vBMD or CAC after mean 5.1 year follow-up.
Plasma FGF23 concentrations were independently associated with subclinical coronary artery disease, albuminuria, and kidney function in the understudied African American population with T2D. Findings support relationships between FGF23 and vascular calcification, but not bone mineral density, in African Americans lacking advanced nephropathy.
PMCID: PMC4732898  PMID: 26693712
African American; albuminuria; calcified atherosclerotic plaque; FGF23; kidney disease; type 2 diabetes mellitus
4.  Genetic associations of leptin-related polymorphisms with systemic lupus erythematosus 
Clinical immunology (Orlando, Fla.)  2015;161(2):157-162.
Leptin is abnormally elevated in the plasma of patients with systemic lupus erythematosus (SLE), where it is thought to promote and/or sustain pro-inflammatory responses. Whether this association could reflect an increased genetic susceptibility to develop SLE is not known, and studies of genetic associations with leptin-related polymorphisms in SLE patients have been so far inconclusive. Here we genotyped DNA samples from 15,706 SLE patients and healthy matched controls from four different ancestral groups, to correlate polymorphisms of genes of the leptin pathway to risk for SLE. It was found that although several SNPs showed weak associations, those associations did not remain significant after correction for multiple testing. These data do not support associations between defined leptin-related polymorphisms and increased susceptibility to develop SLE.
PMCID: PMC4658308  PMID: 26385092
systemic lupus erythematosus; leptin pathway; gene polymorphisms
5.  Prophylactic Antiepileptic Drug Use and Outcome in the Ethnic/Racial Variations of Intracerebral Hemorrhage (ERICH) Study 
Background and Purpose
The role of antiepileptic drug (AED) prophylaxis following intracerebral hemorrhage (ICH) remains unclear. This analysis describes prevalence of prophylactic AED use, as directed by treating clinicians, in a prospective ICH cohort and tests the hypothesis that it is associated with poor outcome.
Analysis included 744 ICH patients enrolled in the Ethnic/Racial Variations of Intracerebral Hemorrhage (ERICH) study prior to November 2012. Baseline clinical characteristics and AED use were recorded in standardized fashion. ICH location and volume were recorded from baseline neuroimaging. We analyzed differences in patient characteristics by AED prophylaxis, and we used logistic regression to test whether AED prophylaxis was associated with poor outcome. The primary outcome was 3 month modified Rankin Scale score, with 4–6 considered poor outcome.
AEDs were used for prophylaxis in 289 (39%) of the 744 subjects; of these, levetiracetam was used in 89%. Patients with lobar ICH, craniotomy, or larger hematomas were more likely to receive prophlyaxis. Although prophylactic AED use was associated with poor outcome in an unadjusted model (OR=1.40; 95% CI=1.04–1.88; p=0.03), this association was no longer significant after adjusting for clinical and demographic characteristics (OR=1.11; 95% CI=0.74–1.65; p=0.62).
We found no evidence that AED use (predominantly levetiracetam) is independently associated with poor outcome. A prospective study is required to assess for a more modest effect of AED use on outcome following ICH.
PMCID: PMC4659755  PMID: 26470777
Intracerebral hemorrhage; stroke; seizure; critical care
6.  Genetic variants in CETP increase risk of intracerebral hemorrhage 
Annals of Neurology  2016;80(5):730-740.
In observational epidemiologic studies, higher plasma high‐density lipoprotein cholesterol (HDL‐C) has been associated with increased risk of intracerebral hemorrhage (ICH). DNA sequence variants that decrease cholesteryl ester transfer protein (CETP) gene activity increase plasma HDL‐C; as such, medicines that inhibit CETP and raise HDL‐C are in clinical development. Here, we test the hypothesis that CETP DNA sequence variants associated with higher HDL‐C also increase risk for ICH.
We performed 2 candidate‐gene analyses of CETP. First, we tested individual CETP variants in a discovery cohort of 1,149 ICH cases and 1,238 controls from 3 studies, followed by replication in 1,625 cases and 1,845 controls from 5 studies. Second, we constructed a genetic risk score comprised of 7 independent variants at the CETP locus and tested this score for association with HDL‐C as well as ICH risk.
Twelve variants within CETP demonstrated nominal association with ICH, with the strongest association at the rs173539 locus (odds ratio [OR] = 1.25, standard error [SE] = 0.06, p = 6.0 × 10−4) with no heterogeneity across studies (I 2 = 0%). This association was replicated in patients of European ancestry (p = 0.03). A genetic score of CETP variants found to increase HDL‐C by ∼2.85mg/dl in the Global Lipids Genetics Consortium was strongly associated with ICH risk (OR = 1.86, SE = 0.13, p = 1.39 × 10−6).
