PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (31)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Genome-wide association study identifies loci affecting blood copper, selenium and zinc 
Human Molecular Genetics  2013;22(19):3998-4006.
Genetic variation affecting absorption, distribution or excretion of essential trace elements may lead to health effects related to sub-clinical deficiency. We have tested for allelic effects of single-nucleotide polymorphisms (SNPs) on blood copper, selenium and zinc in a genome-wide association study using two adult cohorts from Australia and the UK. Participants were recruited in Australia from twins and their families and in the UK from pregnant women. We measured erythrocyte Cu, Se and Zn (Australian samples) or whole blood Se (UK samples) using inductively coupled plasma mass spectrometry. Genotyping was performed with Illumina chips and >2.5 m SNPs were imputed from HapMap data. Genome-wide significant associations were found for each element. For Cu, there were two loci on chromosome 1 (most significant SNPs rs1175550, P = 5.03 × 10−10, and rs2769264, P = 2.63 × 10−20); for Se, a locus on chromosome 5 was significant in both cohorts (combined P = 9.40 × 10−28 at rs921943); and for Zn three loci on chromosomes 8, 15 and X showed significant results (rs1532423, P = 6.40 × 10−12; rs2120019, P = 1.55 × 10−18; and rs4826508, P = 1.40 × 10−12, respectively). The Se locus covers three genes involved in metabolism of sulphur-containing amino acids and potentially of the analogous Se compounds; the chromosome 8 locus for Zn contains multiple genes for the Zn-containing enzyme carbonic anhydrase. Where potentially relevant genes were identified, they relate to metabolism of the element (Se) or to the presence at high concentration of a metal-containing protein (Cu).
doi:10.1093/hmg/ddt239
PMCID: PMC3766178  PMID: 23720494
2.  Genetic Variation Associated with Differential Educational Attainment in Adults Has Anticipated Associations with School Performance in Children 
PLoS ONE  2014;9(7):e100248.
Genome-wide association study results have yielded evidence for the association of common genetic variants with crude measures of completed educational attainment in adults. Whilst informative, these results do not inform as to the mechanism of these effects or their presence at earlier ages and where educational performance is more routinely and more precisely assessed. Single nucleotide polymorphisms exhibiting genome-wide significant associations with adult educational attainment were combined to derive an unweighted allele score in 5,979 and 6,145 young participants from the Avon Longitudinal Study of Parents and Children with key stage 3 national curriculum test results (SATS results) available at age 13 to 14 years in English and mathematics respectively. Standardised (z-scored) results for English and mathematics showed an expected relationship with sex, with girls exhibiting an advantage over boys in English (0.433 SD (95%CI 0.395, 0.470), p<10−10) with more similar results (though in the opposite direction) in mathematics (0.042 SD (95%CI 0.004, 0.080), p = 0.030). Each additional adult educational attainment increasing allele was associated with 0.041 SD (95%CI 0.020, 0.063), p = 1.79×10−04 and 0.028 SD (95%CI 0.007, 0.050), p = 0.01 increases in standardised SATS score for English and mathematics respectively. Educational attainment is a complex multifactorial behavioural trait which has not had heritable contributions to it fully characterised. We were able to apply the results from a large study of adult educational attainment to a study of child exam performance marking events in the process of learning rather than realised adult end product. Our results support evidence for common, small genetic contributions to educational attainment, but also emphasise the likely lifecourse nature of this genetic effect. Results here also, by an alternative route, suggest that existing methods for child examination are able to recognise early life variation likely to be related to ultimate educational attainment.
doi:10.1371/journal.pone.0100248
PMCID: PMC4102483  PMID: 25032841
3.  Genome Wide Association Identifies Common Variants at the SERPINA6/SERPINA1 Locus Influencing Plasma Cortisol and Corticosteroid Binding Globulin 
PLoS Genetics  2014;10(7):e1004474.
