Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Minnelide: A Novel Therapeutic That Promotes Apoptosis in Non-Small Cell Lung Carcinoma In Vivo 
PLoS ONE  2013;8(10):e77411.
Minnelide, a pro-drug of triptolide, has recently emerged as a potent anticancer agent. The precise mechanisms of its cytotoxic effects remain unclear.
Cell viability was studied using CCK8 assay. Cell proliferation was measured real-time on cultured cells using Electric Cell Substrate Impedence Sensing (ECIS). Apoptosis was assayed by Caspase activity on cultured lung cancer cells and TUNEL staining on tissue sections. Expression of pro-survival and anti-apoptotic genes (HSP70, BIRC5, BIRC4, BIRC2, UACA, APAF-1) was estimated by qRTPCR. Effect of Minnelide on proliferative cells in the tissue was estimated by Ki-67 staining of animal tissue sections.
In this study, we investigated in vitro and in vivo antitumor effects of triptolide/Minnelide in non-small cell lung carcinoma (NSCLC). Triptolide/Minnelide exhibited anti-proliferative effects and induced apoptosis in NSCLC cell lines and NSCLC mouse models. Triptolide/Minnelide significantly down-regulated the expression of pro-survival and anti-apoptotic genes (HSP70, BIRC5, BIRC4, BIRC2, UACA) and up-regulated pro-apoptotic APAF-1 gene, in part, via attenuating the NF-κB signaling activity.
In conclusion, our results provide supporting mechanistic evidence for Minnelide as a potential in NSCLC.
PMCID: PMC3797124  PMID: 24143232
2.  miR-204 mediated loss of Myeloid cell leukemia-1 results in pancreatic cancer cell death 
Molecular Cancer  2013;12:105.
Pancreatic cancer is one of the most lethal human malignancies, with an all-stage 5-year survival of <5%, mainly due to lack of effective available therapies. Cancer cell survival is dependent upon up-regulation of the pro-survival response, mediated by anti-apoptotic proteins such as Mcl-1.
Here we show that over-expression of Mcl-1 in pancreatic patient tumor samples is linked to advancement of the disease. We have previously shown that triptolide, a diterpene triepoxide, is effective both in vitro and in vivo, in killing pancreatic cancer cells. Decrease of Mcl-1 levels, either by siRNA or by treatment with triptolide results in cell death. Using pancreatic cancer cell lines, we have shown that miR-204, a putative regulator of Mcl-1, is repressed in cancer cell lines compared to normal cells. Over-expression of miR-204, either by a miR-204 mimic, or by triptolide treatment results in a decrease in Mcl-1 levels, and a subsequent decrease in cell viability. Using luciferase reporter assays, we confirmed the ability of miR-204 to down-regulate Mcl-1 by directly binding to the Mcl-1 3’ UTR. Using human xenograft samples treated with Minnelide, a water soluble variant of triptolide, we have shown that miR-204 is up-regulated and Mcl-1 is down-regulated in treated vs. control tumors.
Triptolide mediated miR-204 increase causes pancreatic cancer cell death via loss of Mcl-1.
PMCID: PMC3848798  PMID: 24025188
Pancreatic cancer; miR 204; Mcl-1; Triptolide; Cell death
3.  A Preclinical Evaluation of Minnelide as a Therapeutic Agent Against Pancreatic Cancer 
Science translational medicine  2012;4(156):156ra139.
Pancreatic cancer is one of the most lethal human malignancies with an all-stage 5-year survival frequency of <5%, which highlights the urgent need for more effective therapeutic strategies. We have previously shown that triptolide, a diterpenoid, is effective against pancreatic cancer cells in vitro as well as in vivo. However, triptolide is poorly soluble in water, limiting its clinical use. We therefore synthesized a water-soluble analog of triptolide, named Minnelide. The efficacy of Minnelide was tested both in vitro and in multiple independent yet complementary in vivo models of pancreatic cancer: an orthotopic model of pancreatic cancer using human pancreatic cancer cell lines in athymic nude mice, a xenograft model where human pancreatic tumors were transplanted into severe combined immunodeficient mice, and a spontaneous pancreatic cancer mouse model (KRasG12D; Trp53R172H; Pdx-1Cre). In these multiple complementary models of pancreatic cancer, Minnelide was highly effective in reducing pancreatic tumor growth and spread, and improving survival. Together, our results suggest that Minnelide shows promise as a potent chemotherapeutic agent against pancreatic cancer, and support the evaluation of Minnelide in clinical trials against this deadly disease.
