PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-18 (18)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Authors
more »
Year of Publication
1.  Insect Attraction versus Plant Defense: Young Leaves High in Glucosinolates Stimulate Oviposition by a Specialist Herbivore despite Poor Larval Survival due to High Saponin Content 
PLoS ONE  2014;9(4):e95766.
Glucosinolates are plant secondary metabolites used in plant defense. For insects specialized on Brassicaceae, such as the diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), glucosinolates act as “fingerprints” that are essential in host plant recognition. Some plants in the genus Barbarea (Brassicaceae) contain, besides glucosinolates, saponins that act as feeding deterrents for P. xylostella larvae, preventing their survival on the plant. Two-choice oviposition tests were conducted to study the preference of P. xylostella among Barbarea leaves of different size within the same plant. P. xylostella laid more eggs per leaf area on younger leaves compared to older ones. Higher concentrations of glucosinolates and saponins were found in younger leaves than in older ones. In 4-week-old plants, saponins were present in true leaves, while cotyledons contained little or no saponins. When analyzing the whole foliage of the plant, the content of glucosinolates and saponins also varied significantly in comparisons among plants that were 4, 8, and 12 weeks old. In Barbarea plants and leaves of different ages, there was a positive correlation between glucosinolate and saponin levels. This research shows that, in Barbarea plants, ontogenetical changes in glucosinolate and saponin content affect both attraction and resistance to P. xylostella. Co-occurrence of a high content of glucosinolates and saponins in the Barbarea leaves that are most valuable for the plant, but are also the most attractive to P. xylostella, provides protection against this specialist herbivore, which oviposition behavior on Barbarea seems to be an evolutionary mistake.
doi:10.1371/journal.pone.0095766
PMCID: PMC3994119  PMID: 24752069
2.  Smoking Dysregulates the Human Airway Basal Cell Transcriptome at COPD Risk Locus 19q13.2 
PLoS ONE  2014;9(2):e88051.
Genome-wide association studies (GWAS) and candidate gene studies have identified a number of risk loci associated with the smoking-related disease COPD, a disorder that originates in the airway epithelium. Since airway basal cell (BC) stem/progenitor cells exhibit the earliest abnormalities associated with smoking (hyperplasia, squamous metaplasia), we hypothesized that smoker BC have a dysregulated transcriptome, enriched, in part, at known GWAS/candidate gene loci. Massive parallel RNA sequencing was used to compare the transcriptome of BC purified from the airway epithelium of healthy nonsmokers (n = 10) and healthy smokers (n = 7). The chromosomal location of the differentially expressed genes was compared to loci identified by GWAS to confer risk for COPD. Smoker BC have 676 genes differentially expressed compared to nonsmoker BC, dominated by smoking up-regulation. Strikingly, 166 (25%) of these genes are located on chromosome 19, with 13 localized to 19q13.2 (p<10−4 compared to chance), including 4 genes (NFKBIB, LTBP4, EGLN2 and TGFB1) associated with risk for COPD. These observations provide the first direct connection between known genetic risks for smoking-related lung disease and airway BC, the population of lung cells that undergo the earliest changes associated with smoking.
doi:10.1371/journal.pone.0088051
PMCID: PMC3912203  PMID: 24498427
4.  Oligomeric Properties of Adeno-Associated Virus Rep68 Reflect Its Multifunctionality 
Journal of Virology  2013;87(2):1232-1241.