Genetic variants in CETP associated with increased HDL‐C raise the risk of ICH. Given ongoing therapeutic development in CETP inhibition and other HDL‐raising strategies, further exploration of potential adverse cerebrovascular outcomes may be warranted. Ann Neurol 2016;80:730–740
PMCID: PMC5115931  PMID: 27717122
7.  GWAS in an Amerindian ancestry population reveals novel systemic lupus erythematosus risk loci and the role of European admixture 
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a strong genetic component. Our aim was to perform the first genome-wide association study on individuals from the Americas enriched for Native American heritage.
We analyzed 3,710 individuals from four countries of Latin America and the Unites States diagnosed with SLE and healthy controls. Samples were genotyped with the HumanOmni1 BeadChip. Data of out-of-study controls was obtained for the HumanOmni2.5. Statistical analyses were performed using SNPTEST and SNPGWA. Data was adjusted for genomic control and FDR. Imputation was done using IMPUTE2, and HiBAG for classical HLA alleles.
The IRF5-TNPO3 region showed the strongest association and largest odds ratio (OR) (rs10488631, Pgcadj = 2.61×10−29, OR = 2.12, 95% CI: 1.88–2.39) followed by the HLA class II on the DQA2-DQB1 loci (rs9275572, Pgcadj = 1.11 × 10−16, OR = 1.62, 95% CI: 1.46–1.80; rs9271366, Pgcadj=6.46 × 10−12, OR = 2.06, 95% CI: 1.71–2.50). Other known SLE loci associated were ITGAM, STAT4, TNIP1, NCF2 and IRAK1. We identified a novel locus on 10q24.33 (rs4917385, Pgcadj =1.4×10−8) with a eQTL effect (Peqtl=8.0 × 10−37 at USMG5/miR1307), and describe novel loci. We corroborate SLE-risk loci previously identified in European and Asians. Local ancestry estimation showed that HLA allele risk contribution is of European ancestral origin. Imputation of HLA alleles suggested that autochthonous Native American haplotypes provide protection.
Our results show the insight gained by studying admixed populations to delineate the genetic architecture that underlies autoimmune and complex diseases.
PMCID: PMC4829354  PMID: 26606652
8.  Re-sequencing of the APOL1-APOL4 and MYH9 gene regions in African Americans does not identify additional risks for CKD progression 
American journal of nephrology  2015;42(2):99-106.
APOL1 G1 and G2 nephropathy risk variants are associated with non-diabetic end-stage kidney disease (ESKD) in African Americans (AAs) in an autosomal recessive pattern. Additional risk and protective genetic variants may be present near the APOL1 loci since earlier age ESKD is observed in some AAs with one APOL1 renal-risk variant and because the adjacent gene MYH9 is associated with nephropathy in populations lacking G1 and G2 variants.
Re-sequencing was performed across a ~275 kb region encompassing the APOL1-APOL4 and MYH9 genes in 154 AA cases with non-diabetic ESKD and 38 controls without nephropathy who were heterozygous for a single APOL1 G1 or G2 risk variant.
Sequencing identified 3246 non-coding single nucleotide polymorphisms (SNPs), 55 coding SNPs, and 246 insertion/deletions (InDels). No new coding variations were identified. Eleven variants, including a rare APOL3 Gln58Ter null variant (rs11089781), were genotyped in a replication panel of 1571 AA ESKD cases and 1334 controls. After adjusting for APOL1 G1 and G2 risk effects, these variations were not significantly associated with ESKD. In subjects with <2 APOL1 G1 and/or G2 alleles (849 cases; 1139 controls), the APOL3 null variant was nominally associated with ESKD (recessive model, OR 1.81; p=0.026); however, analysis in 807 AA cases and 634 controls from the Family Investigation of Nephropathy and Diabetes (FIND) did not replicate this association.
Additional common variants in the APOL1-APOL4-MYH9 region do not contribute significantly to ESKD risk beyond the APOL1 G1 and G2 alleles.
PMCID: PMC4589514  PMID: 26343748
African Americans; APOL1; kidney disease; FSGS; genetics; DNA sequencing
9.  Identification of a systemic lupus erythematosus risk locus spanning ATG16L2, FCHSD2, and P2RY2 in Koreans 
Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder whose etiology is incompletely understood, but likely involves environmental triggers in genetically susceptible individuals. We sought to identify the genetic loci associated with SLE in a Korean population by performing an unbiased genome-wide association scan.