PMCID: PMC3656604  PMID: 23076356
4.  MUC1c Regulates Cell Survival in Pancreatic Cancer by Preventing Lysosomal Permeabilization 
PLoS ONE  2012;7(8):e43020.
MUC1 is a type I transmembrane glycoprotein aberrantly overexpressed in various cancer cells including pancreatic cancer. The cytosolic end of MUC1 (MUC1-c) is extensively involved in a number of signaling pathways. MUC1-c is reported to inhibit apoptosis in a number of cancer cells, but the mechanism of inhibition is unclear.
Expression of MUC1-c was studied in the pancreatic cancer cell line MIAPaCa-2 at the RNA level by using qRTPCR and at the protein level by Western blotting. MUC1-c expression was inhibited either by siRNA or by a specific peptide inhibitor, GO-201. Effect of MUC1-c inhibition on viability and proliferation and lysosomal permeabilization were studied. Association of MUC1-c with HSP70 was detected by co-immunoprecipitation of MUC1-c and HSP70. Localization of MUC1-c in cellular organelles was monitored by immunofluorescence and with immuno- blotting by MUC1-c antibody after subcellular fractionation.
Inhibition of MUC1-c by an inhibitor (GO-201) or siRNA resulted in reduced viability and reduced proliferation of pancreatic cancer cells. Furthermore, GO-201, the peptide inhibitor of MUC1-c, was effective in reducing tumor burden in pancreatic cancer mouse model. MUC1-c was also found to be associated with HSP70 in the cytosol, although a significant amount of MUC1 was also seen to be present in the lysosomes. Inhibition of MUC1 expression or activity showed an enhanced Cathepsin B activity in the cytosol, indicating lysosomal permeabilization. Therefore this study indicates that MUC1-c interacted with HSP70 in the cytosol of pancreatic cancer cells and localized to the lysosomes in these cells. Further, our results showed that MUC1-c protects pancreatic cancer cells from cell death by stabilizing lysosomes and preventing release of Cathepsin B in the cytosol.
PMCID: PMC3418232  PMID: 22912777
5.  The Antiretroviral Lectin Cyanovirin-N Targets Well-Known and Novel Targets on the Surface of Entamoeba histolytica Trophozoites ▿ † 
Eukaryotic Cell  2010;9(11):1661-1668.
Entamoeba histolytica, the protist that causes amebic dysentery and liver abscess, has a truncated Asn-linked glycan (N-glycan) precursor composed of seven sugars (Man5GlcNAc2). Here, we show that glycoproteins with unmodified N-glycans are aggregated and capped on the surface of E. histolytica trophozoites by the antiretroviral lectin cyanovirin-N and then replenished from large intracellular pools. Cyanovirin-N cocaps the Gal/GalNAc adherence lectin, as well as glycoproteins containing O-phosphodiester-linked glycans recognized by an anti-proteophosphoglycan monoclonal antibody. Cyanovirin-N inhibits phagocytosis by E. histolytica trophozoites of mucin-coated beads, a surrogate assay for amebic virulence. For technical reasons, we used the plant lectin concanavalin A rather than cyanovirin-N to enrich secreted and membrane proteins for mass spectrometric identification. E. histolytica glycoproteins with occupied N-glycan sites include Gal/GalNAc lectins, proteases, and 17 previously hypothetical proteins. The latter glycoproteins, as well as 50 previously hypothetical proteins enriched by concanavalin A, may be vaccine targets as they are abundant and unique. In summary, the antiretroviral lectin cyanovirin-N binds to well-known and novel targets on the surface of E. histolytica that are rapidly replenished from large intracellular pools.
PMCID: PMC2976296  PMID: 20852023
6.  Suggestive Evidence for Darwinian Selection against Asparagine-Linked Glycans of Plasmodium falciparum and Toxoplasma gondii ▿ † 
Eukaryotic Cell  2010;9(2):228-241.
