PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  HDAC6 as a target for neurodegenerative diseases: what makes it different from the other HDACs? 
Histone deacetylase (HDAC) inhibitors have been demonstrated to be beneficial in animal models of neurodegenerative diseases. Such results were mainly associated with the epigenetic modulation caused by HDACs, especially those from class I, via chromatin deacetylation. However, other mechanisms may contribute to the neuroprotective effect of HDAC inhibitors, since each HDAC may present distinct specific functions within the neurodegenerative cascades. Such an example is HDAC6 for which the role in neurodegeneration has been partially elucidated so far. The strategy to be adopted in promising therapeutics targeting HDAC6 is still controversial. Specific inhibitors exert neuroprotection by increasing the acetylation levels of α-tubulin with subsequent improvement of the axonal transport, which is usually impaired in neurodegenerative disorders. On the other hand, an induction of HDAC6 would theoretically contribute to the degradation of protein aggregates which characterize various neurodegenerative disorders, including Alzheimer’s, Parkinson’s and Hutington’s diseases. This review describes the specific role of HDAC6 compared to the other HDACs in the context of neurodegeneration, by collecting in silico, in vitro and in vivo results regarding the inhibition and/or knockdown of HDAC6 and other HDACs. Moreover, structure, function, subcellular localization, as well as the level of HDAC6 expression within brain regions are reviewed and compared to the other HDAC isoforms. In various neurodegenerative diseases, the mechanisms underlying HDAC6 interaction with other proteins seem to be a promising approach in understanding the modulation of HDAC6 activity.
doi:10.1186/1750-1326-8-7
PMCID: PMC3615964  PMID: 23356410
Histone deacetylase; HDAC6; Neurodegenerative diseases
2.  Computational Studies on Sirtuins from Trypanosoma cruzi: Structures, Conformations and Interactions with Phytochemicals 
Background
The silent-information regulator 2 proteins, otherwise called sirtuins, are currently considered as emerging anti-parasitic targets. Nicotinamide, a pan-sirtuin inhibitor, is known to cause kinetoplast alterations and the arrested growth of T. cruzi, the protozoan responsible for Chagas disease. These observations suggested that sirtuins from this parasite (TcSir2rp1 and TcSir2rp3) could play an important role in the regulation of the parasitic cell cycle. Thus, their inhibition could be exploited for the development of novel anti-trypanosomal compounds.
Methods
Homology modeling was used to determine the three-dimensional features of the sirtuin TcSir2rp1 from T. cruzi. The apo-form of human SIRT2 and the same structure solved in complex with its co-substrate NAD+ allowed the modeling of TcSir2rp1 in the open and closed conformational states. Molecular docking studies were then carried out. A library composed of fifty natural and diverse compounds that are known to be active against this parasite, was established based on the literature and virtually screened against TcSir2rp1 and TcSir2rp3, which was previously modeled by our group.
Results
In this study, two conformational states of TcSir2rp1 were described for the first time. The molecular docking results of compounds capable of binding sirtuins proved to be meaningful when the closed conformation of the protein was taken into account for calculations. This specific conformation was then used for the virtual screening of antritrypanosomal phytochemicals against TcSir2rp1 and TcSir2rp3. The calculations identified a limited number of scaffolds extracted from Vismia orientalis, Cussonia zimmermannii, Amomum aculeatum and Anacardium occidentale that potentially interact with both proteins.
Conclusions
The study provided reliable models for future structure-based drug design projects concerning sirtuins from T. cruzi. Molecular docking studies highlighted not only the advantages of performing in silico interaction studies on their closed conformations but they also suggested the potential mechanism of action of four phytochemicals known for their anti-trypanosomal activity in vitro.
