PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (67)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder 
Nature genetics  2011;44(1):78-84.
Attention deficit hyperactivity disorder (ADHD) is a common, heritable neuropsychiatric disorder of unknown etiology. We performed a whole-genome copy number variation (CNV) study on 1,013 cases with ADHD and 4,105 healthy children of European ancestry using 550,000 SNPs. We evaluated statistically significant findings in multiple independent cohorts, with a total of 2,493 cases with ADHD and 9,222 controls of European ancestry, using matched platforms. CNVs affecting metabotropic glutamate receptor genes were enriched across all cohorts (P = 2.1 × 10−9). We saw GRM5 (encoding glutamate receptor, metabotropic 5) deletions in ten cases and one control (P = 1.36 × 10−6). We saw GRM7 deletions in six cases, and we saw GRM8 deletions in eight cases and no controls. GRM1 was duplicated in eight cases. We experimentally validated the observed variants using quantitative RT-PCR. A gene network analysis showed that genes interacting with the genes in the GRM family are enriched for CNVs in ~10% of the cases (P = 4.38 × 10−10) after correction for occurrence in the controls. We identified rare recurrent CNVs affecting glutamatergic neurotransmission genes that were overrepresented in multiple ADHD cohorts.
doi:10.1038/ng.1013
PMCID: PMC4310555  PMID: 22138692
2.  Mammalian CAP (Cyclase-associated protein) in the world of cell migration 
Cell Adhesion & Migration  2013;8(1):55-59.
Cell migration is essential for a variety of fundamental biological processes such as embryonic development, wound healing, and immune response. Aberrant cell migration also underlies pathological conditions such as cancer metastasis, in which morphological transformation promotes spreading of cancer to new sites. Cell migration is driven by actin dynamics, which is the repeated cycling of monomeric actin (G-actin) into and out of filamentous actin (F-actin). CAP (Cyclase-associated protein, also called Srv2) is a conserved actin-regulatory protein, which is implicated in cell motility and the invasiveness of human cancers. It cooperates with another actin regulatory protein, cofilin, to accelerate actin dynamics. Hence, knockdown of CAP1 slows down actin filament turnover, which in most cells leads to reduced cell motility. However, depletion of CAP1 in HeLa cells, while causing reduction in dynamics, actually led to increased cell motility. The increases in motility are likely through activation of cell adhesion signals through an inside-out signaling. The potential to activate adhesion signaling competes with the negative effect of CAP1 depletion on actin dynamics, which would reduce cell migration. In this commentary, we provide a brief overview of the roles of mammalian CAP1 in cell migration, and highlight a likely mechanism underlying the activation of cell adhesion signaling and elevated motility caused by depletion of CAP1.
doi:10.4161/cam.27479
PMCID: PMC3974795  PMID: 24429384
actin cytoskeleton; cell migration; cofilin; cell adhesion; FAK; Talin; srv2
3.  Remote Ischemic Preconditioning Reduces Perioperative Cardiac and Renal Events in Patients Undergoing Elective Coronary Intervention: A Meta-Analysis of 11 Randomized Trials 
PLoS ONE  2014;9(12):e115500.
Background
Results from randomized controlled trials (RCT) concerning cardiac and renal effect of remote ischemic preconditioning(RIPC) in patients with stable coronary artery disease(CAD) are inconsistent. The aim of this study was to explore whether RIPC reduce cardiac and renal events after elective percutaneous coronary intervention (PCI).
Methods and Results
RCTs with data on cardiac or renal effect of RIPC in PCI were searched from Pubmed, EMBase, and Cochrane library (up to July 2014). Meta-regression and subgroup analysis were performed to identify the potential sources of significant heterogeneity(I2≥40%). Eleven RCTs enrolling a total of 1713 study subjects with stable CAD were selected. Compared with controls, RIPC significantly reduced perioperative incidence of myocardial infarction (MI) [odds ratio(OR)  = 0.68; 95% CI, 0.51 to 0.91; P = 0.01; I2 = 41.0%] and contrast-induced acute kidney injury(AKI) (OR = 0.61; 95% CI, 0.38 to 0.98; P = 0.04; I2 = 39.0%). Meta-regression and subgroup analyses confirmed that the major source of heterogeneity for the incidence of MI was male proportion (coefficient  = −0.049; P = 0.047; adjusted R2 = 0.988; P = 0.02 for subgroup difference).
Conclusions
The present meta-analysis of RCTs suggests that RIPC may offer cardiorenal protection by reducing the incidence of MI and AKI in patients undergoing elective PCI. Moreover, this effect on MI is more pronounced in male subjects. Future high-quality, large-scale clinical trials should focus on the long-term clinical effect of RIPC.
doi:10.1371/journal.pone.0115500
PMCID: PMC4281209  PMID: 25551671
4.  Hot pressing to enhance the transport Jc of Sr0.6K0.4Fe2As2 superconducting tapes 
Scientific Reports  2014;4:6944.
High-performance Sr0.6K0.4Fe2As2 (Sr-122) tapes have been successfully fabricated using hot pressing (HP) process. The effect of HP temperatures (850–925°C) on the c-axis texture, resistivity, Vickers micro-hardness, microstructure and critical current properties has been systematically studied. Taking advantage of high degree of c-axis texture, well grain connectivity and large concentration of strong-pinning defects, we are able to obtain an excellent Jc of 1.2 × 105 A/cm2 at 4.2 K and 10 T for Sr-122 tapes. More importantly, the field dependence of Jc turns out to be very weak, such that in 14 T the Jc still remains ~ 1.0 × 105 A/cm2. These Jc values are the highest ever reported so far for iron-pnictide wires and tapes, achieving the level desired for practical applications. Our results clearly strengthen the position of iron-pnictide conductors as a competitor to the conventional and MgB2 superconductors for high field applications.
doi:10.1038/srep06944
PMCID: PMC4221786  PMID: 25374068
5.  20(S)-Protopanaxadiol Inhibition of Progression and Growth of Castration-Resistant Prostate Cancer 
PLoS ONE  2014;9(11):e111201.