Variation in plasma levels of cortisol, an essential hormone in the stress response, is associated in population-based studies with cardio-metabolic, inflammatory and neuro-cognitive traits and diseases. Heritability of plasma cortisol is estimated at 30–60% but no common genetic contribution has been identified. The CORtisol NETwork (CORNET) consortium undertook genome wide association meta-analysis for plasma cortisol in 12,597 Caucasian participants, replicated in 2,795 participants. The results indicate that <1% of variance in plasma cortisol is accounted for by genetic variation in a single region of chromosome 14. This locus spans SERPINA6, encoding corticosteroid binding globulin (CBG, the major cortisol-binding protein in plasma), and SERPINA1, encoding α1-antitrypsin (which inhibits cleavage of the reactive centre loop that releases cortisol from CBG). Three partially independent signals were identified within the region, represented by common SNPs; detailed biochemical investigation in a nested sub-cohort showed all these SNPs were associated with variation in total cortisol binding activity in plasma, but some variants influenced total CBG concentrations while the top hit (rs12589136) influenced the immunoreactivity of the reactive centre loop of CBG. Exome chip and 1000 Genomes imputation analysis of this locus in the CROATIA-Korcula cohort identified missense mutations in SERPINA6 and SERPINA1 that did not account for the effects of common variants. These findings reveal a novel common genetic source of variation in binding of cortisol by CBG, and reinforce the key role of CBG in determining plasma cortisol levels. In turn this genetic variation may contribute to cortisol-associated degenerative diseases.
Author Summary
Cortisol is a steroid hormone from the adrenal glands that is essential in the response to stress. Most cortisol in blood is bound to corticosteroid binding globulin (CBG). Diseases causing cortisol deficiency (Addison's disease) or excess (Cushing's syndrome) are life-threatening. Variations in plasma cortisol have been associated with cardiovascular and psychiatric diseases and their risk factors. To dissect the genetic contribution to variation in plasma cortisol, we formed the CORtisol NETwork (CORNET) consortium and recruited collaborators with suitable samples from more than 15,000 people. The results reveal that the major genetic influence on plasma cortisol is mediated by variations in the binding capacity of CBG. This is determined by differences in the circulating concentrations of CBG and also in the immunoreactivity of its ‘reactive centre loop’, potentially influencing not only binding affinity for cortisol but also the stability of CBG and hence the tissue delivery of cortisol. These findings provide the first evidence for a common genetic effect on levels of this clinically important hormone, suggest that differences in CBG between individuals are biologically important, and pave the way for further research to dissect causality in the associations of plasma cortisol with common diseases.
doi:10.1371/journal.pgen.1004474
PMCID: PMC4091794  PMID: 25010111
4.  Genome-wide association and longitudinal analyses reveal genetic loci linking pubertal height growth, pubertal timing and childhood adiposity 
Human Molecular Genetics  2013;22(13):2735-2747.
The pubertal height growth spurt is a distinctive feature of childhood growth reflecting both the central onset of puberty and local growth factors. Although little is known about the underlying genetics, growth variability during puberty correlates with adult risks for hormone-dependent cancer and adverse cardiometabolic health. The only gene so far associated with pubertal height growth, LIN28B, pleiotropically influences childhood growth, puberty and cancer progression, pointing to shared underlying mechanisms. To discover genetic loci influencing pubertal height and growth and to place them in context of overall growth and maturation, we performed genome-wide association meta-analyses in 18 737 European samples utilizing longitudinally collected height measurements. We found significant associations (P < 1.67 × 10−8) at 10 loci, including LIN28B. Five loci associated with pubertal timing, all impacting multiple aspects of growth. In particular, a novel variant correlated with expression of MAPK3, and associated both with increased prepubertal growth and earlier menarche. Another variant near ADCY3-POMC associated with increased body mass index, reduced pubertal growth and earlier puberty. Whereas epidemiological correlations suggest that early puberty marks a pathway from rapid prepubertal growth to reduced final height and adult obesity, our study shows that individual loci associating with pubertal growth have variable longitudinal growth patterns that may differ from epidemiological observations. Overall, this study uncovers part of the complex genetic architecture linking pubertal height growth, the timing of puberty and childhood obesity and provides new information to pinpoint processes linking these traits.
doi:10.1093/hmg/ddt104
PMCID: PMC3674797  PMID: 23449627
5.  Phenotypic Dissection of Bone Mineral Density Reveals Skeletal Site Specificity and Facilitates the Identification of Novel Loci in the Genetic Regulation of Bone Mass Attainment 
PLoS Genetics  2014;10(6):e1004423.