A total of 1,174 Korean SLE cases and 4,248 population controls were genotyped with strict quality control measures and analyzed for association. For select variants, replication was tested in an independent set of 1,412 SLE cases and 1,163 population controls of Korean and Chinese ancestries.
Eleven regions outside the HLA exceeded genome-wide significance (P<5×10−8). A novel SNP-SLE association was identified between FCHSD2 and P2RY2 peaking at rs11235667 (P = 1.0×10−8, odds ratio (OR) = 0.59) on a 33kb haplotype upstream to ATG16L2. Replication for rs11235667 resulted in Pmeta-rep=0.001 and Pmeta-overall=6.67×10−11 (OR=0.63). Within the HLA region, association peaked in the Class II region at rs116727542 with multiple independent effects. Classical HLA allele imputation identified HLA-DRB1*1501 and HLA-DQB1*0602, both highly correlated, as most strongly associated with SLE. We replicated ten previously established SLE risk loci: STAT1-STAT4, TNFSF4, TNFAIP3, IKZF1, HIP1, IRF5, BLK, WDFY4, ETS1 and IRAK1-MECP2. Of these loci, we identified previously unreported independent second effects in TNFAIP3 and TNFSF4 as well as differences in the association for a putative causal variant in the WDFY4 region.
Further studies are needed to identify true SLE risk effects in other suggestive loci and to identify the causal variant(s) in the regions of ATG16L2, FCHSD2, and P2RY2.
PMCID: PMC4981330  PMID: 26663301
10.  Analysis of a Cardiovascular Disease Genetic Risk Score in the Diabetes Heart Study 
Acta diabetologica  2015;52(4):743-751.
It remains unclear whether the high cardiovascular disease (CVD) burden in people with type 2 diabetes (T2D) is associated with genetic variants that contribute to CVD in general populations. Recent studies have examined genetic risk scores of single nucleotide polymorphisms (SNPs) identified by genome-wide association studies (GWAS) for their cumulative contribution to CVD-related traits. Most analyses combined SNPs associated with a single phenotypic class, e.g. lipids. In the present analysis, we examined a more comprehensive risk score comprised of SNPs associated with a broad range of CVD risk phenotypes.
The composite risk score was analyzed for potential associations with subclinical CVD, self-reported CVD events, and mortality in 983 T2D-affected individuals of European descent from 466 Diabetes Heart Study (DHS) families. Genetic association was examined using marginal models with generalized estimating equations for subclinical CVD and prior CVD events and Cox proportional hazards models with sandwich-based variance estimation for mortality; analyses were adjusted for age and sex.
An increase in genetic risk score was significantly associated with higher levels of coronary artery calcified plaque (p=1.23 × 10−4); however, no significant associations with self-reported myocardial infarction and CVD events and all-cause and CVD mortality were observed.
These results suggest that a genetic risk score of SNPs associated with CVD events and risk factors does not significantly account for CVD risk in the DHS, highlighting the limitations of applying current genetic markers for CVD in individuals with diabetes.
PMCID: PMC4506855  PMID: 25700702
Type 2 diabetes; mortality; coronary artery calcification; genetic risk score
11.  Rare Coding Variation and Risk of Intracerebral Hemorrhage 
Background and Purpose
Intracerebral hemorrhage (ICH) has a substantial genetic component. We performed a preliminary search for rare coding variants associated with ICH.
757 cases and 795 controls were genotyped using the Illumina HumanExome Beadchip (Illumina, Inc. San Diego, CA, USA). Meta-analyses of single-variant and gene-based association were computed.
No rare coding variants were associated with ICH. Three common variants on chromosome 19q13 at an established susceptibility locus, encompassing TOMM40, APOE, and APOC1 met genome-wide significance (p<5e-08). After adjusting for the APOE epsilon alleles, this locus was no longer convincingly associated with ICH. No gene reached genome-wide significance level in gene-based association testing.
While no coding variants of large effect were detected, this study further underscores a major challenge for the study of genetic susceptibility loci – large sample sizes are required for sufficient power except for loci with large effects.
PMCID: PMC4519408  PMID: 26111891
intracerebral hemorrhage; exome array; rare variant association study
12.  Monocyte count and 30-day case-fatality in intracerebral hemorrhage 
Background and Purpose
Monocytes may contribute to secondary injury after intracerebral hemorrhage (ICH). We tested the association of absolute monocyte count (AMC) with 30-day ICH case-fatality in a multi-ethnic cohort.
Ethnic/Racial Variations of Intracerebral Hemorrhage (ERICH) study is a prospective, multi-center, case-control study of ICH among white, black, and Hispanic patients. In 240 adults with non-traumatic ICH within 24 hours of symptom onset, we evaluated the influence of ICH score and complete blood count components on 30-day case-fatality using generalized linear models.
