PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Potassium Current Is Not Affected by Long-Term Exposure to Ghrelin or GHRP-6 in Somatotropes GC Cells 
Journal of Biophysics  2013;2013:913792.
Ghrelin is a growth hormone (GH) secretagogue (GHS) and GHRP-6 is a synthetic peptide analogue; both act through the GHS receptor. GH secretion depends directly on the intracellular concentration of Ca2+; this is determined from the intracellular reserves and by the entrance of Ca2+ through the voltage-dependent calcium channels, which are activated by the membrane depolarization. Membrane potential is mainly determined by K+ channels. In the present work, we investigated the effect of ghrelin (10 nM) or GHRP-6 (100 nM) for 96 h on functional expression of voltage-dependent K+ channels in rat somatotropes: GC cell line. Physiological patch-clamp whole-cell recording was used to register the K+ currents. With Cd2+ (1 mM) and tetrodotoxin (1 μm) in the bath solution recording, three types of currents were characterized on the basis of their biophysical and pharmacological properties. GC cells showed a K+ current with a transitory component (IA) sensitive to 4-aminopyridine, which represents ~40% of the total outgoing current; a sustained component named delayed rectifier (IK), sensitive to tetraethylammonium; and a third type of K+ current was recorded at potentials more negative than −80 mV, permitting the entrance of K+ named inward rectifier (KIR). Chronic treatment with ghrelin or GHRP-6 did not modify the functional expression of K+ channels, without significant changes (P < 0.05) in the amplitudes of the three currents observed; in addition, there were no modifications in their biophysical properties and kinetic activation or inactivation.
doi:10.1155/2013/913792
PMCID: PMC3600309  PMID: 23533398
2.  Papillary Carcinoma of the Breast: An Overview 
Papillary carcinoma of the breast represents approximately 0.5% of all newly diagnosed cases of breast cancer. The prevalence of both invasive and in situ papillary carcinoma seems to be greater older postmenopausal women, and -in relative terms-in males. Histologic features of the tumor include cellular proliferations surrounding fibrovascular cores, with or without invasion. In this review, characteristics of both in situ and invasive disease are outlined. Immunohistochemical analyses of papillary carcinoma suggest the utility of markers such as smooth muscle myosin heavy chain, calponin, p63 and high molecular weight keratins, which can characterize the myoepithelial cell layer. With respect to radiographic evaluation of papillary carcinoma, ultrasonography is the most extensively studied imaging modality, though magnetic resonance mammography has potential utility. Available data suggest improved outcome for papillary carcinoma as compared to invasive ductal carcinoma. Treatment-related information for patients with papillary carcinoma is limited, and patterns noted in available series suggest a variable approach to this disease. The scarcity of information underscores the need for further treatment- and outcome-related studies in papillary carcinoma of the breast.
doi:10.1007/s10549-010-0961-5
PMCID: PMC3244819  PMID: 20524058
papillary; breast carcinoma; male breast cancer; breast ultrasonography; breast magnetic resonance mammography
3.  Temporal ChIP-on-Chip of RNA-Polymerase-II to detect novel gene activation events during photoreceptor maturation 
Molecular Vision  2010;16:252-271.
Purpose
During retinal development, post-mitotic neural progenitor cells must activate thousands of genes to complete synaptogenesis and terminal maturation. While many of these genes are known, others remain beyond the sensitivity of expression microarray analysis. Some of these elusive gene activation events can be detected by mapping changes in RNA polymerase-II (Pol-II) association around transcription start sites.
Methods
High-resolution (35 bp) chromatin immunoprecipitation (ChIP)-on-chip was used to map changes in Pol-II binding surrounding 26,000 gene transcription start sites during photoreceptor maturation of the mouse neural retina, comparing postnatal age 25 (P25) to P2. Coverage was 10–12 kb per transcription start site, including 2.5 kb downstream. Pol-II-active regions were mapped to the mouse genomic DNA sequence by using computational methods (Tiling Analysis Software-TAS program), and the ratio of maximum Pol-II binding (P25/P2) was calculated for each gene. A validation set of 36 genes (3%), representing a full range of Pol-II signal ratios (P25/P2), were examined with quantitative ChIP assays for transcriptionally active Pol-II. Gene expression assays were also performed for 19 genes of the validation set, again on independent samples. FLT-3 Interacting Zinc-finger-1 (FIZ1), a zinc-finger protein that associates with active promoter complexes of photoreceptor-specific genes, provided an additional ChIP marker to highlight genes activated in the mature neural retina. To demonstrate the use of ChIP-on-chip predictions to find novel gene activation events, four additional genes were selected for quantitative PCR analysis (qRT–PCR analysis); these four genes have human homologs located in unidentified retinal disease regions: Solute carrier family 25 member 33 (Slc25a33), Lysophosphatidylcholine acyltransferase 1 (Lpcat1), Coiled-coil domain-containing 126 (Ccdc126), and ADP-ribosylation factor-like 4D (Arl4d).
Results
ChIP-on-chip Pol-II peak signal ratios >1.8 predicted increased amounts of transcribing Pol-II and increased expression with an estimated 97% accuracy, based on analysis of the validation gene set. Using this threshold ratio, 1,101 genes were predicted to experience increased binding of Pol-II in their promoter regions during terminal maturation of the neural retina. Over 800 of these gene activations were additional to those previously reported by microarray analysis. Slc25a33, Lpcat1, Ccdc126, and Arl4d increased expression significantly (p<0.001) during photoreceptor maturation. Expression of all four genes was diminished in adult retinas lacking rod photoreceptors (Rd1 mice) compared to normal retinas (90% loss for Ccdc126 and Arl4d). For rhodopsin (Rho), a marker of photoreceptor maturation, two regions of maximum Pol-II signal corresponded to the upstream rhodopsin enhancer region and the rhodopsin proximal promoter region.
Conclusions
High-resolution maps of Pol-II binding around transcription start sites were generated for the postnatal mouse retina; which can predict activation increases for a specific gene of interest. Novel gene activation predictions are enriched for biologic functions relevant to vision, neural function, and chromatin regulation. Use of the data set to detect novel activation increases was demonstrated by expression analysis for several genes that have human homologs located within unidentified retinal disease regions: Slc25a33, Lpcat1, Ccdc126, and Arl4d. Analysis of photoreceptor-deficient retinas indicated that all four genes are expressed in photoreceptors. Genome-wide maps of Pol-II binding were developed for visual access in the University of California, Santa Cruz (UCSC) Genome Browser and its eye-centric version EyeBrowse (National Eye Institute-NEI). Single promoter resolution of Pol-II distribution patterns suggest the Rho enhancer region and the Rho proximal promoter region become closely associated with the activated gene’s promoter complex.
PMCID: PMC2822553  PMID: 20161818

Results 1-3 (3)