Castration-resistant progression of prostate cancer after androgen deprivation therapies remains the most critical challenge in the clinical management of prostate cancer. Resurgent androgen receptor (AR) activity is an established driver of castration-resistant progression, and upregulation of the full-length AR (AR-FL) and constitutively-active AR splice variants (AR-Vs) has been implicated to contribute to the resurgent AR activity. We reported previously that ginsenoside 20(S)-protopanaxadiol-aglycone (PPD) can reduce the abundance of both AR-FL and AR-Vs. In the present study, we further showed that the effect of PPD on AR expression and target genes was independent of androgen. PPD treatment resulted in a suppression of ligand-independent AR transactivation. Moreover, PPD delayed castration-resistant regrowth of LNCaP xenograft tumors after androgen deprivation and inhibited the growth of castration-resistant 22Rv1 xenograft tumors with endogenous expression of AR-FL and AR-Vs. This was accompanied by a decline in serum prostate-specific antigen levels as well as a decrease in AR levels and mitoses in the tumors. Notably, the 22Rv1 xenograft tumors were resistant to growth inhibition by the next-generation anti-androgen enzalutamide. The present study represents the first to show the preclinical efficacy of PPD in inhibiting castration-resistant progression and growth of prostate cancer. The findings provide a rationale for further developing PPD or its analogues for prostate cancer therapy.
doi:10.1371/journal.pone.0111201
PMCID: PMC4222907  PMID: 25375370
6.  A Non-Invasive Laboratory Panel as a Diagnostic and Prognostic Biomarker for Thrombotic Microangiopathy: Development and Application in a Chinese Cohort Study 
PLoS ONE  2014;9(11):e111992.
Background
Thrombotic microangiopathy (TMA) in the kidney is a histopathologic lesion that occurs in a number of clinical settings and is often associated with poor renal prognosis. The standard test for the diagnosis of TMA is the renal biopsy; noninvasive parameters such as potential biomarkers have not been developed.
Methods
We analyzed routine parameters in a cohort of 220 patients with suspected TMA and developed a diagnostic laboratory panel by logistic regression. The levels of candidate markers were validated using an independent cohort (n = 46), a cohort of systemic lupus erythematosus (SLE) (n = 157) and an expanded cohort (n = 113), as well as 9 patients with repeat biopsies.
Results
Of the 220 patients in the derivation cohort, 51 patients with biopsy-proven TMA presented with a worse renal prognosis than those with no TMA (P = 0.002). Platelet and L-lactate dehydrogenase (LDH) levels showed an acceptable diagnostic value of TMA (AUC = 0.739 and 0.756, respectively). A panel of 4 variables - creatinine, platelets, ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats 13) activity and LDH - can effectively discriminate patients with TMA (AUC = 0.800). In the validation cohort, the platelet and LDH levels and the 4-variable panel signature robustly distinguished patients with TMA. The discrimination effects of these three markers were confirmed in patients with SLE. Moreover, LDH levels and the 4-variable panel signature also showed discrimination values in an expanded set. Among patients undergoing repeat biopsy, increased LDH levels and panel signatures were associated with TMA status when paired evaluations were performed. Importantly, only the 4-variable panel was an independent prognostic marker for renal outcome (hazard ratio = 3.549; P<0.001).
Conclusions
The noninvasive laboratory diagnostic panel is better for the early detection and prognosis of TMA compared with a single parameter, and may provide a promising biomarker for clinical application.
doi:10.1371/journal.pone.0111992
PMCID: PMC4221199  PMID: 25372665
7.  Subverting ER-Stress towards Apoptosis by Nelfinavir and Curcumin Coexposure Augments Docetaxel Efficacy in Castration Resistant Prostate Cancer Cells 
PLoS ONE  2014;9(8):e103109.
Despite its side-effects, docetaxel (DTX) remains a first-line treatment against castration resistant prostate cancer (CRPC). Therefore, strategies to increase its anti-tumor efficacy and decrease its side effects are critically needed. Targeting of the constitutive endoplasmic reticulum (ER) stress in cancer cells is being investigated as a chemosensitization approach. We hypothesized that the simultaneous induction of ER-stress and suppression of PI3K/AKT survival pathway will be a more effective approach. In a CRPC cell line, C4-2B, we observed significant (p<0.005) enhancement of DTX-induced cytotoxicity following coexposure to thapsigargin and an AKT-inhibitor. However, since these two agents are not clinically approved, we investigated whether a combination of nelfinavir (NFR) and curcumin (CUR), known to target both these metabolic pathways, can similarly increase DTX cytotoxicity in CRPC cells. Within 24 hrs post-exposure to physiologic concentrations of NFR (5 µM) and CUR (5 µM) a significantly (p<0.005) enhanced cytotoxicity was evident with low concentration of DTX (10 nM). This 3-drug combination rapidly increased apoptosis in aggressive C4-2B cells, but not in RWPE-1 cells or in primary prostate epithelial cells (PrEC). Comparative molecular studies revealed that this 3-drug combination caused a more pronounced suppression of phosphorylated-AKT and higher induction in phosphorylated-eIF2α in C4-2B cells, as compared to RWPE-1 cells. Acute exposure (3–9 hrs) to this 3-drug combination intensified ER-stress induced pro-apoptotic markers, i.e. ATF4, CHOP, and TRIB3. At much lower concentrations, chronic (3 wks) exposures to these three agents drastically reduced colony forming units (CFU) by C4-2B cells. In vivo studies using mice containing C4-2B tumor xenografts showed significant (p<0.05) enhancement of DTX’s (10 mg/kg) anti-tumor efficacy following coexposure to NFR (20 mg/kg) & CUR (100 mg/kg). Immunohistochemical (IHC) analyses of tumor sections indicated decreased Ki-67 staining and increased TUNEL intensity in mice exposed to the 3-drug combination. Therefore, subverting ER-stress towards apoptosis using adjuvant therapy with NFR and CUR can chemosensitize the CRPC cells to DTX therapy.