Mean age was 62.8 years (SD 14years); 61.7% were male, 33.3% black, and 29.6% Hispanic. Median ICH volume was 9.9ml (IQR 4.4–26.7). After adjusting for patient age and initial hemoglobin, higher total white blood cell count (WBC) (p=0.0011), driven by higher absolute neutrophil count (ANC) (p= 0.002), was associated with larger ICH volume, whereas absolute monocyte count (AMC) was not (p=0.15). After adjusting for age, GCS, ICH volume, location, and presence or absence of intraventricular hemorrhage, baseline AMC was independently associated with higher 30-day case-fatality (OR 5.39, 95%CI 1.87–15.49, p=0.0018) whereas ANC (OR 1.04, 0.46-2.32, p=0.93) and WBC (OR 1.62, 0.58–4.54, p=0.36) were not.
These data support an independent association between higher admission AMC and 30-day case-fatality in ICH. Inquiry into monocyte-mediated pathways of inflammation and apoptosis may elucidate the basis for the observed association and may be targets for ICH neuroprotection.
PMCID: PMC4519364  PMID: 26130090
intracerebral hemorrhage; case-fatality; monocytes; inflammation
13.  Meta-analysis of genome-wide association studies identifies genetic risk factors for stroke in African-Americans 
Background and Purpose
The majority of genome-wide association studies (GWAS) of stroke have focused on European-ancestry populations; however, none has been conducted in African-Americans despite the disproportionately high burden of stroke in this population. The Consortium of Minority Population genome-wide Association Studies of Stroke (COMPASS) was established to identify stroke susceptibility loci in minority populations.
Using METAL, we conducted meta-analyses of GWAS in 14,746 African-Americans (1,365 ischemic and 1,592 total stroke cases) from COMPASS, and tested SNPs with P<10−6 for validation in METASTROKE, a consortium of ischemic stroke genetic studies in European-ancestry populations. We also evaluated stroke loci previously identified in European-ancestry populations.
The 15q21.3 locus linked with lipid levels and hypertension was associated with total stroke (rs4471613, P=3.9×10−8) in African-Americans. Nominal associations (P<10−6) for total or ischemic stroke were observed for 18 variants in or near genes implicated in cell cycle/ mRNA pre-splicing (PTPRG, CDC5L), platelet function (HPS4), blood-brain barrier permeability (CLDN17), immune response (ELTD1, WDFY4, IL1F10-IL1RN), and histone modification (HDAC9). Two of these loci achieved nominal significance in METASTROKE: 5q35.2 (P=0.03), and 1p31.1 (P=0.018). Four of 7 previously reported ischemic stroke loci (PITX2, HDAC9, CDKN2A/CDKN2B and ZFHX3) were nominally associated (P<0.05) with stroke in COMPASS.
We identified a novel SNP associated with total stroke in African-Americans and found that ischemic stroke loci identified in European-ancestry populations may also be relevant for African-Americans. Our findings support investigation of diverse populations to identify and characterize genetic risk factors, and the importance of shared genetic risk across populations.
PMCID: PMC4740911  PMID: 26089329
stroke; GWAS; genetic association; African American; meta-analysis
14.  Genome-wide imputation study identifies novel HLA locus for pulmonary fibrosis and potential role for auto-immunity in fibrotic idiopathic interstitial pneumonia 
BMC Genetics  2016;17:74.
Fibrotic idiopathic interstitial pneumonias (fIIP) are a group of fatal lung diseases with largely unknown etiology and without definitive treatment other than lung transplant to prolong life. There is strong evidence for the importance of both rare and common genetic risk alleles in familial and sporadic disease. We have previously used genome-wide single nucleotide polymorphism data to identify 10 risk loci for fIIP. Here we extend that work to imputed genome-wide genotypes and conduct new RNA sequencing studies of lung tissue to identify and characterize new fIIP risk loci.
We performed genome-wide genotype imputation association analyses in 1616 non-Hispanic white (NHW) cases and 4683 NHW controls followed by validation and replication (878 cases, 2017 controls) genotyping and targeted gene expression in lung tissue. Following meta-analysis of the discovery and replication populations, we identified a novel fIIP locus in the HLA region of chromosome 6 (rs7887 Pmeta = 3.7 × 10−09). Imputation of classic HLA alleles identified two in high linkage disequilibrium that are associated with fIIP (DRB1*15:01 P = 1.3 × 10−7 and DQB1*06:02 P = 6.1 × 10−8). Targeted RNA-sequencing of the HLA locus identified 21 genes differentially expressed between fibrotic and control lung tissue (Q < 0.001), many of which are involved in immune and inflammatory response regulation. In addition, the putative risk alleles, DRB1*15:01 and DQB1*06:02, are associated with expression of the DQB1 gene among fIIP cases (Q < 1 × 10−16).