We are interested in asparagine-linked glycans (N-glycans) of Plasmodium falciparum and Toxoplasma gondii, because their N-glycan structures have been controversial and because we hypothesize that there might be selection against N-glycans in nucleus-encoded proteins that must pass through the endoplasmic reticulum (ER) prior to threading into the apicoplast. In support of our hypothesis, we observed the following. First, in protists with apicoplasts, there is extensive secondary loss of Alg enzymes that make lipid-linked precursors to N-glycans. Theileria makes no N-glycans, and Plasmodium makes a severely truncated N-glycan precursor composed of one or two GlcNAc residues. Second, secreted proteins of Toxoplasma, which uses its own 10-sugar precursor (Glc3Man5GlcNAc2) and the host 14-sugar precursor (Glc3Man9GlcNAc2) to make N-glycans, have very few sites for N glycosylation, and there is additional selection against N-glycan sites in its apicoplast-targeted proteins. Third, while the GlcNAc-binding Griffonia simplicifolia lectin II labels ER, rhoptries, and surface of plasmodia, there is no apicoplast labeling. Similarly, the antiretroviral lectin cyanovirin-N, which binds to N-glycans of Toxoplasma, labels ER and rhoptries, but there is no apicoplast labeling. We conclude that possible selection against N-glycans in protists with apicoplasts occurs by eliminating N-glycans (Theileria), reducing their length (Plasmodium), or reducing the number of N-glycan sites (Toxoplasma). In addition, occupation of N-glycan sites is markedly reduced in apicoplast proteins versus some secretory proteins in both Plasmodium and Toxoplasma.
PMCID: PMC2823003  PMID: 19783771
7.  Evidence for Mucin-Like Glycoproteins That Tether Sporozoites of Cryptosporidium parvum to the Inner Surface of the Oocyst Wall▿ †  
Eukaryotic Cell  2009;9(1):84-96.
Cryptosporidium parvum oocysts, which are spread by the fecal-oral route, have a single, multilayered wall that surrounds four sporozoites, the invasive form. The C. parvum oocyst wall is labeled by the Maclura pomifera agglutinin (MPA), which binds GalNAc, and the C. parvum wall contains at least two unique proteins (Cryptosporidium oocyst wall protein 1 [COWP1] and COWP8) identified by monoclonal antibodies. C. parvum sporozoites have on their surface multiple mucin-like glycoproteins with Ser- and Thr-rich repeats (e.g., gp40 and gp900). Here we used ruthenium red staining and electron microscopy to demonstrate fibrils, which appear to attach or tether sporozoites to the inner surface of the C. parvum oocyst wall. When disconnected from the sporozoites, some of these fibrillar tethers appear to collapse into globules on the inner surface of oocyst walls. The most abundant proteins of purified oocyst walls, which are missing the tethers and outer veil, were COWP1, COWP6, and COWP8, while COWP2, COWP3, and COWP4 were present in trace amounts. In contrast, MPA affinity-purified glycoproteins from C. parvum oocysts, which are composed of walls and sporozoites, included previously identified mucin-like glycoproteins, a GalNAc-binding lectin, a Ser protease inhibitor, and several novel glycoproteins (C. parvum MPA affinity-purified glycoprotein 1 [CpMPA1] to CpMPA4). By immunoelectron microscopy (immuno-EM), we localized mucin-like glycoproteins (gp40 and gp900) to the ruthenium red-stained fibrils on the inner surface wall of oocysts, while antibodies to the O-linked GalNAc on glycoproteins were localized to the globules. These results suggest that mucin-like glycoproteins, which are associated with the sporozoite surface, may contribute to fibrils and/or globules that tether sporozoites to the inner surface of oocyst walls.
PMCID: PMC2805294  PMID: 19949049
8.  Identification of scaffold/Matrix Attachment (S/MAR) like DNA element from the gastrointestinal protozoan parasite Giardia lamblia 
BMC Genomics  2010;11:386.
Chromatin in the nucleus of all eukaryotes is organized into a system of loops and domains. These loops remain fastened at their bases to the fundamental framework of the nucleus, the matrix or the scaffold. The DNA sequences which anchor the bases of the chromatin loops to the matrix are known as Scaffold/Matrix Attachment Regions or S/MARs. Though S/MARs have been studied in yeast and higher eukaryotes and they have been found to be associated with gene organization and regulation of gene expression, they have not been reported in protists like Giardia. Several tools have been discovered and formulated to predict S/MARs from a genome of a higher eukaryote which take into account a number of features. However, the lack of a definitive consensus sequence in S/MARs and the randomness of the protozoan genome in general, make it a challenge to predict and identify such sequences from protists.
Here, we have analysed the Giardia genome for the probable S/MARs predicted by the available computational tools; and then shown these sequences to be physically associated with the nuclear matrix. Our study also reflects that while no single computational tool is competent to predict such complex elements from protist genomes, a combination of tools followed by experimental verification is the only way to confirm the presence of these elements from these organisms.
This is the first report of S/MAR elements from the protozoan parasite Giardia lamblia. This initial work is expected to lay a framework for future studies relating to genome organization as well as gene regulatory elements in this parasite.
PMCID: PMC3017767  PMID: 20565887
9.  Molecular characterization of nucleocytosolic O-GlcNAc transferases of Giardia lamblia and Cryptosporidium parvum 
Glycobiology  2008;19(4):331-336.