doi:10.1371/journal.pone.0103109
PMCID: PMC4133210  PMID: 25121735
8.  Metformin inhibits the proliferation of A549/CDDP cells by activating p38 mitogen-activated protein kinase 
Oncology Letters  2014;8(3):1269-1274.
Metformin (Met) has been widely used in hypoglycemic therapy, and it is also able to reduce the incidence of tumors and tumor-related mortality. The present study investigated whether Met could inhibit the proliferation of lung cancer cells and enhance the sensitivity of a cisplatin-resistant lung cancer A549/CDDP cell line to cisplatin. It was found that Met treatment inhibited the proliferation of different lung cancer cells. Met inhibited the cell cycle of the A549/CDDP cells and induced apoptosis. Upon Met treatment, the A549/CDDP cells were arrested at the G1 phase. The apoptosis of the A549/CDDP cells was confirmed by the appearance of apoptotic bodies in cells stained with Hoechst 33258, and by the cleavage of BH3 interacting-domain death agonist and poly (ADP-ribose) polymerase. Furthermore, results showed that the phosphorylation level of p38 mitogen-activated protein kinase (MAPK) was increased after Met treatment. The p38 MAPK inhibitor, SB203580, significantly blocked Met-induced apoptosis in the A549/CDDP cells. It was further demonstrated that Met could enhance the sensitivity of the A549/CDDP cells to cisplatin. In summary, the present study identified Met as a drug sensitizer that could improve the treatment effect of cisplatin in cisplatin-resistant lung cancers.
doi:10.3892/ol.2014.2270
PMCID: PMC4114589  PMID: 25120704
metformin; cisplatin-resistant lung cancer cells; p38 MAPK
9.  GWAS of blood cell traits identifies novel associated loci and epistatic interactions in Caucasian and African-American children 
Human Molecular Genetics  2012;22(7):1457-1464.
Hematological traits are important clinical indicators, the genetic determinants of which have not been fully investigated. Common measures of hematological traits include red blood cell (RBC) count, hemoglobin concentration (HGB), hematocrit (HCT), mean corpuscular hemoglobin (MCH), MCH concentration (MCHC), mean corpuscular volume (MCV), platelet count (PLT) and white blood cell (WBC) count. We carried out a genome-wide association study of the eight common hematological traits among 7943 African-American children and 6234 Caucasian children. In African Americans, we report five novel associations of HBE1 variants with HCT and MCHC, the alpha-globin gene cluster variants with RBC and MCHC, and a variant at the ARHGEF3 locus with PLT, as well as replication of four previously reported loci at genome-wide significance. In Caucasians, we report a novel association of variants at the COPZ1 locus with PLT as well as replication of four previously reported loci at genome-wide significance. Extended analysis of an association observed between MCH and the alpha-globin gene cluster variants demonstrated independent effects and epistatic interaction at the locus, impacting the risk of iron deficiency anemia in African Americans with specific genotype states. In summary, we extend the understanding of genetic variants underlying hematological traits based on analyses in African-American children.
doi:10.1093/hmg/dds534
PMCID: PMC3657475  PMID: 23263863
10.  IL-17 induces expression of vascular cell adhesion molecule through signaling pathway of NF-κB, but not Akt1 and TAK1 in vascular smooth muscle cells 
Interleukin 17 (IL-17) plays an important role in several autoimmune diseases. IL-17 can induce the expression of vascular cell adhesion molecule (VCAM-1) in aortic vascular smooth muscle cells (SMCs), which is important for the development of atherosclerosis. However, the signaling pathway of IL-17-induced VCAM-1 expression remains unclear. In this study, we reported that IL-17 induced expression of VCAM-1 in SMCs is dependent on NF-κB, but independent of Akt1 and TAK1. This is because knocking down Akt1 or TAK1 by siRNA did not reduce IL-17-induced activation of NF-κB and expression of VCAM-1, whereas knocking down NF-κB by siRNA markedly inhibited IL-17-mediated upregulation of VCAM-1 expression. In addition, IL-17-induced expression of VCAM-1 is partially dependent on activation of ERK1/2. Therefore, these signaling pathways of IL-17-mediated upregulation of VCAM-1 expression might be therapeutic targets for treatment of IL-17-mediated inflammation.
doi:10.1111/sji.12030
PMCID: PMC3683581  PMID: 23421430
IL-17; NF-κB; vascular smooth muscle cells; adhesion molecule
11.  Strongly enhanced current densities in Sr0.6K0.4Fe2As2 + Sn superconducting tapes 
Scientific Reports  2014;4:4465.