We have identified a genome-wide significant association between the HLA region and fIIP. Two HLA alleles are associated with fIIP and affect expression of HLA genes in lung tissue, indicating that the potential genetic risk due to HLA alleles may involve gene regulation in addition to altered protein structure. These studies reveal the importance of the HLA region for risk of fIIP and a basis for the potential etiologic role of auto-immunity in fIIP.
Electronic supplementary material
The online version of this article (doi:10.1186/s12863-016-0377-2) contains supplementary material, which is available to authorized users.
PMCID: PMC4895966  PMID: 27266705
Pulmonary fibrosis; HLA association; Imputation; Gene expression; RNA-Seq
15.  Apolipoprotein L1 gene variants in deceased organ donors are associated with renal allograft failure 
Apolipoprotein L1 gene (APOL1) nephropathy variants in African American deceased kidney donors were associated with shorter renal allograft survival in a prior single-center report. APOL1 G1 and G2 variants were genotyped in newly accrued DNA samples from African American deceased donors of kidneys recovered and/or transplanted in Alabama and North Carolina. APOL1 genotypes and allograft outcomes in subsequent transplants from 55 U.S. centers were linked, adjusting for age, sex and race/ethnicity of recipients, HLA match, cold ischemia time, panel reactive antibody levels, and donor type. For 221 transplantations from kidneys recovered in Alabama, there was a statistical trend toward shorter allograft survival in recipients of two-APOL1-nephropathy-variant kidneys (hazard ratio [HR] 2.71; p=0.06). For all 675 kidneys transplanted from donors at both centers, APOL1 genotype (HR 2.26; p=0.001) and African American recipient race/ethnicity (HR 1.60; p=0.03) were associated with allograft failure. Kidneys from African American deceased donors with two APOL1 nephropathy variants reproducibly associate with higher risk for allograft failure after transplantation. These findings warrant consideration of rapidly genotyping deceased African American kidney donors for APOL1 risk variants at organ recovery and incorporation of results into allocation and informed-consent processes.
PMCID: PMC4784684  PMID: 25809272
16.  Genetic analysis of the soluble epoxide hydrolase gene, EPHX2, in subclinical cardiovascular disease in the Diabetes Heart Study 
Epoxide hydrolase is involved in metabolism of vasoactive and anti-inflammatory epoxyeicosatrienoic acids to their corresponding diols. Consequently, epoxide hydrolase 2 (EPHX2) is a candidate cardiovascular disease (CVD) gene. We investigated EPHX2 for association with subclinical CVD in European American (EA) and African American (AA) families from the Diabetes Heart Study. The R287Q polymorphism was associated with carotid artery calcified plaque (CarCP) in EAs. Other EPHX2 polymorphisms were associated with coronary artery calcified plaque (CorCP), CarCP or carotid artery intima-media thickness (IMT). Polymorphism rs7837347 was associated with all traits in the AAs (p=0.003, 0.001 and 0.017, respectively). Polymorphism rs7003694 displayed association with IMT (p=0.017) and, along with rs747276, a trend towards association with CorCP in diabetic EAs (p=0.057 and 0.080, respectively). These results provide additional evidence that EPHX2 contributes to the risk of subclinical CVD, although the true trait defining polymorphisms may not be identified and the effect size could be small.
PMCID: PMC4882928  PMID: 18537101
calcified plaque; cardiovascular disease; gene polymorphisms; type 2 diabetes
17.  Selecting SNPs informative for African, American Indian and European Ancestry: application to the Family Investigation of Nephropathy and Diabetes (FIND) 
BMC Genomics  2016;17:325.
The presence of population structure in a sample may confound the search for important genetic loci associated with disease. Our four samples in the Family Investigation of Nephropathy and Diabetes (FIND), European Americans, Mexican Americans, African Americans, and American Indians are part of a genome- wide association study in which population structure might be particularly important. We therefore decided to study in detail one component of this, individual genetic ancestry (IGA). From SNPs present on the Affymetrix 6.0 Human SNP array, we identified 3 sets of ancestry informative markers (AIMs), each maximized for the information in one the three contrasts among ancestral populations: Europeans (HAPMAP, CEU), Africans (HAPMAP, YRI and LWK), and Native Americans (full heritage Pima Indians). We estimate IGA and present an algorithm for their standard errors, compare IGA to principal components, emphasize the importance of balancing information in the ancestry informative markers (AIMs), and test the association of IGA with diabetic nephropathy in the combined sample.