Author Summary
T. cruzi is a protozoan pathogen responsible for Chagas disease. Current therapies rely only on a very small number of drugs, most of which are inadequate because of their severe host toxicity or because of their susceptibility to drug-resistance mechanisms. To determine efficient therapeutic alternatives, the identification of new biotargets and detailed knowledge of their structures are essential. Sirtuins from T. cruzi have been recently considered as promising targets for the development of new treatments for Chagas disease. Inhibition of their activity has been shown to significantly interfere with the life cycle of the parasite. T. cruzi possesses genes encoding two sirtuin-like proteins, TcSIR2rp1 and TcSIR2rp3. The structures of these enzymes were theoretically elucidated in this work, which also focused on the impact of their possible conformational states on computational interaction studies. A small library of phytochemicals that are active against the parasite was built and screened against the most meaningful conformations, identifying a restricted number of scaffolds that potentially interact with the modeled proteins. For these hits, a mechanism of action related to interactions with sirtuins was proposed.
doi:10.1371/journal.pntd.0002689
PMCID: PMC3923677  PMID: 24551254
3.  Stereoselective Inhibition of the hERG1 Potassium Channel 
A growing number of drugs have been shown to prolong cardiac repolarization, predisposing individuals to life-threatening ventricular arrhythmias known as Torsades de Pointes. Most of these drugs are known to interfere with the human ether à-gogo related gene 1 (hERG1) channel, whose current is one of the main determinants of action potential duration. Prolonged repolarization is reflected by lengthening of the QT interval of the electrocardiogram, as seen in the suitably named drug-induced long QT syndrome. Chirality (presence of an asymmetric atom) is a common feature of marketed drugs, which can therefore exist in at least two enantiomers with distinct three-dimensional structures and possibly distinct biological fates. Both the pharmacokinetic and pharmacodynamic properties can differ between enantiomers, as well as also between individuals who take the drug due to metabolic polymorphisms. Despite the large number of reports about drugs reducing the hERG1 current, potential stereoselective contributions have only been scarcely investigated. In this review, we present a non-exhaustive list of clinically important molecules which display chiral toxicity that may be related to hERG1-blocking properties. We particularly focus on methadone cardiotoxicity, which illustrates the importance of the stereoselective effect of drug chirality as well as individual variations resulting from pharmacogenetics. Furthermore, it seems likely that, during drug development, consideration of chirality in lead optimization and systematic assessment of the hERG1 current block with all enantiomers could contribute to the reduction of the risk of drug-induced LQTS.
doi:10.3389/fphar.2010.00137
PMCID: PMC3153011  PMID: 21833176
cardiotoxicity; enantiomer; hERG1 channel; long QT syndrome; methadone; stereoselectivity
4.  Quantitative structure-permeation relationship for iontophoretic transport across the skin 
The objective was to relate the efficiency of a charged drug to carry current across the skin during iontophoresis to its structural and/or physicochemical properties. The corollary was the establishment of a predictive relationship useful to predict the feasibility of iontophoretic drug delivery, and for the selection and optimization of drug candidates for this route of administration. A dataset of 16 cations, for which iontophoretic fluxes have been measured under identical conditions, with no competition from exogenous co-ions, was compiled. Maximum transport numbers correlated with ion mobilities and decreased with ionic size, the dependence indicating that the electromigration mechanism of iontophoresis would become negligible for drugs of hydrodynamic radius greater than about 8Å. Validation of the model was demonstrated by successfully predicting the transport numbers of three structurally distinct dipeptides, the iontophoretic data for which had been determined under distinctly different experimental conditions. Finally, for the “training” set of cations, a strong linear dependence between their transport numbers in skin and those in aqueous solution was demonstrated; the former were larger by approximately a factor of 1.4 consistent with skin’s cation permselectivity. In conclusion, this research offers a practical contribution to the development of a predictive structure-transport model of iontophoresis.
doi:10.1016/j.jconrel.2007.07.004
PMCID: PMC2082109  PMID: 17707106
iontophoresis; skin; transport number; conductivity; structure-transport relationship
5.  Monoamine oxidase inhibitory properties of some benzazoles: Structure-; Activity relationships 
AAPS PharmSci  1999;1(4):1-4.
Benzazoles containing two or three nitrogen atoms were screened for their inhibitory activity toward monoamine oxidases MAO-A and MAO-B. In order to clarify the mechanism of interaction of these compounds with the enzyme, their electronic structure was calculated at the ab initio level and the influence of lipophilicity on activity was investigated. The mode of binding of benzazoles to MAO-B appears different from that of previously investigated heterocycles.
doi:10.1208/ps010416
PMCID: PMC2751346  PMID: 11741212

Results 1-5 (5)