Improving transport current has been the primary topic for practical application of superconducting wires and tapes. However, the porous nature of powder-in-tube (PIT) processed iron-based tapes is one of the important reasons for low critical current density (Jc) values. In this work, the superconducting core density of ex-situ Sr0.6K0.4Fe2As2 + Sn tapes, prepared from optimized precursors, was significantly improved by employing a simple hot pressing as an alternative route for final sintering. The resulting samples exhibited optimal critical temperature (Tc), sharp resistive transition, small resistivity and high Vickers hardness (Hv) value. Consequently, the transport Jc reached excellent values of 5.1 × 104 A/cm2 in 10 T and 4.3 × 104 A/cm2 in 14 T at 4.2 K, respectively. Our tapes also exhibited high upper critical field Hc2 and almost field-independent Jc. These results clearly demonstrate that PIT pnictide wire conductors are very promising for high-field magnet applications.
doi:10.1038/srep04465
PMCID: PMC3964518  PMID: 24663054
12.  20(S)-Protopanaxadiol-aglycone Downregulation of the Full-length and Splice Variants of Androgen Receptor 
As a public health problem, prostate cancer engenders huge economic and life-quality burden. Developing effective chemopreventive regimens to alleviate the burden remains a major challenge. Androgen signaling is vital to the development and progression of prostate cancer. Targeting androgen signaling via blocking the production of the potent ligand dihydrotestosterone has been shown to decrease prostate cancer incidence. However, the potential of increasing the incidence of high-grade prostate cancers has been a concern. Mechanisms of disease progression after the intervention may include increased expression of androgen receptor (AR) in prostate tissue and expression of the constitutively-active AR splice variants (AR-Vs) lacking the ligand-binding domain. Thus, novel agents targeting the receptor, preferentially both the full-length and AR-Vs, are urgently needed. In the present study, we show that ginsenoside 20(S)-protopanaxadiol-aglycone (PPD) effectively downregulates the expression and activity of both the full-length AR and AR-Vs. The effects of PPD on AR and AR-Vs are manifested by an immediate drop in proteins followed by a reduction in transcripts, attributed to PPD induction of proteasome-mediated degradation and inhibition of the transcription of the AR gene. We further show that although PPD inhibits the growth as well as AR expression and activity in LNCaP xenograft tumors, the morphology and AR expression in normal prostates are not affected. This study is the first to show that PPD suppresses androgen signaling through downregulating both the full-length AR and AR-Vs, and provides strong rationale for further developing PPD as a promising agent for the prevention and/or treatment of prostate cancer.
doi:10.1002/ijc.27754
PMCID: PMC3509250  PMID: 22907191
20(S)-protopanaxadiol-aglycone; androgen receptor; prostate cancer
13.  Androgen receptor splice variants activating the full-length receptor in mediating resistance to androgen-directed therapy 
Oncotarget  2014;5(6):1635-1645.
Upregulation of constitutively-active androgen receptor splice variants (AR-Vs) has been implicated in AR-driven tumor progression in castration-resistant prostate cancer. To date, functional studies of AR-Vs have been focused mainly on their ability to regulate gene expression independent of the full-length AR (AR-FL). Here, we showed that AR-V7 and ARv567es, two major AR-Vs, both facilitated AR-FL nuclear localization in the absence of androgen and mitigated the ability of the antiandrogen enzalutamide to inhibit AR-FL nuclear trafficking. AR-V bound to the promoter of its specific target without AR-FL, but co-occupied the promoter of canonical AR target with AR-FL in a mutually-dependent manner. AR-V expression attenuated both androgen and enzalutamide modulation of AR-FL activity/cell growth, and mitigated the in vivo antitumor efficacy of enzalutamide. Furthermore, ARv567es levels were upregulated in xenograft tumors that had acquired enzalutamide resistance. Collectively, this study highlights a dual function of AR-Vs in mediating castration resistance. In addition to trans-activating target genes independent of AR-FL, AR-Vs can serve as a “rheostat” to control the degree of response of AR-FL to androgen-directed therapy via activating AR-FL in an androgen-independent manner. The findings shed new insights into the mechanisms of AR-V-mediated castration resistance and have significant therapeutic implications.
PMCID: PMC4039237
androgen receptor; splice variant; prostate cancer; castration resistance; enzalutamide
14.  AKR1C3 overexpression may serve as a promising biomarker for prostate cancer progression 
Diagnostic Pathology  2014;9:42.
Background
Aldo-keto reductase family 1 member C3 (AKR1C3) is a key steroidogenic enzyme that is overexpressed in prostate cancer (PCa) and is associated with the development of castration-resistant prostate cancer (CRPC). The aim of this study was to investigate the correlation between the expression level of AKR1C3 and the progression of PCa.
Methods
Sixty human prostate needle biopsy tissue specimens and ten LNCaP xenografts from intact or castrated male mice were included in the study. The relationship between the level of AKR1C3 expression by immunohistochemistry and evaluation factors for PCa progression, including prostate-specific antigen (PSA), Gleason score (GS) and age, were analyzed.
Results
Low immunoreactivity of AKR1C3 was detected in normal prostate epithelium, benign prostatic hyperplasia (BPH) and prostatic intraepithelial neoplasia (PIN). Positive staining was gradually increased with an elevated GS in PCa epithelium and LNCaP xenografts in mice after castration. The Spearman’s r values (rs) of AKR1C3 to GS and PSA levels were 0.396 (P = 0.025) and -0.377 (P = 0.036), respectively, in PCa biopsies. The rs of AKR1C3 to age was 0.76 (P = 0.011). No statistically significant difference was found with other variables.
Conclusion
Our study suggests that the level of AKR.
1C3 expression is positively correlated with an elevated GS, indicating that AKR1C3 can serve as a promising biomarker for the progression of PCa.