A fixed parental allele maximum likelihood algorithm was applied to the FIND to estimate IGA in four samples: 869 American Indians; 1385 African Americans; 1451 Mexican Americans; and 826 European Americans. When the information in the AIMs is unbalanced, the estimates are incorrect with large error. Individual genetic admixture is highly correlated with principle components for capturing population structure. It takes ~700 SNPs to reduce the average standard error of individual admixture below 0.01. When the samples are combined, the resulting population structure creates associations between IGA and diabetic nephropathy.
The identified set of AIMs, which include American Indian parental allele frequencies, may be particularly useful for estimating genetic admixture in populations from the Americas. Failure to balance information in maximum likelihood, poly-ancestry models creates biased estimates of individual admixture with large error. This also occurs when estimating IGA using the Bayesian clustering method as implemented in the program STRUCTURE. Odds ratios for the associations of IGA with disease are consistent with what is known about the incidence and prevalence of diabetic nephropathy in these populations.
Electronic supplementary material
The online version of this article (doi:10.1186/s12864-016-2654-x) contains supplementary material, which is available to authorized users.
PMCID: PMC4855449  PMID: 27142425
Individual genetic ancestry; Population structure; SNP; Diabetic nephropathy
18.  Genetic Association of CD247 (CD3ζ) with SLE in a Large-Scale Multiethnic Study 
Genes and immunity  2015;16(2):142-150.
A classic T-cell phenotype in Systemic lupus erythematosus (SLE) is the downregulation and replacement of the CD3ζ chain that alters TCR signaling. However, genetic associations with SLE in the human CD247 locus that encodes CD3ζ are not well established and require replication in independent cohorts. Our aim was therefore to examine, localize and validate CD247-SLE association in a large multi-ethnic population. We typed 44 contiguous CD247 SNPs in 8 922 SLE patients and 8 077 controls from four ethnically distinct populations. The strongest associations were found in the Asian population (11 SNPs in intron 1, 4.99×10−4
PMCID: PMC4371129  PMID: 25569266
Diabetes  2014;64(5):1853-1866.
Insulin sensitivity, insulin secretion, insulin clearance, and glucose effectiveness exhibit strong genetic components, although few studies have examined their genetic architecture or influence on type 2 diabetes (T2D) risk. We hypothesized that loci affecting variation in these quantitative traits influence T2D. We completed a multicohort genome-wide association study to search for loci influencing T2D-related quantitative traits in 4,176 Mexican Americans. Quantitative traits were measured by the frequently sampled intravenous glucose tolerance test (four cohorts) or euglycemic clamp (three cohorts), and random-effects models were used to test the association between loci and quantitative traits, adjusting for age, sex, and admixture proportions (Discovery). Analysis revealed a significant (P < 5.00 × 10−8) association at 11q14.3 (MTNR1B) with acute insulin response. Loci with P < 0.0001 among the quantitative traits were examined for translation to T2D risk in 6,463 T2D case and 9,232 control subjects of Mexican ancestry (Translation). Nonparametric meta-analysis of the Discovery and Translation cohorts identified significant associations at 6p24 (SLC35B3/TFAP2A) with glucose effectiveness/T2D, 11p15 (KCNQ1) with disposition index/T2D, and 6p22 (CDKAL1) and 11q14 (MTNR1B) with acute insulin response/T2D. These results suggest that T2D and insulin secretion and sensitivity have both shared and distinct genetic factors, potentially delineating genomic components of these quantitative traits that drive the risk for T2D.
PMCID: PMC4407862  PMID: 25524916
BMC Medical Genetics  2016;17:24.
Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic disease among children, the etiology of which involves a strong genetic component, but much of the underlying genetic determinants still remain unknown. Our aim was to identify novel genetic variants that predispose to JIA.
We performed a genome-wide association study (GWAS) and replication in a total of 1166 JIA cases and 9500 unrelated controls of European ancestry. Correlation of SNP genotype and gene expression was investigated. Then we conducted targeted resequencing of a candidate locus, among a subset of 480 cases and 480 controls. SUM test was performed to evaluate the association of the identified rare functional variants.
The CXCR4 locus on 2q22.1 was found to be significantly associated with JIA, peaking at SNP rs953387. However, this result is subjected to subpopulation stratification within the subjects of European ancestry. After adjusting for principal components, nominal significant association remained (p < 10−4). Because of its interesting known function in immune regulation, we carried out further analyses to assess its relationship with JIA. Expression of CXCR4 was correlated with CXCR4 rs953387 genotypes in lymphoblastoid cell lines (p = 0.014) and T-cells (p = 0.0054). In addition, rare non-synonymous and stop-gain sequence variants in CXCR4, putatively damaging for CXCR4 function, were significantly enriched in JIA cases (p = 0.015).