Heritability of bone mineral density (BMD) varies across skeletal sites, reflecting different relative contributions of genetic and environmental influences. To quantify the degree to which common genetic variants tag and environmental factors influence BMD, at different sites, we estimated the genetic (rg) and residual (re) correlations between BMD measured at the upper limbs (UL-BMD), lower limbs (LL-BMD) and skull (SK-BMD), using total-body DXA scans of ∼4,890 participants recruited by the Avon Longitudinal Study of Parents and their Children (ALSPAC). Point estimates of rg indicated that appendicular sites have a greater proportion of shared genetic architecture (LL-/UL-BMD rg = 0.78) between them, than with the skull (UL-/SK-BMD rg = 0.58 and LL-/SK-BMD rg = 0.43). Likewise, the residual correlation between BMD at appendicular sites (re = 0.55) was higher than the residual correlation between SK-BMD and BMD at appendicular sites (re = 0.20–0.24). To explore the basis for the observed differences in rg and re, genome-wide association meta-analyses were performed (n∼9,395), combining data from ALSPAC and the Generation R Study identifying 15 independent signals from 13 loci associated at genome-wide significant level across different skeletal regions. Results suggested that previously identified BMD-associated variants may exert site-specific effects (i.e. differ in the strength of their association and magnitude of effect across different skeletal sites). In particular, variants at CPED1 exerted a larger influence on SK-BMD and UL-BMD when compared to LL-BMD (P = 2.01×10−37), whilst variants at WNT16 influenced UL-BMD to a greater degree when compared to SK- and LL-BMD (P = 2.31×10−14). In addition, we report a novel association between RIN3 (previously associated with Paget's disease) and LL-BMD (rs754388: β = 0.13, SE = 0.02, P = 1.4×10−10). Our results suggest that BMD at different skeletal sites is under a mixture of shared and specific genetic and environmental influences. Allowing for these differences by performing genome-wide association at different skeletal sites may help uncover new genetic influences on BMD.
Author Summary
The heritability of bone mineral density (BMD) varies across skeletal sites, reflecting different relative contributions of genetic and environmental influences. To investigate whether the genes underlying bone acquisition act in a site-specific manner, we quantified the shared genetic influences across axial and appendicular skeletal sites by estimating the genetic and residual correlation of BMD at the upper limb, lower limb and the skull. Our results suggest that different skeletal sites as measured by total-body Dual-Energy X-Ray Absorptiometry are to a certain extent under distinct genetic and environmental influences. To further explore the basis for these differences, genome-wide association meta-analyses were performed to identify genetic loci that are preferentially associated with one or more skeletal regions. Variants at 13 loci (including RIN3, a novel BMD associated locus) reached genome-wide significance and several displayed evidence of differential association with BMD across the different skeletal sites in particular CPED1 and WNT16. Our results suggest that it may be advantageous to decompose the total-body BMD measures and perform GWAS at separate skeletal regions. By allowing for site-specific differences, new genetic variants affecting BMD and future risk of osteoporosis may be uncovered.
doi:10.1371/journal.pgen.1004423
PMCID: PMC4063697  PMID: 24945404
6.  META-ANALYSIS OF GENOME-WIDE STUDIES IDENTIFIES WNT16 AND ESR1 SNPS ASSOCIATED WITH BONE MINERAL DENSITY IN PREMENOPAUSAL WOMEN 
Previous genome-wide association studies (GWAS) have identified common variants in genes associated with variation in bone mineral density (BMD), although most have been carried out in combined samples of older women and men. Meta-analyses of these results have identified numerous SNPs of modest effect at genome-wide significance levels in genes involved in both bone formation and resorption, as well as other pathways. We performed a meta-analysis restricted to premenopausal white women from four cohorts (n= 4,061 women, ages 20 to 45) to identify genes influencing peak bone mass at the lumbar spine and femoral neck. Following imputation, age- and weight-adjusted BMD values were tested for association with each SNP. Association of a SNP in the WNT16 gene (rs3801387; p=1.7 × 10−9) and multiple SNPs in the ESR1/C6orf97 (rs4870044; p=1.3 × 10−8) achieved genome-wide significance levels for lumbar spine BMD. These SNPs, along with others demonstrating suggestive evidence of association, were then tested for association in seven Replication cohorts that included premenopausal women of European, Hispanic-American, and African-American descent (combined n=5,597 for femoral neck; 4,744 for lumbar spine). When the data from the Discovery and Replication cohorts were analyzed jointly, the evidence was more significant (WNT16 joint p=1.3 × 10−11; ESR1/C6orf97 joint p= 1.4 × 10−10). Multiple independent association signals were observed with spine BMD at the ESR1 region after conditioning on the primary signal. Analyses of femoral neck BMD also supported association with SNPs in WNT16 and ESR1/C6orf97 (p< 1 × 10−5). Our results confirm that several of the genes contributing to BMD variation across a broad age range in both sexes have effects of similar magnitude on BMD of the spine in premenopausal women. These data support the hypothesis that variants in these genes of known skeletal function also affect BMD during the premenopausal period.
