PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Use of Tetra-ammonium Tetrakis(4-Sulphonato)Phenyl Porphyrin for Pseudomonas and Bacillus Cell Imaging 
The use of tetraammonium tetrakis(4-sulphonato)phenyl porphyrin (TPPS), a water-soluble anionic compound, as a stain to analyse bacterial cells using fluorescent microscopy was investigated. TPPS was effectively used to analyse two different bacteria: Pseudomonas aeruginosa and Bacillus cereus. The variation in brightness with varying concentrations of TPPS was studied. The patterns of variations for these bacteria were found to be the same, but with consistently higher brightness for Bacillus cereus.
doi:10.1155/2010/697528
PMCID: PMC2926579  PMID: 20811478
2.  Identification of scaffold/Matrix Attachment (S/MAR) like DNA element from the gastrointestinal protozoan parasite Giardia lamblia 
BMC Genomics  2010;11:386.
Background
Chromatin in the nucleus of all eukaryotes is organized into a system of loops and domains. These loops remain fastened at their bases to the fundamental framework of the nucleus, the matrix or the scaffold. The DNA sequences which anchor the bases of the chromatin loops to the matrix are known as Scaffold/Matrix Attachment Regions or S/MARs. Though S/MARs have been studied in yeast and higher eukaryotes and they have been found to be associated with gene organization and regulation of gene expression, they have not been reported in protists like Giardia. Several tools have been discovered and formulated to predict S/MARs from a genome of a higher eukaryote which take into account a number of features. However, the lack of a definitive consensus sequence in S/MARs and the randomness of the protozoan genome in general, make it a challenge to predict and identify such sequences from protists.
Results
Here, we have analysed the Giardia genome for the probable S/MARs predicted by the available computational tools; and then shown these sequences to be physically associated with the nuclear matrix. Our study also reflects that while no single computational tool is competent to predict such complex elements from protist genomes, a combination of tools followed by experimental verification is the only way to confirm the presence of these elements from these organisms.
Conclusion
This is the first report of S/MAR elements from the protozoan parasite Giardia lamblia. This initial work is expected to lay a framework for future studies relating to genome organization as well as gene regulatory elements in this parasite.
doi:10.1186/1471-2164-11-386
PMCID: PMC3017767  PMID: 20565887
3.  Functionally specified protein signatures distinctive for each of the different blue copper proteins 
BMC Bioinformatics  2004;5:127.
Background
Proteins having similar functions from different sources can be identified by the occurrence in their sequences, a conserved cluster of amino acids referred to as pattern, motif, signature or fingerprint. The wide usage of protein sequence analysis in par with the growth of databases signifies the importance of using patterns or signatures to retrieve out related sequences. Blue copper proteins are found in the electron transport chain of prokaryotes and eukaryotes. The signatures already existing in the databases like the type 1 copper blue, multiple copper oxidase, cyt b/b6, photosystem 1 psaA&B, psaG&K, and reiske iron sulphur protein are not specified signatures for blue copper proteins as the name itself suggests. Most profile and motif databases strive to classify protein sequences into a broad spectrum of protein families. This work describes the signatures designed based on the copper metal binding motifs in blue copper proteins. The common feature in all blue copper proteins is a trigonal planar arrangement of two nitrogen ligands [each from histidine] and one sulphur containing thiolate ligand [from cysteine], with strong interactions between the copper center and these ligands.
Results
Sequences that share such conserved motifs are crucial to the structure or function of the protein and this could provide a signature of family membership. The blue copper proteins chosen for the study were plantacyanin, plastocyanin, cucumber basic protein, stellacyanin, dicyanin, umecyanin, uclacyanin, cusacyanin, rusticyanin, sulfocyanin, halocyanin, azurin, pseudoazurin, amicyanin and nitrite reductase which were identified in both eukaryotes and prokaryotes. ClustalW analysis of the protein sequences of each of the blue copper proteins was the basis for designing protein signatures or peptides. The protein signatures and peptides identified in this study were designed involving the active site region involving the amino acids bound to the copper atom. It was highly specific for each kind of blue copper protein and the false picks were minimized. The set of signatures designed specifically for the BCP's was entirely different from the existing broad spectrum signatures as mentioned in the background section.
Conclusions
These signatures can be very useful for the annotation of uncharacterized proteins and highly specific to retrieve blue copper protein sequences of interest from the non redundant databases containing a large deposition of protein sequences.
doi:10.1186/1471-2105-5-127
PMCID: PMC517927  PMID: 15357880
Blue copper proteins (BCP); ClustalW; Protein signatures; Peptide

Results 1-3 (3)