Virtual slides
The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/7748245591110149.
doi:10.1186/1746-1596-9-42
PMCID: PMC3939640  PMID: 24571686
AKR1C3; Prostate cancer; Gleason score; PSA; Biomarker
15.  Induction therapy with bortezomib and dexamethasone followed by autologous stem cell transplantation versus autologous stem cell transplantation alone in the treatment of renal AL amyloidosis: a randomized controlled trial 
BMC Medicine  2014;12:2.
Background
Although the use of bortezomib alone and in combination with steroids has shown efficacy in AL amyloidosis, its role in combination with high-dose melphalan and autologous stem cell transplantation (HDM/SCT) is unknown. In this study, we evaluated bortezomib in combination with dexamethasone (BD) for induction chemotherapy prior to HDM/SCT.
Methods
This was a single-center, prospective, randomized controlled trial comparing induction therapy consisting of two BD cycles followed by HDM/SCT (BD + HDM/SCT) with HDM/SCT alone in the treatment of patients with newly diagnosed AL amyloidosis. The hematological and organ responses of the patients were assessed every three months post HDM/SCT.
Results
Fifty-six patients newly diagnosed with renal (100%), cardiac (57.1%), liver (7.1%), or nervous system (8.9%) AL amyloidosis were enrolled in this study; 28 patients were assigned to each arm. Two patients died within 100 days of HDM/SCT (3.6% treatment-related mortality). The overall hematologic response rates in the BD + HDM/SCT arm and HDM/SCT arm at three, six and twelve months were 78.5% versus 50%, 82.1% versus 53.5% and 85.7% versus 53.5%, respectively. In the BD + HDM/SCT arm, 15 (53.5%) patients achieved a hematologic response after BD and before HDM/SCT. An intention-to-treat analysis revealed a higher rate of complete remission in the BD + HDM/SCT arm at both 12 and 24 months (67.9% and 70%, respectively) than with the HDM/SCT-only therapy (35.7% and 35%, respectively, P = 0.03). After a median follow-up of 28 months, the survival rates at 24 months post-treatment start were 95.0% in the BD + HDM/SCT group and 69.4% in the HDM/SCT alone group (P = 0.03).
Conclusions
Our preliminary data suggest that the outcome of treating AL amyloidosis with BD induction and HDM/SCT was superior to the outcome of the HDM/SCT treatment alone.
Trial registration
This trial has been registered at clinicaltrials.gov with the number NCT01998503.
doi:10.1186/1741-7015-12-2
PMCID: PMC3895846  PMID: 24386911
AL amyloidosis; Bortezomib; Autologous stem cell transplantation
16.  Application of 3.0 Tesla Magnetic Resonance Imaging for Diagnosis in the Orthotopic Nude Mouse Model of Pancreatic Cancer 
Experimental Animals  2014;63(4):403-413.
The aim of this study was to successfully establish an orthotopic murine model using two different human pancreatic adenocarcinoma cell lines and to propose a 3.0 tesla MRI protocol for noninvasive characterization of this model. SW1990 and MIAPaca-2 tumor cells were injected into the pancreas of BALB/C nu/nu mice. Tumor growth rate and morphological information were assessed by 3.0 tesla MRI (T1WI, T2WI and DCE-MRI) and immunohistology. Proliferation of SW1990 was significantly faster than that of MIAPaca-2 (P=0.000), but MIAPaca-2 mice had a significantly shorter survival than SW1990 mice (41 days and 44 days respectively, P=0.027). MRI could reliably monitor tumor growth in both cell lines: the tumors exhibiting a spherical growth pattern showed a high-intensity signal, and the SW1990 group developed significantly larger tumors compared with the MIAPaCa-2 group. There were no statistical differences between the two groups in which tumor size was assessed using electronic calipers and an MRI scan (P=0.680). Both tumors showed a slow gradual enhancement pattern. Immunohistochemistry demonstrated tumor tissues showing high expression of Ki-67. This model closely mimics human pancreatic cancer and permits monitoring of tumor growth and morphological information by noninvasive 3.0 tesla MRI studies reducing the number of mice required.
doi:10.1538/expanim.63.403
PMCID: PMC4244289  PMID: 25048266
MIAPaCa-2; MRI; orthotopic murine model; pancreatic cancer; SW1990
17.  Splicing variants of androgen receptor in prostate cancer 
Significant advances in our understanding of continued androgen receptor (AR) signaling in castration-resistant prostate cancer have led to the development and FDA approval of two next-generation androgen-directed therapies, abiraterone and enzalutamide. These new therapies heralded a new era of prostate cancer therapy. However, disease progression during androgen-directed therapies remains the most critical challenge in the clinical management of prostate cancer. Accumulating evidence points to an important contribution of constitutively-active AR splice variants to AR-driven tumor progression during androgen-directed therapies. In this review, we will focus on the structure, activity, detection, clinical relevance, and mechanisms of production of AR splice variants.
PMCID: PMC4219285  PMID: 25374896
Androgen receptor; AR splice variants; castration resistance; prostate cancer
18.  Shape-controlled synthesis of nanocarbons through direct conversion of carbon dioxide 
Scientific Reports  2013;3:3534.