doi:10.1002/jbmr.1796
PMCID: PMC3691010  PMID: 23074152
Bone mineral density; GWAS; premenopausal; meta-analysis; genetics
7.  Variability in the common genetic architecture of social-communication spectrum phenotypes during childhood and adolescence 
Molecular Autism  2014;5:18.
Background
Social-communication abilities are heritable traits, and their impairments overlap with the autism continuum. To characterise the genetic architecture of social-communication difficulties developmentally and identify genetic links with the autistic dimension, we conducted a genome-wide screen of social-communication problems at multiple time-points during childhood and adolescence.
Methods
Social-communication difficulties were ascertained at ages 8, 11, 14 and 17 years in a UK population-based birth cohort (Avon Longitudinal Study of Parents and Children; N ≤ 5,628) using mother-reported Social Communication Disorder Checklist scores. Genome-wide Complex Trait Analysis (GCTA) was conducted for all phenotypes. The time-points with the highest GCTA heritability were subsequently analysed for single SNP association genome-wide. Type I error in the presence of measurement relatedness and the likelihood of observing SNP signals near known autism susceptibility loci (co-location) were assessed via large-scale, genome-wide permutations. Association signals (P ≤ 10−5) were also followed up in Autism Genetic Resource Exchange pedigrees (N = 793) and the Autism Case Control cohort (Ncases/Ncontrols = 1,204/6,491).
Results
GCTA heritability was strongest in childhood (h2(8 years) = 0.24) and especially in later adolescence (h2(17 years) = 0.45), with a marked drop during early to middle adolescence (h2(11 years) = 0.16 and h2(14 years) = 0.08). Genome-wide screens at ages 8 and 17 years identified for the latter time-point evidence for association at 3p22.2 near SCN11A (rs4453791, P = 9.3 × 10−9; genome-wide empirical P = 0.011) and suggestive evidence at 20p12.3 at PLCB1 (rs3761168, P = 7.9 × 10−8; genome-wide empirical P = 0.085). None of these signals contributed to risk for autism. However, the co-location of population-based signals and autism susceptibility loci harbouring rare mutations, such as PLCB1, is unlikely to be due to chance (genome-wide empirical Pco-location = 0.007).
Conclusions
Our findings suggest that measurable common genetic effects for social-communication difficulties vary developmentally and that these changes may affect detectable overlaps with the autism spectrum.
doi:10.1186/2040-2392-5-18
PMCID: PMC3940728  PMID: 24564958
ALSPAC; ASD; Autism; GCTA heritability; GWAS; Social communication
9.  Mining the Human Phenome Using Allelic Scores That Index Biological Intermediates 
PLoS Genetics  2013;9(10):e1003919.
It is common practice in genome-wide association studies (GWAS) to focus on the relationship between disease risk and genetic variants one marker at a time. When relevant genes are identified it is often possible to implicate biological intermediates and pathways likely to be involved in disease aetiology. However, single genetic variants typically explain small amounts of disease risk. Our idea is to construct allelic scores that explain greater proportions of the variance in biological intermediates, and subsequently use these scores to data mine GWAS. To investigate the approach's properties, we indexed three biological intermediates where the results of large GWAS meta-analyses were available: body mass index, C-reactive protein and low density lipoprotein levels. We generated allelic scores in the Avon Longitudinal Study of Parents and Children, and in publicly available data from the first Wellcome Trust Case Control Consortium. We compared the explanatory ability of allelic scores in terms of their capacity to proxy for the intermediate of interest, and the extent to which they associated with disease. We found that allelic scores derived from known variants and allelic scores derived from hundreds of thousands of genetic markers explained significant portions of the variance in biological intermediates of interest, and many of these scores showed expected correlations with disease. Genome-wide allelic scores however tended to lack specificity suggesting that they should be used with caution and perhaps only to proxy biological intermediates for which there are no known individual variants. Power calculations confirm the feasibility of extending our strategy to the analysis of tens of thousands of molecular phenotypes in large genome-wide meta-analyses. We conclude that our method represents a simple way in which potentially tens of thousands of molecular phenotypes could be screened for causal relationships with disease without having to expensively measure these variables in individual disease collections.