The adeno-associated virus (AAV) encodes four regulatory proteins called Rep. The large AAV Rep proteins Rep68 and Rep78 are essential factors required in almost every step of the viral life cycle. Structurally, they share two domains: a modified version of the AAA+ domain that characterizes the SF3 family of helicases and an N-terminal domain that binds DNA specifically. The combination of these two domains imparts extraordinary multifunctionality to work as initiators of DNA replication and regulators of transcription, in addition to their essential role during site-specific integration. Although most members of the SF3 family form hexameric rings in vitro, the oligomeric nature of Rep68 is unclear due to its propensity to aggregate in solution. We report here a comprehensive study to determine the oligomeric character of Rep68 using a combination of methods that includes sedimentation velocity ultracentrifugation, electron microscopy, and hydrodynamic modeling. We have determined that residue Cys151 induces Rep68 to aggregate in vitro. We show that Rep68 displays a concentration-dependent dynamic oligomeric behavior characterized by the presence of two populations: one with monomers and dimers in slow equilibrium and a second one consisting of a mixture of multiple-ring structures of seven and eight members. The presence of either ATP or ADP induces formation of larger complexes formed by the stacking of multiple rings. Taken together, our results support the idea of a Rep68 molecule that exhibits the flexible oligomeric behavior needed to perform the wide range of functions occurring during the AAV life cycle.
doi:10.1128/JVI.02441-12
PMCID: PMC3554083  PMID: 23152528
5.  Repeated Aspergillus isolation in respiratory samples from non-immunocompromised patients not selected based on clinical diagnoses: colonisation or infection? 
BMC Infectious Diseases  2012;12:295.
Background
Isolation of Aspergillus from lower respiratory samples is associated with colonisation in high percentage of cases, making it of unclear significance. This study explored factors associated with diagnosis (infection vs. colonisation), treatment (administration or not of antifungals) and prognosis (mortality) in non-transplant/non-neutropenic patients showing repeated isolation of Aspergillus from lower respiratory samples.
Methods
Records of adult patients (29 Spanish hospitals) presenting ≥2 respiratory cultures yielding Aspergillus were retrospectively reviewed and categorised as proven (histopathological confirmation) or probable aspergillosis (new respiratory signs/symptoms with suggestive chest imaging) or colonisation (symptoms not attributable to Aspergillus without dyspnoea exacerbation, bronchospasm or new infiltrates). Logistic regression models (step–wise) were performed using Aspergillosis (probable + proven), antifungal treatment and mortality as dependent variables. Significant (p < 0.001) models showing the highest R2 were considered.
Results
A total of 245 patients were identified, 139 (56.7%) with Aspergillosis. Aspergillosis was associated (R2 = 0.291) with ICU admission (OR = 2.82), congestive heart failure (OR = 2.39) and steroids pre-admission (OR = 2.19) as well as with cavitations in X-ray/CT scan (OR = 10.68), radiological worsening (OR = 5.22) and COPD exacerbations/need for O2 interaction (OR = 3.52). Antifungals were administered to 79.1% patients with Aspergillosis (100% proven, 76.8% probable) and 29.2% colonised, with 69.5% patients receiving voriconazole alone or in combination. In colonised patients, administration of antifungals was associated with ICU admission at hospitalisation (OR = 12.38). In Aspergillosis patients its administration was positively associated (R2 = 0.312) with bronchospasm (OR = 9.21) and days in ICU (OR = 1.82) and negatively with Gold III + IV (OR = 0.26), stroke (OR = 0.024) and quinolone treatment (OR = 0.29). Mortality was 78.6% in proven, 41.6% in probable and 12.3% in colonised patients, and was positively associated in Aspergillosis patients (R2 = 0.290) with radiological worsening (OR = 3.04), APACHE-II (OR = 1.09) and number of antibiotics for treatment (OR = 1.51) and negatively with species other than A. fumigatus (OR = 0.14) and aspergillar tracheobronchitis (OR = 0.27).