Morphology control of carbon-based nanomaterials (nanocarbons) is critical to practical applications because their physical and chemical properties are highly shape-dependent. The discovery of novel shaped nanocarbons stimulates new development in carbon science and technology. Based on direct reaction of CO2 with Mg metal, we achieved controlled synthesis of several different types of nanocarbons including mesoporous graphene, carbon nanotubes, and hollow carbon nanoboxes. The last one, to our knowledge, has not been previously reported to this date. The method described here allows effective control of the shape and dimensions of nanocarbons through manipulation of reaction temperature. The formation mechanism of nanocarbons is proposed. As a proof of concept, the synthesized nanocarbons are used for electrodes in symmetrical supercapacitors, which exhibit high capacitance and good cycling stability. The reported protocols are instructive to production of nanocarbons with controlled shape and dimensions which are much desirable for many practical applications.
doi:10.1038/srep03534
PMCID: PMC3866611  PMID: 24346481
19.  Methylselenol prodrug enhances MDV3100 efficacy for treatment of castration-resistant prostate cancer 
The next-generation antiandrogen MDV3100 prolongs overall survival of patients with metastatic castration-resistant prostate cancer (CRPC). However, patient responses are variable, and survival benefit remains relatively small. Developing effective modality to improve MDV3100 efficacy is urgently needed. Recent evidence suggests that constitutively active androgen receptor splice variants (AR-Vs) drive resistance to MDV3100. In our study, we show that methylselenol prodrug downregulates the expression and activity of both the full-length AR (AR-FL) and AR-Vs. The downregulation is independent of androgen and could be attributable to repressed transcription of the AR gene. Cotreatment with methylselenol prodrug and MDV3100 suppresses AR signaling more dramatically than either agent alone, and synergistically inhibits the growth of CRPC cells in vitro. The combinatorial efficacy is observed in not only AR-V-expressing cells but also cells expressing predominantly AR-FL, likely owing to the ability of the two drugs to block the AR signaling cascade at distinct steps. Ectopic expression of AR-FL or AR-V7 attenuates the combinatorial efficacy, indicating that downregulating AR-FL and AR-V7 is importantly involved in mediating the combinatorial efficacy. Significantly, methylselenol prodrug also downregulates AR-FL and AR-Vs in vivo and substantially improves the antitumor efficacy of MDV3100. These findings support a potential combination therapy for improving MDV3100 efficacy, and provide a rationale for evaluating the clinical application of combining methylselenol prodrug with MDV3100 for the treatment of CRPC.
doi:10.1002/ijc.28202
PMCID: PMC3750963  PMID: 23575870
methylseleninic acid; methylselenocysteine; MDV3100; androgen receptor; castration-resistant prostate cancer
20.  Chronic Hypoxia during Gestation Causes Epigenetic Repression of ERα Gene in Ovine Uterine Arteries via Heightened Promoter Methylation 
Hypertension  2012;60(3):697-704.
Summary
Estrogen receptor α (ERα) plays a key role in the adaptation of increased uterine blood flow in pregnancy. Chronic hypoxia is a common stress to maternal cardiovascular homeostasis and causes increased risk of preeclampsia. Studies in pregnant sheep demonstrated that hypoxia during gestation downregulated ERα gene expression in uterine arteries. The present study tested the hypothesis that hypoxia causes epigenetic repression of the ERα gene in uterine arteries via heightened promoter methylation. Ovine ERα promoter of 2035 bp spanning from −2000 to +35 of the transcription start site was cloned. No estrogen or HIF response elements were found at the promoter. Two transcription factor binding sites USF-15 and Sp1-520 containing CpG dinucleotides were identified, which had significant effects on the promoter activity. The USF element binds transcription factors USF1 and USF2, and the Sp1 element binds Sp1, as well as ERα through Sp1. Deletion of the Sp1 site abrogated 17β-estradiol-induced increase in the promoter activity. In normoxic control sheep, CpG methylation at the Sp1, but not USF, site was significantly decreased in uterine arteries of pregnant, as compared with nonpregnant animals. In pregnant sheep exposed to long-term high altitude hypoxia, CpG methylation at both Sp1 and USF sites in uterine arteries was significantly increased. Methylation inhibited transcription factor binding and the promoter activity. The results provide evidence of hypoxia causing heightened promoter methylation and resultant ERα gene repression in uterine arteries, and suggest new insights of molecular mechanisms linking gestational hypoxia to aberrant uteroplacental circulation and increased risk of preeclampsia.
doi:10.1161/HYPERTENSIONAHA.112.198242
PMCID: PMC3421058  PMID: 22777938
Hypoxia; estrogen receptor; methylation; epigenetic modulation; uterine artery
21.  Interferon and Ribavirin Combination Treatment Synergistically Inhibit HCV Internal Ribosome Entry Site Mediated Translation at the Level of Polyribosome Formation 
PLoS ONE  2013;8(8):e72791.
Purpose
Although chronic hepatitis C virus (HCV) infection has been treated with the combination of interferon alpha (IFN-α) and ribavirin (RBV) for over a decade, the mechanism of antiviral synergy is not well understood. We aimed to determine the synergistic antiviral mechanisms of IFN-α and RBV combination treatment using HCV cell culture.
Methods
The antiviral efficacy of IFN-α, RBV alone and in combination was quantitatively measured using HCV infected and replicon cell culture. Direct antiviral activity of these two drugs at the level of HCV internal ribosome entry site (IRES) mediated translation in Huh-7 cell culture was investigated. The synergistic antiviral effect of IFN-α and RBV combination treatment was verified using both the CalcuSyn Software and MacSynergy Software.
Results
RBV combination with IFN-α efficiently inhibits HCV replication cell culture. Our results demonstrate that IFN-α, interferon lambda (IFN-λ) and RBV each inhibit the expression of HCV IRES-GFP and that they have a minimal effect on the expression of GFP in which the translation is not IRES dependent. The combination treatments of RBV along with IFN-α or IFN-λ were highly synergistic with combination indexes <1. We show that IFN-α treatment induce levels of PKR and eIF2α phosphorylation that prevented ribosome loading of the HCV IRES-GFP mRNA. Silencing of PKR expression in Huh-7 cells prevented the inhibitory effect of IFN-α on HCV IRES-GFP expression. RBV also blocked polyribosome loading of HCV-IRES mRNA through the inhibition of cellular IMPDH activity, and induced PKR and eIF2α phosphorylation. Knockdown of PKR or IMPDH prevented RBV induced HCV IRES-GFP translation.