Author Summary
The standard approach in genome-wide association studies is to analyse the relationship between genetic variants and disease one marker at a time. Significant associations between markers and disease are then used as evidence to implicate biological intermediates and pathways likely to be involved in disease aetiology. However, single genetic variants typically only explain small amounts of disease risk. Our idea is to construct allelic scores that explain greater proportions of the variance in biological intermediates than single markers, and then use these scores to data mine genome-wide association studies. We show how allelic scores derived from known variants as well as allelic scores derived from hundreds of thousands of genetic markers across the genome explain significant portions of the variance in body mass index, levels of C-reactive protein, and LDLc cholesterol, and many of these scores show expected correlations with disease. Power calculations confirm the feasibility of scaling our strategy to the analysis of tens of thousands of molecular phenotypes in large genome-wide meta-analyses. Our method represents a simple way in which tens of thousands of molecular phenotypes could be screened for potential causal relationships with disease.
doi:10.1371/journal.pgen.1003919
PMCID: PMC3814299  PMID: 24204319
10.  Common variation contributes to the genetic architecture of social communication traits 
Molecular Autism  2013;4:34.
Background
Social communication difficulties represent an autistic trait that is highly heritable and persistent during the course of development. However, little is known about the underlying genetic architecture of this phenotype.
Methods
We performed a genome-wide association study on parent-reported social communication problems using items of the children’s communication checklist (age 10 to 11 years) studying single and/or joint marker effects. Analyses were conducted in a large UK population-based birth cohort (Avon Longitudinal Study of Parents and their Children, ALSPAC, N = 5,584) and followed-up within a sample of children with comparable measures from Western Australia (RAINE, N = 1364).
Results
Two of our seven independent top signals (P-discovery <1.0E-05) were replicated (0.009
Single-variant findings were complemented by estimations of the narrow-sense heritability in ALSPAC suggesting that approximately a fifth of the phenotypic variance in social communication traits is accounted for by joint additive effects of genotyped single nucleotide polymorphisms throughout the genome (h2(SE) = 0.18(0.066), P = 0.0027).
Conclusion
Overall, our study provides both joint and single-SNP-based evidence for the contribution of common polymorphisms to variation in social communication phenotypes.
doi:10.1186/2040-2392-4-34
PMCID: PMC3853437  PMID: 24047820
ALSPAC; RAINE; Autistic trait; GWAS; Social communication; Association
PLoS Genetics  2013;9(9):e1003751.
Humans display structural and functional asymmetries in brain organization, strikingly with respect to language and handedness. The molecular basis of these asymmetries is unknown. We report a genome-wide association study meta-analysis for a quantitative measure of relative hand skill in individuals with dyslexia [reading disability (RD)] (n = 728). The most strongly associated variant, rs7182874 (P = 8.68×10−9), is located in PCSK6, further supporting an association we previously reported. We also confirmed the specificity of this association in individuals with RD; the same locus was not associated with relative hand skill in a general population cohort (n = 2,666). As PCSK6 is known to regulate NODAL in the development of left/right (LR) asymmetry in mice, we developed a novel approach to GWAS pathway analysis, using gene-set enrichment to test for an over-representation of highly associated variants within the orthologs of genes whose disruption in mice yields LR asymmetry phenotypes. Four out of 15 LR asymmetry phenotypes showed an over-representation (FDR≤5%). We replicated three of these phenotypes; situs inversus, heterotaxia, and double outlet right ventricle, in the general population cohort (FDR≤5%). Our findings lead us to propose that handedness is a polygenic trait controlled in part by the molecular mechanisms that establish LR body asymmetry early in development.
Author Summary
Humans have developed a population level bias towards right-handedness for tool-use. Understanding the genetic basis of handedness can help explain why this bias exists and may offer clues into the evolution of handedness and brain asymmetry. We have tested for correlation between relative hand skill and hundreds of thousands of genetic variants in a cohort of individuals with reading disability. The strongest associated variant is in the gene PCSK6, an enzyme that cleaves NODAL into an active form. NODAL plays a key role during the establishment of left/right (LR) asymmetry in diverse species, from snails to mammals. Pcsk6 knock-out mice display LR asymmetry defects like heterotaxia (abnormal organ positioning). We uncovered further variants associated with relative hand skill in the human versions of genes that also cause the LR asymmetry phenotypes heterotaxia, and situs inversus (reversal of organ asymmetry) when knocked out in mice. These results replicate in an independent general population cohort without reading disability. We propose that handedness is under the control of many variants, some of which are in genes that also contribute to the determination of body LR asymmetry.
doi:10.1371/journal.pgen.1003751
PMCID: PMC3772043  PMID: 24068947
Purpose.