Conclusions
Administration of antifungals was not always closely linked to the diagnostic categorisation (colonisation vs. Aspergillosis), being negatively associated with severe COPD (GOLD III + IV) and concomitant treatment with quinolones in patients with Aspergillosis, probably due to the similarity of signs/symptoms between this entity and pulmonary bacterial infections.
doi:10.1186/1471-2334-12-295
PMCID: PMC3519644  PMID: 23145899
Aspergillus; COPD; Clinical management; Aspergillosis
6.  Intracortical Lesions by 3T Magnetic Resonance Imaging and Correlation with Cognitive Impairment in Multiple Sclerosis 
Background
Accurate classification of MS lesions in the brain cortex may be important in understanding their impact on cognitive impairment. Improved accuracy in identification/classification of cortical lesions was demonstrated in a study combining two MRI sequences: double inversion recovery (DIR) and T1-weighted phase-sensitive inversion recovery (PSIR).
Objective
To evaluate the role of intracortical lesions (IC) in MS related cognitive impairment (CI) and compare it to the role of mixed (MX), juxtacortical (JX), the sum of IC + MX and with total lesions as detected on DIR/PSIR images. Correlations between CI and brain atrophy, disease severity and disease duration were also sought.
Methods
39 patients underwent extensive neuropsychological testing and were classified into: normal and impaired. Images were obtained on a 3T scanner and cortical lesions were assessed blind to the cognitive status of the subjects.
Results
238 cortical lesions were identified (130 IC, 108 MX) in 82% of the patients, 39 JX lesions were also identified. Correlations between CI and MX lesions alone (p=0.010) and with the sum of IC + MX lesions (p=0.030) were found. A correlation between severity of CI and EDSS was also seen (p=0.009).
Conclusion
Cortical lesions play an important role in CI. However our results suggest that lesions that remain contained within the cortical ribbon do not play a more important role than ones extending into the adjacent white matter; furthermore the size of the cortical lesion, and not the tissue specific location, may better explain their correlation with CI.
doi:10.1177/1352458511405561
PMCID: PMC3151473  PMID: 21543552
cortical lesions; multiple sclerosis; cognitive impairment; brain atrophy
7.  The Interdomain Linker of AAV-2 Rep68 Is an Integral Part of Its Oligomerization Domain: Role of a Conserved SF3 Helicase Residue in Oligomerization 
PLoS Pathogens  2012;8(6):e1002764.
The four Rep proteins of adeno-associated virus (AAV) orchestrate all aspects of its viral life cycle, including transcription regulation, DNA replication, virus assembly, and site-specific integration of the viral genome into the human chromosome 19. All Rep proteins share a central SF3 superfamily helicase domain. In other SF3 members this domain is sufficient to induce oligomerization. However, the helicase domain in AAV Rep proteins (i.e. Rep40/Rep52) as shown by its monomeric characteristic, is not able to mediate stable oligomerization. This observation led us to hypothesize the existence of an as yet undefined structural determinant that regulates Rep oligomerization. In this document, we described a detailed structural comparison between the helicase domains of AAV-2 Rep proteins and those of the other SF3 members. This analysis shows a major structural difference residing in the small oligomerization sub-domain (OD) of Rep helicase domain. In addition, secondary structure prediction of the linker connecting the helicase domain to the origin-binding domain (OBD) indicates the potential to form α-helices. We demonstrate that mutant Rep40 constructs containing different lengths of the linker are able to form dimers, and in the presence of ATP/ADP, larger oligomers. We further identified an aromatic linker residue (Y224) that is critical for oligomerization, establishing it as a conserved signature motif in SF3 helicases. Mutation of this residue critically affects oligomerization as well as completely abolishes the ability to produce infectious virus. Taken together, our data support a model where the linker residues preceding the helicase domain fold into an α-helix that becomes an integral part of the helicase domain and is critical for the oligomerization and function of Rep68/78 proteins through cooperative interaction with the OBD and helicase domains.