Our results suggest the association of CXCR4 variants with JIA, implicating that this gene may be involved in the pathogenesis of autoimmune disease. However, because this locus is subjected to population stratification within the subjects of European ancestry, additional replication is still necessary for this locus to be considered a true risk locus for JIA. This cell-surface chemokine receptor has already been targeted in other diseases and may serve as a tractable therapeutic target for a specific subset of pediatric arthritis patients with additional replication and functional validation of the locus.
Electronic supplementary material
The online version of this article (doi:10.1186/s12881-016-0285-3) contains supplementary material, which is available to authorized users.
PMCID: PMC4804485  PMID: 27005825
Juvenile idiopathic arthritis; Genome-wide association study; CXCR4; Targeted resequencing
Clinically distinct autoimmune phenotypes share genetic susceptibility factors. We investigated the prevalence of familial autoimmunity among subjects with juvenile idiopathic arthritis (JIA), childhood systemic lupus erythematosus (cSLE) and juvenile dermatomyositis (JDM) in the CARRA Registry, the largest multicenter observational Registry for pediatric rheumatic disease.
Children with JIA, cSLE and JDM enrolled in the CARRA Registry between May 2010 and May 2012 were investigated for differences in proportion of subjects who had first-degree relatives (FDR) with autoimmunity. If a significant difference was detected, pairwise comparisons, adjusted for multiple comparisons, were made.
There were 4677 JIA, 639 cSLE and 440 JDM subjects. The proportion of subjects having FDR with any autoimmune disease in the JDM group (20.5 %) was less compared to subjects with JIA (31.8 %, p < 0.001) or SLE (31.9 %; p < 0.001). Significantly greater proportion of JIA cases had FDR with inflammatory arthritis (13 %) compared to cSLE (9.2 %, p = 0.007) or JDM (4.3 %, p <0.001). Significantly greater proportion of cSLE cases had FDR with SLE (11.1 % vs. 1.7 % for JIA and 1.1 % for JDM p < 0.001) or type-I diabetes (7.4 % for cSLE vs. 3.1 % for JIA and 3.0 % for JDM p < 0.001).
Higher proportions of subjects with JIA and cSLE have FDR with autoimmunity compared to those of JDM. Relatives of cSLE cases had an increased prevalence of SLE, and relatives of JIA cases were enriched for inflammatory arthropathies demonstrating distinct patterns of familial autoimmunity among these phenotypes.
PMCID: PMC4785640  PMID: 26965173
Neurobiology of aging  2014;36(3):1602.e7-1602.e15.
Patients with type 2 diabetes are at increased risk of age-related cognitive decline and dementia. Neuroimaging measures such as white matter lesion volume, brain volume, and fractional anisotropy may reflect the pathogenesis of these cognitive declines, and genetic factors may contribute to variability in these measures. This study examined multiple neuroimaging measures in 465 participants from 238 families with extensive genotype data in the type 2 diabetes enriched Diabetes Heart Study-Mind cohort. Heritability of these phenotypes and their association with candidate single nucleotide polymorphisms (SNPs) and SNP data from genome-and exome-wide arrays was explored. All neuroimaging measures analysed were significantly heritable (ĥ2 =0.55–0.99 in unadjusted models). Seventeen candidate SNPs (from 16 genes/regions) associated with neuroimaging phenotypes in prior studies showed no significant evidence of association. A missense variant (rs150706952, A432V) in PLEKHG4B from the exome-wide array was significantly associated with white matter mean diffusivity (p=3.66×10−7) and gray matter mean diffusivity (p=2.14×10−7). This analysis suggests genetic factors contribute to variation in neuroimaging measures in a population enriched for metabolic disease and other associated comorbidities.
PMCID: PMC4346514  PMID: 25523635
Magnetic resonance imaging; type 2 diabetes; genetics; heritability
Kidney international  2015;88(3):584-592.