To examine the extent to which the two major determinants of refractive error, corneal curvature and axial length, are scaled relative to one another by shared genetic variants, along with their relationship to the genetic scaling of height.
Methods.
Corneal curvature, axial length, and height were measured in unrelated 14- to 17-year-old white European participants of the Avon Longitudinal Study of Parents and Children (ALSPAC; n = 1915) and in unrelated 40- to 80-year-old participants of the Singapore Chinese Eye Study (SCES; n = 1642). Univariate and bivariate heritability analyses were performed with methods that avoid confounding by common family environment, using information solely from genome-wide high-density genotypes.
Results.
In ALSPAC subjects, axial length, corneal curvature, and height had similar lower-bound heritability estimates: axial length, h2 = 0.46 (SE = 0.16, P = 0.002); corneal curvature, h2 = 0.42 (SE = 0.16, P = 0.004); height, h2 = 0.48 (SE = 0.17, P = 0.002). The corresponding estimates in the SCES were 0.79 (SE = 0.18, P < 0.001), 0.35 (SE = 0.20, P = 0.036), and 0.31 (SE = 0.20, P = 0.061), respectively. The genetic correlation between corneal curvature and axial length was 0.69 (SE = 0.17, P = 0.019) for ALSPAC participants and 0.64 (SE = 0.22, P = 0.003) for SCES participants. In the subset of 1478 emmetropic ALSPAC individuals, the genetic correlation was 0.85 (SE = 0.12, P = 0.008).
Conclusions.
These results imply that coordinated scaling of ocular component dimensions is largely achieved by hundreds to thousands of common genetic variants, each with a small pleiotropic effect. Furthermore, genome-wide association studies (GWAS) for either axial length or corneal curvature are likely to identify variants controlling overall eye size when using discovery cohorts dominated by emmetropes, but trait-specific variants in discovery cohorts dominated by ametropes.
Analyses of high-density genetic markers distributed across the genomes of 1915 European teenagers and 1642 Chinese adults suggested that commonly occurring, additively acting genetic variants largely codetermine corneal curvature and axial length, especially in emmetropes.
doi:10.1167/iovs.12-10560
PMCID: PMC3626516  PMID: 23385790
Verhoeven, Virginie J.M. | Hysi, Pirro G. | Wojciechowski, Robert | Fan, Qiao | Guggenheim, Jeremy A. | Höhn, René | MacGregor, Stuart | Hewitt, Alex W. | Nag, Abhishek | Cheng, Ching-Yu | Yonova-Doing, Ekaterina | Zhou, Xin | Ikram, M. Kamran | Buitendijk, Gabriëlle H.S. | McMahon, George | Kemp, John P. | St. Pourcain, Beate | Simpson, Claire L. | Mäkelä, Kari-Matti | Lehtimäki, Terho | Kähönen, Mika | Paterson, Andrew D. | Hosseini, S. Mohsen | Wong, Hoi Suen | Xu, Liang | Jonas, Jost B. | Pärssinen, Olavi | Wedenoja, Juho | Yip, Shea Ping | Ho, Daniel W. H. | Pang, Chi Pui | Chen, Li Jia | Burdon, Kathryn P. | Craig, Jamie E. | Klein, Barbara E. K. | Klein, Ronald | Haller, Toomas | Metspalu, Andres | Khor, Chiea-Chuen | Tai, E-Shyong | Aung, Tin | Vithana, Eranga | Tay, Wan-Ting | Barathi, Veluchamy A. | Chen, Peng | Li, Ruoying | Liao, Jiemin | Zheng, Yingfeng | Ong, Rick T. | Döring, Angela | Evans, David M. | Timpson, Nicholas J. | Verkerk, Annemieke J.M.H. | Meitinger, Thomas | Raitakari, Olli | Hawthorne, Felicia | Spector, Tim D. | Karssen, Lennart C. | Pirastu, Mario | Murgia, Federico | Ang, Wei | Mishra, Aniket | Montgomery, Grant W. | Pennell, Craig E. | Cumberland, Phillippa M. | Cotlarciuc, Ioana | Mitchell, Paul | Wang, Jie Jin | Schache, Maria | Janmahasathian, Sarayut | Igo, Robert P. | Lass, Jonathan