Author Summary
Viruses have to optimize the limited size of their genomes in order to generate the proteins required for infection and replication. Several mechanisms are used to accomplish this including the use of multiple promoters and alternative splicing. These processes generate gene products with diverse functions through the combinatorial assembly of a small number of protein domains. The small genome of the adeno-associated virus has two major open reading frames that generate seven proteins, four non-structural Rep proteins and three capsid proteins. The non-structural Rep proteins share a motor domain that uses hydrolysis of ATP to generate the conformational changes that drive DNA replication, transcriptional regulation, site-specific integration and the packing of viral genome into capsids. These functions depend upon the oligomerization of Rep proteins on specific DNA sites through the cooperation of the N-terminal origin binding domain and the C-terminal helicase domain. We provide evidence that the linker that connects the two domains is an integral feature of the helicase domain and contains a conserved aromatic residue that is critical for oligomerization. This residue emerges to be a signature motif of SF3 helicases and is also present in a subset of bacterial Rep proteins that support rolling circle replication mechanism.
doi:10.1371/journal.ppat.1002764
PMCID: PMC3375335  PMID: 22719256
8.  Effect of Angiogenesis-Related Cytokines on Rotator Cuff Disease: The Search for Sensitive Biomarkers of Early Tendon Degeneration 
Background:
Hallmarks of the pathogenesis of rotator cuff disease (RCD) include an abnormal immune response, angiogenesis, and altered variables of vascularity. Degenerative changes enhance production of pro-inflammatory, anti-inflammatory, and vascular angiogenesis-related cytokines (ARC) that play a pivotal role in the immune response to arthroscopic surgery and participate in the pathogenesis of RCD. The purpose of this study was to evaluate the ARC profile, ie, interleukin (IL): IL-1β, IL-6, IL-8, IL-10, vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and angiogenin (ANG), in human peripheral blood serum and correlate this with early degenerative changes in patients with RCD.
Methods:
Blood specimens were obtained from 200 patients with RCD and 200 patients seen in the orthopedic clinic for nonrotator cuff disorders. Angiogenesis imaging assays was performed using power Doppler ultrasound to evaluate variables of vascularity in the rotator cuff tendons. Expression of ARC was measured by commercial Bio-Plex Precision Pro Human Cytokine Assays.
Results:
Baseline concentrations of IL-1β, IL-8, and VEGF was significantly higher in RCD patients than in controls. Significantly higher serum VEGF levels were found in 85% of patients with RCD, and correlated with advanced stage of disease (r = 0.75; P < 0.0005), average microvascular density (r = 0.68, P < 0.005), and visual analog score (r = 0.75, P < 0.0002) in RCD patients. ANG and IL-10 levels were significantly lower in RCD patients versus controls. IL-1β and ANG levels were significantly correlated with degenerative tendon grade in RCD patients. No difference in IL-6 and bFGF levels was observed between RCD patients and controls. Patients with degenerative changes had markedly lower ANG levels compared with controls. Power Doppler ultrasound showed high blood vessel density in patients with tendon rupture.
Conclusion:
The pathogenesis of RCD is associated with an imbalance between pro-inflammatory, anti-inflammatory, and vascular ARC.
doi:10.4137/CMAMD.S7071
PMCID: PMC3115636  PMID: 21792342
rotator cuff disease; tendon degeneration; angiogenesis-related cytokines; biomarkers; power Doppler ultrasound
9.  Enabling Data Analysis on High-Throughput Data in Large Data Depository Using Web-Based Analysis Platform – A Case Study on Integrating QUEST with GenePattern in Epigenetics Research 
Enabling data analysis in large data depositories for high throughput experimental data such as gene microarrays and ChIP-seq is challenging. In this paper, we discuss three methods for integrating QUEST, a data depository for epigenetic experiments, with a web-based data analysis platform GenePattern. These methods are universal and can serve as an exemplary implementation resolving the dilemma facing many similar database systems in integrating data analysis tools.
doi:10.1109/BIBM.2009.84
PMCID: PMC2998767  PMID: 21151835
high-throughput database; GenePattern; ChIP-seq
10.  MPromDb update 2010: an integrated resource for annotation and visualization of mammalian gene promoters and ChIP-seq experimental data 
Nucleic Acids Research  2010;39(Database issue):D92-D97.