Conclusions
We demonstrated both IFN-α and RBV inhibit HCV IRES through prevention of polyribosome formation. The combination of IFN-α and RBV treatment synergistically inhibits HCV IRES translation via using two different mechanisms involving PKR activation and depletion of intracellular guanosine pool through inhibition of IMPDH.
doi:10.1371/journal.pone.0072791
PMCID: PMC3751885  PMID: 24009705
22.  The missense variation landscape of FTO, MC4R and TMEM18 in obese children of African ancestry 
Obesity (Silver Spring, Md.)  2013;21(1):159-163.
Common variation at the loci harboring FTO, MC4R and TMEM18 is consistently reported as being statistically the most strongly associated with obesity. We investigated if these loci also harbor rarer missense variants that confer substantially higher risk of common childhood obesity in African American (AA) children. We sequenced the exons of FTO, MC4R and TMEM18 in an initial subset of our cohort i.e. 200 obese (BMI≥95th percentile) and 200 lean AA children (BMI≤5th percentile). Any missense exonic variants that were uncovered went on to be further genotyped in a further 768 obese and 768 lean (BMI≤50th percentile) children of the same ethnicity. A number of exonic variants were observed from our sequencing effort: seven in FTO, of which four were non-synonymous (A163T, G182A, M400V and A405V), thirteen in MC4R, of which six were non-synonymous (V103I, N123S, S136A, F202L, N240S and I251L) and four in TMEM18, of which two were non-synonymous (P2S and V113L). Follow-up genotyping of these missense variants revealed only one significant difference in allele frequency between cases and controls, namely with N240S in MC4R(Fisher's Exact P = 0.0001). In summary, moderately rare missense variants within the FTO, MC4R and TMEM18 genes observed in our study did not confer risk of common childhood obesity in African Americans except for a degree of evidence for one known loss-of-function variant in MC4R.
doi:10.1002/oby.20147
PMCID: PMC3605748  PMID: 23505181
Obesity; Pediatrics; Genomics
23.  New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism 
Horikoshi, Momoko | Yaghootkar, Hanieh | Mook-Kanamori, Dennis O. | Sovio, Ulla | Taal, H. Rob | Hennig, Branwen J. | Bradfield, Jonathan P. | St. Pourcain, Beate | Evans, David M. | Charoen, Pimphen | Kaakinen, Marika | Cousminer, Diana L. | Lehtimäki, Terho | Kreiner-Møller, Eskil | Warrington, Nicole M. | Bustamante, Mariona | Feenstra, Bjarke | Berry, Diane J. | Thiering, Elisabeth | Pfab, Thiemo | Barton, Sheila J. | Shields, Beverley M. | Kerkhof, Marjan | van Leeuwen, Elisabeth M. | Fulford, Anthony J. | Kutalik, Zoltán | Zhao, Jing Hua | den Hoed, Marcel | Mahajan, Anubha | Lindi, Virpi | Goh, Liang-Kee | Hottenga, Jouke-Jan | Wu, Ying | Raitakari, Olli T. | Harder, Marie N. | Meirhaeghe, Aline | Ntalla, Ioanna | Salem, Rany M. | Jameson, Karen A. | Zhou, Kaixin | Monies, Dorota M. | Lagou, Vasiliki | Kirin, Mirna | Heikkinen, Jani | Adair, Linda S. | Alkuraya, Fowzan S. | Al-Odaib, Ali | Amouyel, Philippe | Andersson, Ehm Astrid | Bennett, Amanda J. | Blakemore, Alexandra I.F. | Buxton, Jessica L. | Dallongeville, Jean | Das, Shikta | de Geus, Eco J. C. | Estivill, Xavier | Flexeder, Claudia | Froguel, Philippe | Geller, Frank | Godfrey, Keith M. | Gottrand, Frédéric | Groves, Christopher J. | Hansen, Torben | Hirschhorn, Joel N. | Hofman, Albert | Hollegaard, Mads V. | Hougaard, David M. | Hyppönen, Elina | Inskip, Hazel M. | Isaacs, Aaron | Jørgensen, Torben | Kanaka-Gantenbein, Christina | Kemp, John P. | Kiess, Wieland | Kilpeläinen, Tuomas O. | Klopp, Norman | Knight, Bridget A. | Kuzawa, Christopher W. | McMahon, George | Newnham, John P. | Niinikoski, Harri | Oostra, Ben A. | Pedersen, Louise | Postma, Dirkje S. | Ring, Susan M. | Rivadeneira, Fernando | Robertson, Neil R. | Sebert, Sylvain | Simell, Olli | Slowinski, Torsten | Tiesler, Carla M.T. | Tönjes, Anke | Vaag, Allan | Viikari, Jorma S. | Vink, Jacqueline M. | Vissing, Nadja Hawwa | Wareham, Nicholas J. | Willemsen, Gonneke | Witte, Daniel R. | Zhang, Haitao | Zhao, Jianhua | Wilson, James F. | Stumvoll, Michael | Prentice, Andrew M. | Meyer, Brian F. | Pearson, Ewan R. | Boreham, Colin A.G. | Cooper, Cyrus | Gillman, Matthew W. | Dedoussis, George V. | Moreno, Luis A | Pedersen, Oluf | Saarinen, Maiju | Mohlke, Karen L. | Boomsma, Dorret I. | Saw, Seang-Mei | Lakka, Timo A. | Körner, Antje | Loos, Ruth J.F. | Ong, Ken K. | Vollenweider, Peter | van Duijn, Cornelia M. | Koppelman, Gerard H. | Hattersley, Andrew T. | Holloway, John W. | Hocher, Berthold | Heinrich, Joachim | Power, Chris | Melbye, Mads | Guxens, Mònica | Pennell, Craig E. | Bønnelykke, Klaus | Bisgaard, Hans | Eriksson, Johan G. | Widén, Elisabeth | Hakonarson, Hakon | Uitterlinden, André G. | Pouta, Anneli | Lawlor, Debbie A. | Smith, George Davey | Frayling, Timothy M. | McCarthy, Mark I. | Grant, Struan F.A. | Jaddoe, Vincent W.V. | Jarvelin, Marjo-Riitta | Timpson, Nicholas J. | Prokopenko, Inga | Freathy, Rachel M.