O-Linked N-acetylglucosaminyltransferase (OGT) catalyzes the transfer of a single GlcNAc to the Ser or Thr of nucleocytoplasmic proteins. OGT activity, which may compete with that of kinases, is involved in signaling in animals and plants, and abnormalities in OGT activities have been associated with type 2 diabetes. Here, we show that ogt genes that predict enzymes with characteristic tetratricopeptide repeats and a spindly domain are present in some protists (Giardia, Cryptosporidium, Toxoplasma, and Dictyostelium) but are absent from the majority of protists examined (e.g., Plasmodium, Trypanosoma, Entamoeba, and Trichomonas). Similarly, ogt genes are present in some fungi but are absent from numerous other fungi, suggesting that secondary loss is an important contributor to the evolution of ogt genes. Nucleocytosolic extracts of Giardia and Cryptosporidium show OGT activity, and recombinant Giardia and Cryptosporidium OGTs are active in yeast and bacteria, respectively. These results suggest the possibility that O-GlcNAc modification of nucleocytosolic proteins also has function(s) in simple eukaryotes.
PMCID: PMC2733775  PMID: 18948359
Cryptosporidium; evolution; Giardia; O-GlcNAc transferase; recombinant expression
10.  Giardia, Entamoeba, and Trichomonas Enzymes Activate Metronidazole (Nitroreductases) and Inactivate Metronidazole (Nitroimidazole Reductases) ▿ †  
Infections with Giardia lamblia, Entamoeba histolytica, and Trichomonas vaginalis, which cause diarrhea, dysentery, and vaginitis, respectively, are each treated with metronidazole. Here we show that Giardia, Entamoeba, and Trichomonas have oxygen-insensitive nitroreductase (ntr) genes which are homologous to those genes that have nonsense mutations in metronidazole-resistant Helicobacter pylori isolates. Entamoeba and Trichomonas also have nim genes which are homologous to those genes expressed in metronidazole-resistant Bacteroides fragilis isolates. Recombinant Giardia, Entamoeba, and Trichomonas nitroreductases used NADH rather than the NADPH used by Helicobacter, and two recombinant Entamoeba nitroreductases increased the metronidazole sensitivity of transformed Escherichia coli strains. Conversely, the recombinant nitroimidazole reductases (NIMs) of Entamoeba and Trichmonas conferred very strong metronidazole resistance to transformed bacteria. The Ehntr1 gene of the genome project HM-1:IMSS strain of Entamoeba histolytica had a nonsense mutation, and the same nonsense mutation was present in 3 of 22 clinical isolates of Entamoeba. While ntr and nim mRNAs were variably expressed by cultured Entamoeba and Trichomonas isolates, there was no relationship to metronidazole sensitivity. We conclude that microaerophilic protists have bacterium-like enzymes capable of activating metronidazole (nitroreductases) and inactivating metronidazole (NIMs). While Entamoeba and Trichomonas displayed some of the changes (nonsense mutations and gene overexpression) associated with metronidazole resistance in bacteria, these changes did not confer metronidazole resistance to the microaerophilic protists examined here.
PMCID: PMC2630645  PMID: 19015349
11.  Dolichol-linked oligosaccharide selection by the oligosaccharyltransferase in protist and fungal organisms 
The Journal of Cell Biology  2007;177(1):29-37.
The dolichol-linked oligosaccharide Glc3Man9GlcNAc2-PP-Dol is the in vivo donor substrate synthesized by most eukaryotes for asparagine-linked glycosylation. However, many protist organisms assemble dolichol-linked oligosaccharides that lack glucose residues. We have compared donor substrate utilization by the oligosaccharyltransferase (OST) from Trypanosoma cruzi, Entamoeba histolytica, Trichomonas vaginalis, Cryptococcus neoformans, and Saccharomyces cerevisiae using structurally homogeneous dolichol-linked oligosaccharides as well as a heterogeneous dolichol-linked oligosaccharide library. Our results demonstrate that the OST from diverse organisms utilizes the in vivo oligo saccharide donor in preference to certain larger and/or smaller oligosaccharide donors. Steady-state enzyme kinetic experiments reveal that the binding affinity of the tripeptide acceptor for the protist OST complex is influenced by the structure of the oligosaccharide donor. This rudimentary donor substrate selection mechanism has been refined in fungi and vertebrate organisms by the addition of a second, regulatory dolichol-linked oligosaccharide binding site, the presence of which correlates with acquisition of the SWP1/ribophorin II subunit of the OST complex.
PMCID: PMC2064103  PMID: 17403929

Results 1-11 (11)