MPromDb (Mammalian Promoter Database) is a curated database that strives to annotate gene promoters identified from ChIP-seq results with the goal of providing an integrated resource for mammalian transcriptional regulation and epigenetics. We analyzed 507 million uniquely aligned RNAP-II ChIP-seq reads from 26 different data sets that include six human cell-types and 10 distinct mouse cell/tissues. The updated MPromDb version consists of computationally predicted (novel) and known active RNAP-II promoters (42 893 human and 48 366 mouse promoters) from various data sets freely available at NCBI GEO database. We found that 36% and 40% of protein-coding genes have alternative promoters in human and mouse genomes and ∼40% of promoters are tissue/cell specific. The identified RNAP-II promoters were annotated using various known and novel gene models. Additionally, for novel promoters we looked into other evidences—GenBank mRNAs, spliced ESTs, CAGE promoter tags and mRNA-seq reads. Users can search the database based on gene id/symbol, or by specific tissue/cell type and filter results based on any combination of tissue/cell specificity, Known/Novel, CpG/NonCpG, and protein-coding/non-coding gene promoters. We have also integrated GBrowse genome browser with MPromDb for visualization of ChIP-seq profiles and to display the annotations. The current release of MPromDb can be accessed at http://bioinformatics.wistar.upenn.edu/MPromDb/.
doi:10.1093/nar/gkq1171
PMCID: PMC3013732  PMID: 21097880
11.  Genome-wide mapping of RNA Pol-II promoter usage in mouse tissues by ChIP-seq 
Nucleic Acids Research  2010;39(1):190-201.
Alternative promoters that are differentially used in various cellular contexts and tissue types add to the transcriptional complexity in mammalian genome. Identification of alternative promoters and the annotation of their activity in different tissues is one of the major challenges in understanding the transcriptional regulation of the mammalian genes and their isoforms. To determine the use of alternative promoters in different tissues, we performed ChIP-seq experiments using antibody against RNA Pol-II, in five adult mouse tissues (brain, liver, lung, spleen and kidney). Our analysis identified 38 639 Pol-II promoters, including 12 270 novel promoters, for both protein coding and non-coding mouse genes. Of these, 6384 promoters are tissue specific which are CpG poor and we find that only 34% of the novel promoters are located in CpG-rich regions, suggesting that novel promoters are mostly tissue specific. By identifying the Pol-II bound promoter(s) of each annotated gene in a given tissue, we found that 37% of the protein coding genes use alternative promoters in the five mouse tissues. The promoter annotations and ChIP-seq data presented here will aid ongoing efforts of characterizing gene regulatory regions in mammalian genomes.
doi:10.1093/nar/gkq775
PMCID: PMC3017616  PMID: 20843783
12.  Total and high molecular weight adiponectin have similar utility for the identification of insulin resistance 
Background
Insulin resistance (IR) and related metabolic disturbances are characterized by low levels of adiponectin. High molecular weight adiponectin (HMWA) is considered the active form of adiponectin and a better marker of IR than total adiponectin. The objective of this study is to compare the utility of total adiponectin, HMWA and the HMWA/total adiponectin index (SA index) for the identification of IR and related metabolic conditions.
Methods
A cross-sectional analysis was performed in a group of ambulatory subjects, aged 20 to 70 years, in Mexico City. Areas under the receiver operator characteristic (ROC) curve for total, HMWA and the SA index were plotted for the identification of metabolic disturbances. Sensitivity and specificity, positive and negative predictive values, and accuracy for the identification of IR were calculated.