Variants in donor multidrug resistance protein 1 (ABCB1) and caveolin 1 (CAV1) genes are associated with renal allograft failure after transplantation in Europeans. Here we assessed transplantation outcomes of kidneys from 368 African American (AA) and 314 European American (EA) deceased donors based on 38 single nucleotide polymorphisms (SNPs) spanning ABCB1 and 16 SNPs spanning CAV1, including previously associated index and haplotype-tagging SNPs. Tests for association with time to allograft failure were performed for the 1,233 resultant kidney transplantations, adjusting for recipient age, sex, ethnicity, cold ischemia time, PRA, HLA match, expanded-criteria donation, and APOL1- nephropathy variants in AA donors. Interaction analyses between APOL1 with ABCB1 and CAV1 were performed. In a meta-analysis of all transplantations, ABCB1 index SNP rs1045642 was associated with time to allograft failure and other ABCB1 SNPs were nominally associated, but not CAV1 SNPs. ABCB1 SNP rs1045642 showed consistent effects with the 558 transplantations from EA donors, but not with the 675 transplantations from AA donors. ABCB1 SNP rs956825 and CAV1 SNP rs6466583 interacted with APOL1 in transplants from AA donors. Thus, the T allele at ABCB1 rs1045642 is associated with shorter renal allograft survival for kidneys from American donors. Interactions between ABCB1 and CAV1 with APOL1 may influence allograft failure for transplanted kidneys from AA donors.
PMCID: PMC4556550  PMID: 25853335
African American; allograft failure; ABCB1; APOL1; CAV1; kidney transplantation
Human genetics  2014;134(2):203-213.
We previously identified a low frequency (1.1%) coding variant (G45R; rs200573126) in the adiponectin gene (ADIPOQ) which was the basis for a multipoint microsatellite linkage signal (LOD=8.2) for plasma adiponectin levels in Hispanic families. We have empirically evaluated the ability of data from targeted common variants, exome chip genotyping, and genome-wide association study (GWAS) data to detect linkage and association to adiponectin protein levels at this locus. Simple two-point linkage and association analyses were performed in 88 Hispanic families (1150 individuals) using 10,958 SNPs on chromosome 3. Approaches were compared for their ability to map the functional variant, G45R, which was strongly linked (two-point LOD=20.98) and powerfully associated (p-value=8.1×10−50). Over 450 SNPs within a broad 61 Mb interval around rs200573126 showed nominal evidence of linkage (LOD>3) but only four other SNPs in this region were associated with p-values<1.0×10−4. When G45R was accounted for, the maximum LOD score across the interval dropped to 4.39 and the best p-value was 1.1×10−5. Linked and/or associated variants ranged in frequency (0.0018 to 0.50) and type (coding, non-coding) and had little detectable linkage disequilibrium with rs200573126 (r2<0.20). In addition, the two-point linkage approach empirically outperformed multipoint microsatellite and multipoint SNP analysis. In the absence of data for rs200573126, family-based linkage analysis using a moderately dense SNP dataset, including both common and low frequency variants, resulted in stronger evidence for an adiponectin locus than association data alone. Thus, linkage analysis can be a useful tool to facilitate identification of high impact genetic variants.
PMCID: PMC4293344  PMID: 25447270
Annals of the Rheumatic Diseases  2014;75(1):242-252.
Systemic lupus erythematosus (SLE; OMIM 152700) is characterised by the production of antibodies to nuclear antigens. We previously identified variants in complement receptor 2 (CR2/CD21) that were associated with decreased risk of SLE. This study aimed to identify the causal variant for this association.
Genotyped and imputed genetic variants spanning CR2 were assessed for association with SLE in 15 750 case-control subjects from four ancestral groups. Allele-specific functional effects of associated variants were determined using quantitative real-time PCR, quantitative flow cytometry, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP)-PCR.
The strongest association signal was detected at rs1876453 in intron 1 of CR2 (pmeta=4.2×10−4, OR 0.85), specifically when subjects were stratified based on the presence of dsDNA autoantibodies (case-control pmeta=7.6×10−7, OR 0.71; case-only pmeta=1.9×10−4, OR 0.75). Although allele-specific effects on B cell CR2 mRNA or protein levels were not identified, levels of complement receptor 1 (CR1/CD35) mRNA and protein were significantly higher on B cells of subjects harbouring the minor allele (p=0.0248 and p=0.0006, respectively). The minor allele altered the formation of several DNA protein complexes by EMSA, including one containing CCCTC-binding factor (CTCF), an effect that was confirmed by ChIP-PCR.
These data suggest that rs1876453 in CR2 has long-range effects on gene regulation that decrease susceptibility to lupus. Since the minor allele at rs1876453 is preferentially associated with reduced risk of the highly specific dsDNA autoantibodies that are present in preclinical, active and severe lupus, understanding its mechanisms will have important therapeutic implications.
PMCID: PMC4717392  PMID: 25180293
Systemic Lupus Erythematosus; Autoantibodies; Gene Polymorphism; B cells

Results 1-25 (206)