Nature genetics  2012;45(1):76-82.
Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood1. Previous genome-wide association studies identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes, and a second variant, near CCNL1, with no obvious link to adult traits2. In an expanded genome-wide association meta-analysis and follow-up study (up to 69,308 individuals of European descent from 43 studies), we have now extended the number of genome-wide significant loci to seven, accounting for a similar proportion of variance to maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes; ADRB1 with adult blood pressure; and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism.
doi:10.1038/ng.2477
PMCID: PMC3605762  PMID: 23202124
24.  Substance P participates in immune-mediated hepatic injury induced by concanavalin A in mice and stimulates cytokine synthesis in Kupffer cells 
Studies have indicated that the immune system plays a pivotal role in hepatitis. Substance P (SP) has been shown to modulate the immune response. In order to investigate the role of SP in liver injury and to determine whether it leads to pro-inflammatory signaling, we established a mouse model of hepatic injury induced by concanavalin A (ConA). We also exposed mouse Kupffer cells (KCs) to SP in vitro. Cytokine and SP levels in liver homogenates were detected using enzyme-linked immunosorbent assay (ELISA) and the protective effects of L-703,606 were evaluated through serological and histological assessments. Neurokinin-1 receptor (NK-1R) expression was evaluated by immunofluorescence and quantitative polymerase chain reaction (PCR). The levels of SP, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were significantly increased in the ConA-treated mice and the levels of ALT and AST were markedly reduced by L-703,606-pretreatment. Liver injury was significantly reduced by treatment with L-703,606. The mouse KCs expressed NK-1R and SP increased NK-1R mRNA expression. Furthermore, NK-1R blockade eliminated the effect of SP on NK-1R mRNA expression. The cytokine levels exhibited a substantial increase in the SP-pretreated KCs compared with the KCs that were cultured in control medium. The inter-leukin (IL)-6 and tumor necrosis factor (TNF)-α levels in the L-703,606-pretreated KCs were significantly lower compared with those in the SP-pretreated KCs. Our study suggests that neurogenic inflammation induced by SP plays an important role in hepatitis. Mouse KCs express NK-1R and SP increases NK-1R mRNA expression. SP enhances IL-6 and TNF-α secretion and an NK-1R antagonist inhibits this secretion.
doi:10.3892/etm.2013.1152
PMCID: PMC3786810  PMID: 24137208
concanavalin A; liver injury; substance P; neurokinin 1 receptor antagonist; neurogenic inflammation
25.  Treatment of diabetic nephropathy with Tripterygium wilfordii Hook F extract: a prospective, randomized, controlled clinical trial 
Background
Diabetic nephropathy (DN) is the most common cause of end-stage renal failure. Although angiotensin II receptor blockers (ARBs) can be used to attenuate proteinuria in DN patients, their efficacy remains limited. This clinical trial aimed to evaluate the efficacy of Tripterygium wilfordii Hook F (TwHF) extract in the treatment of type 2 diabetes mellitus (DM)-induced nephropathy.
Methods
A total of 65 DN patients with proteinuria levels ≥ 2.5 g/24 h and serum creatinine levels < 3 mg/dl were enrolled in this six-month, prospective, randomized, controlled study. The patients were randomized into treatment groups that received either 120 mg of TwHF extract per day for three months, followed by 60 mg per day for three more months, or 160 mg of valsartan daily for six months. The urinary protein and estimated glomerular filtration (eGFR) level were measured at one, three, and six months after the commencement of treatment. The primary measure of treatment efficacy was a reduction in the 24-h urine protein level between baseline and the end of the study, and the secondary measure of treatment efficacy was a reduction in the eGFR value.
Results
At the end of the treatment period, the mean urine protein level in the TwHF group was dramatically decreased (4.99 ± 2.25 g/24 h vs 2.99 ± 1.81 g/24 h, p < 0.01), with decreases at one, three, and six months of 32.9%, 38.8%, and 34.3%, respectively. In contrast, the proteinuria in the valsartan group was not significantly attenuated, and the decreases in urine protein levels at treatment months one, three, and six were 1.05%, 10.1%, and -11.7%, respectively. The mean decrease in eGFR in the valsartan group was greater than that in the TwHF group (26.4% vs. 13.7%, respectively; p =0.067).
Conclusions
TwHF extract can reduce the urine protein level of DN patients and represents a novel, potentially effective, and safe drug for the treatment of DN patients with proteinuria.
Trial registration
ClinicalTrials.gov: NCT00518362
doi:10.1186/1479-5876-11-134
PMCID: PMC3670993  PMID: 23725518
Type 2 diabetes mellitus; Diabetic nephropathy; Proteinuria; Tripterygium wilfordii Hook F (TwHF); Angiotensin II receptor blocker (ARB)

Results 1-25 (67)