Results
The study included 101 men and 168 women. The areas under the ROC curve for total and HMWA for the identification of IR (0.664 vs. 0.669, P = 0.74), obesity (0.592 vs. 0.610, P = 0.32), hypertriglyceridemia (0.661 vs. 0.671, P = 0.50) and hypoalphalipoproteinemia (0.624 vs. 0.633, P = 0.58) were similar. A total adiponectin level of 8.03 μg/ml was associated with a sensitivity of 57.6%, a specificity of 65.9%, a positive predictive value of 50.0%, a negative predictive value of 72.4%, and an accuracy of 62.7% for the diagnosis of IR. The corresponding figures for a HMWA value of 4.25 μg/dl were 59.6%, 67.1%, 51.8%, 73.7% and 64.2%.
The area under the ROC curve of the SA index for the identification of IR was 0.622 [95% CI 0.554-0.691], obesity 0.613 [95% CI 0.536-0.689], hypertriglyceridemia 0.616 [95% CI 0.549-0.683], and hypoalphalipoproteinemia 0.606 [95% CI 0.535-0.677].
Conclusions
Total adiponectin, HMWA and the SA index had similar utility for the identification of IR and metabolic disturbances.
doi:10.1186/1475-2840-9-26
PMCID: PMC2902434  PMID: 20573249
13.  Annotation of gene promoters by integrative data-mining of ChIP-seq Pol-II enrichment data 
BMC Bioinformatics  2010;11(Suppl 1):S65.
Background
Use of alternative gene promoters that drive widespread cell-type, tissue-type or developmental gene regulation in mammalian genomes is a common phenomenon. Chromatin immunoprecipitation methods coupled with DNA microarray (ChIP-chip) or massive parallel sequencing (ChIP-seq) are enabling genome-wide identification of active promoters in different cellular conditions using antibodies against Pol-II. However, these methods produce enrichment not only near the gene promoters but also inside the genes and other genomic regions due to the non-specificity of the antibodies used in ChIP. Further, the use of these methods is limited by their high cost and strong dependence on cellular type and context.
Methods
We trained and tested different state-of-art ensemble and meta classification methods for identification of Pol-II enriched promoter and Pol-II enriched non-promoter sequences, each of length 500 bp. The classification models were trained and tested on a bench-mark dataset, using a set of 39 different feature variables that are based on chromatin modification signatures and various DNA sequence features. The best performing model was applied on seven published ChIP-seq Pol-II datasets to provide genome wide annotation of mouse gene promoters.
Results
We present a novel algorithm based on supervised learning methods to discriminate promoter associated Pol-II enrichment from enrichment elsewhere in the genome in ChIP-chip/seq profiles. We accumulated a dataset of 11,773 promoter and 46,167 non-promoter sequences, each of length 500 bp, generated from RNA Pol-II ChIP-seq data of five tissues (Brain, Kidney, Liver, Lung and Spleen). We evaluated the classification models in building the best predictor and found that Bagging and Random Forest based approaches give the best accuracy. We implemented the algorithm on seven different published ChIP-seq datasets to provide a comprehensive set of promoter annotations for both protein-coding and non-coding genes in the mouse genome. The resulting annotations contain 13,413 (4,747) protein-coding (non-coding) genes with single promoters and 9,929 (1,858) protein-coding (non-coding) genes with two or more alternative promoters, and a significant number of unassigned novel promoters.
Conclusion
Our new algorithm can successfully predict the promoters from the genome wide profile of Pol-II bound regions. In addition, our algorithm performs significantly better than existing promoter prediction methods and can be applied for genome-wide predictions of Pol-II promoters.
doi:10.1186/1471-2105-11-S1-S65
PMCID: PMC3009539  PMID: 20122241
14.  An integrative ChIP-chip and gene expression profiling to model SMAD regulatory modules 
BMC Systems Biology  2009;3:73.
Background
The TGF-β/SMAD pathway is part of a broader signaling network in which crosstalk between pathways occurs. While the molecular mechanisms of TGF-β/SMAD signaling pathway have been studied in detail, the global networks downstream of SMAD remain largely unknown. The regulatory effect of SMAD complex likely depends on transcriptional modules, in which the SMAD binding elements and partner transcription factor binding sites (SMAD modules) are present in specific context.
Results
To address this question and develop a computational model for SMAD modules, we simultaneously performed chromatin immunoprecipitation followed by microarray analysis (ChIP-chip) and mRNA expression profiling to identify TGF-β/SMAD regulated and synchronously coexpressed gene sets in ovarian surface epithelium. Intersecting the ChIP-chip and gene expression data yielded 150 direct targets, of which 141 were grouped into 3 co-expressed gene sets (sustained up-regulated, transient up-regulated and down-regulated), based on their temporal changes in expression after TGF-β activation. We developed a data-mining method driven by the Random Forest algorithm to model SMAD transcriptional modules in the target sequences. The predicted SMAD modules contain SMAD binding element and up to 2 of 7 other transcription factor binding sites (E2F, P53, LEF1, ELK1, COUPTF, PAX4 and DR1).
Conclusion
Together, the computational results further the understanding of the interactions between SMAD and other transcription factors at specific target promoters, and provide the basis for more targeted experimental verification of the co-regulatory modules.
doi:10.1186/1752-0509-3-73
PMCID: PMC2724489  PMID: 19615063
15.  Epigenetic repression of the estrogen-regulated Homeobox B13 gene in breast cancer 
Carcinogenesis  2008;29(7):1459-1465.
Several studies have reported that a high expression ratio of HOXB13 to IL17BR predicts tumor recurrence in node-negative, estrogen receptor (ER) α-positive breast cancer patients treated with tamoxifen. The molecular mechanisms underlying this dysregulation of gene expression remain to be explored. Our epigenetic analysis has found that increased promoter methylation of one of these genes, HOXB13, correlate with the decreased expression of its transcript in breast cancer cell lines (P < 0.005). Transcriptional silencing of this gene can be reversed by a demethylation treatment. HOXB13 is suppressed by the activation of estrogen signaling in ERα-positive breast cancer cells. However, treatment with 4-hydroxytamoxifen (4-OHT), an antiestrogen, abrogates the ERα-mediated suppression in cancer cells. The notion that this transcriptional induction of HOXB13 occurs in vitro with simultaneous exposure to both estrogen and 4-OHT may provide a biological explanation for its aberrant expression in many node-negative patients undergoing tamoxifen therapy. Interestingly, promoter hypermethylation of HOXB13 is more frequently observed in ERα-positive patients with increased lymph node metastasis (P = 0.031) and large tumor sizes (>5 cm) (P = 0.008). In addition, this aberrant epigenetic event is associated with shorter disease-free survival (P = 0.029) in cancer patients. These results suggest that hypermethylation of HOXB13 is a late event of breast tumorigenesis and a poor prognostic indicator of node-positive cancer patients.
doi:10.1093/carcin/bgn115
PMCID: PMC2899848  PMID: 18499701
16.  Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6 
The Journal of Cell Biology  2007;178(6):1025-1038.
Sequestration of misfolded proteins into pericentriolar inclusions called aggresomes is a means that cells use to minimize misfolded protein-induced cytotoxicity. However, the molecular mechanism by which misfolded proteins are recruited to aggresomes remains unclear. Mutations in the E3 ligase parkin cause autosomal recessive Parkinson's disease that is devoid of Lewy bodies, which are similar to aggresomes. Here, we report that parkin cooperates with heterodimeric E2 enzyme UbcH13/Uev1a to mediate K63-linked polyubiquitination of misfolded DJ-1. K63-linked polyubiquitination of misfolded DJ-1 serves as a signal for interaction with histone deacetylase 6, an adaptor protein that binds the dynein–dynactin complex. Through this interaction, misfolded DJ-1 is linked to the dynein motor and transported to aggresomes. Furthermore, fibroblasts lacking parkin display deficits in targeting misfolded DJ-1 to aggresomes. Our findings reveal a signaling role for K63-linked polyubiquitination in dynein-mediated transport, identify parkin as a key regulator in the recruitment of misfolded DJ-1 to aggresomes, and have important implications regarding the biogenesis of Lewy bodies.
doi:10.1083/jcb.200611128
PMCID: PMC2064625  PMID: 17846173
17.  A MicroRNA Signature of Hypoxia† ▿  
Molecular and Cellular Biology  2007;27(5):1859-1867.
Recent research has identified critical roles for microRNAs in a large number of cellular processes, including tumorigenic transformation. While significant progress has been made towards understanding the mechanisms of gene regulation by microRNAs, much less is known about factors affecting the expression of these noncoding transcripts. Here, we demonstrate for the first time a functional link between hypoxia, a well-documented tumor microenvironment factor, and microRNA expression. Microarray-based expression profiles revealed that a specific spectrum of microRNAs (including miR-23, -24, -26, -27, -103, -107, -181, -210, and -213) is induced in response to low oxygen, at least some via a hypoxia-inducible-factor-dependent mechanism. Select members of this group (miR-26, -107, and -210) decrease proapoptotic signaling in a hypoxic environment, suggesting an impact of these transcripts on tumor formation. Interestingly, the vast majority of hypoxia-induced microRNAs are also overexpressed in a variety of human tumors.
doi:10.1128/MCB.01395-06
PMCID: PMC1820461  PMID: 17194750
18.  Parkin-deficient mice are not more sensitive to 6-hydroxydopamine or methamphetamine neurotoxicity 
BMC Neuroscience  2005;6:71.
Background
Autosomal recessive juvenile parkinsonism (AR-JP) is caused by mutations in the parkin gene which encodes an E3 ubiquitin-protein ligase. Parkin is thought to be critical for protecting dopaminergic neurons from toxic insults by targeting misfolded or oxidatively damaged proteins for proteasomal degradation. Surprisingly, mice with targeted deletions of parkin do not recapitulate robust behavioral or pathological signs of parkinsonism. Since Parkin is thought to protect against neurotoxic insults, we hypothesized that the reason Parkin-deficient mice do not develop parkinsonism is because they are not exposed to appropriate environmental triggers. To test this possibility, we challenged Parkin-deficient mice with neurotoxic regimens of either methamphetamine (METH) or 6-hydroxydopamine (6-OHDA). Because Parkin function has been linked to many of the pathways involved in METH and 6-OHDA toxicity, we predicted that Parkin-deficient mice would be more sensitive to the neurotoxic effects of these agents.
Results
We found no signs consistent with oxidative stress, ubiquitin dysfunction, or degeneration of striatal dopamine neuron terminals in aged Parkin-deficient mice. Moreover, results from behavioral, neurochemical, and immunoblot analyses indicate that Parkin-deficient mice are not more sensitive to dopaminergic neurotoxicity following treatment with METH or 6-OHDA.
Conclusion
Our results suggest that the absence of a robust parkinsonian phenotype in Parkin-deficient mice is not due to the lack of exposure to environmental triggers with mechanisms of action similar to METH or 6-OHDA. Nevertheless, Parkin-deficient mice could be more sensitive to other neurotoxins, such as rotenone or MPTP, which have different mechanisms of action; therefore, identifying conditions that precipitate parkinsonism specifically in Parkin-deficient mice would increase the utility of this model and could provide insight into the mechanism of AR-JP. Alternatively, it remains possible that the absence of parkinsonism in Parkin-deficient mice could reflect fundamental differences between the function of human and mouse Parkin, or the existence of a redundant E3 ubiquitin-protein ligase in mouse that is not found in humans. Therefore, additional studies are necessary to understand why Parkin-deficient mice do not display robust signs of parkinsonism.
doi:10.1186/1471-2202-6-71
PMCID: PMC1351194  PMID: 16375772

Results 1-18 (18)