H. | Chew, Emily | Iyengar, Sudha K. | Gorgels, Theo G.M.F. | Rudan, Igor | Hayward, Caroline | Wright, Alan F. | Polasek, Ozren | Vatavuk, Zoran | Wilson, James F. | Fleck, Brian | Zeller, Tanja | Mirshahi, Alireza | Müller, Christian | Uitterlinden, Andre’ G. | Rivadeneira, Fernando | Vingerling, Johannes R. | Hofman, Albert | Oostra, Ben A. | Amin, Najaf | Bergen, Arthur A.B. | Teo, Yik-Ying | Rahi, Jugnoo S. | Vitart, Veronique | Williams, Cathy | Baird, Paul N. | Wong, Tien-Yin | Oexle, Konrad | Pfeiffer, Norbert | Mackey, David A. | Young, Terri L. | van Duijn, Cornelia M. | Saw, Seang-Mei | Wilson, Joan E. Bailey | Stambolian, Dwight | Klaver, Caroline C. | Hammond, Christopher J.
Nature genetics  2013;45(3):314-318.
Refractive error is the most common eye disorder worldwide, and a prominent cause of blindness. Myopia affects over 30% of Western populations, and up to 80% of Asians. The CREAM consortium conducted genome-wide meta-analyses including 37,382 individuals from 27 studies of European ancestry, and 8,376 from 5 Asian cohorts. We identified 16 new loci for refractive error in subjects of European ancestry, of which 8 were shared with Asians. Combined analysis revealed 8 additional loci. The new loci include genes with functions in neurotransmission (GRIA4), ion channels (KCNQ5), retinoic acid metabolism (RDH5), extracellular matrix remodeling (LAMA2, BMP2), and eye development (SIX6, PRSS56). We also confirmed previously reported associations with GJD2 and RASGRF1. Risk score analysis using associated SNPs showed a tenfold increased risk of myopia for subjects with the highest genetic load. Our results, accumulated across independent multi-ethnic studies, considerably advance understanding of mechanisms involved in refractive error and myopia.
doi:10.1038/ng.2554
PMCID: PMC3740568  PMID: 23396134
Horikoshi, Momoko | Yaghootkar, Hanieh | Mook-Kanamori, Dennis O. | Sovio, Ulla | Taal, H. Rob | Hennig, Branwen J. | Bradfield, Jonathan P. | St. Pourcain, Beate | Evans, David M. | Charoen, Pimphen | Kaakinen, Marika | Cousminer, Diana L. | Lehtimäki, Terho | Kreiner-Møller, Eskil | Warrington, Nicole M. | Bustamante, Mariona | Feenstra, Bjarke | Berry, Diane J. | Thiering, Elisabeth | Pfab, Thiemo | Barton, Sheila J. | Shields, Beverley M. | Kerkhof, Marjan | van Leeuwen, Elisabeth M. | Fulford, Anthony J. | Kutalik, Zoltán | Zhao, Jing Hua | den Hoed, Marcel | Mahajan, Anubha | Lindi, Virpi | Goh, Liang-Kee | Hottenga, Jouke-Jan | Wu, Ying | Raitakari, Olli T. | Harder, Marie N. | Meirhaeghe, Aline | Ntalla, Ioanna | Salem, Rany M. | Jameson, Karen A. | Zhou, Kaixin | Monies, Dorota M. | Lagou, Vasiliki | Kirin, Mirna | Heikkinen, Jani | Adair, Linda S. | Alkuraya, Fowzan S. | Al-Odaib, Ali | Amouyel, Philippe | Andersson, Ehm Astrid | Bennett, Amanda J. | Blakemore, Alexandra I.F. | Buxton, Jessica L. | Dallongeville, Jean | Das, Shikta | de Geus, Eco J. C. | Estivill, Xavier | Flexeder, Claudia | Froguel, Philippe | Geller, Frank | Godfrey, Keith M. | Gottrand, Frédéric | Groves, Christopher J. | Hansen, Torben | Hirschhorn, Joel N. | Hofman, Albert | Hollegaard, Mads V. | Hougaard, David M. | Hyppönen, Elina | Inskip, Hazel M. | Isaacs, Aaron | Jørgensen, Torben | Kanaka-Gantenbein, Christina | Kemp, John P. | Kiess, Wieland | Kilpeläinen, Tuomas O. | Klopp, Norman | Knight, Bridget A. | Kuzawa, Christopher W. | McMahon, George | Newnham, John P. | Niinikoski, Harri | Oostra, Ben A. | Pedersen, Louise | Postma, Dirkje S. | Ring, Susan M. | Rivadeneira, Fernando | Robertson, Neil R. | Sebert, Sylvain | Simell, Olli | Slowinski, Torsten | Tiesler, Carla M.T. | Tönjes, Anke | Vaag, Allan | Viikari, Jorma S. | Vink, Jacqueline M. | Vissing, Nadja Hawwa | Wareham, Nicholas J. | Willemsen, Gonneke | Witte, Daniel R. | Zhang, Haitao | Zhao, Jianhua | Wilson, James F. | Stumvoll, Michael | Prentice, Andrew M. | Meyer, Brian F. | Pearson, Ewan R. | Boreham, Colin A.G. | Cooper, Cyrus | Gillman, Matthew W. | Dedoussis, George V. | Moreno, Luis A | Pedersen, Oluf | Saarinen, Maiju | Mohlke, Karen L. | Boomsma, Dorret I. | Saw, Seang-Mei | Lakka, Timo A. | Körner, Antje | Loos, Ruth J.F. | Ong, Ken K. | Vollenweider, Peter | van Duijn, Cornelia M. | Koppelman, Gerard H. | Hattersley, Andrew T. | Holloway, John W. | Hocher, Berthold | Heinrich, Joachim | Power, Chris | Melbye, Mads | Guxens, Mònica | Pennell, Craig E. | Bønnelykke, Klaus | Bisgaard, Hans | Eriksson, Johan G. | Widén, Elisabeth | Hakonarson, Hakon | Uitterlinden, André G. | Pouta, Anneli | Lawlor, Debbie A. | Smith, George Davey | Frayling, Timothy M. | McCarthy, Mark I. | Grant, Struan F.A. | Jaddoe, Vincent W.V. | Jarvelin, Marjo-Riitta | Timpson, Nicholas J. | Prokopenko, Inga | Freathy, Rachel M.
Nature genetics  2012;45(1):76-82.
Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood1. Previous genome-wide association studies identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes, and a second variant, near CCNL1, with no obvious link to adult traits2. In an expanded genome-wide association meta-analysis and follow-up study (up to 69,308 individuals of European descent from 43 studies), we have now extended the number of genome-wide significant loci to seven, accounting for a similar proportion of variance to maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes; ADRB1 with adult blood pressure; and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism.
doi:10.1038/ng.2477
PMCID: PMC3605762  PMID: 23202124
Human Molecular Genetics  2013;22(18):3807-3817.
Twin and family studies indicate that the timing of primary tooth eruption is highly heritable, with estimates typically exceeding 80%. To identify variants involved in primary tooth eruption, we performed a population-based genome-wide association study of ‘age at first tooth’ and ‘number of teeth’ using 5998 and 6609 individuals, respectively, from the Avon Longitudinal Study of Parents and Children (ALSPAC) and 5403 individuals from the 1966 Northern Finland Birth Cohort (NFBC1966). We tested 2 446 724 SNPs imputed in both studies. Analyses were controlled for the effect of gestational age, sex and age of measurement. Results from the two studies were combined using fixed effects inverse variance meta-analysis. We identified a total of 15 independent loci, with 10 loci reaching genome-wide significance (P < 5 × 10−8) for ‘age at first tooth’ and 11 loci for ‘number of teeth’. Together, these associations explain 6.06% of the variation in ‘age of first tooth’ and 4.76% of the variation in ‘number of teeth’. The identified loci included eight previously unidentified loci, some containing genes known to play a role in tooth and other developmental pathways, including an SNP in the protein-coding region of BMP4 (rs17563, P = 9.080 × 10−17). Three of these loci, containing the genes HMGA2, AJUBA and ADK, also showed evidence of association with craniofacial distances, particularly those indexing facial width. Our results suggest that the genome-wide association approach is a powerful strategy for detecting variants involved in tooth eruption, and potentially craniofacial growth and more generally organ development.
doi:10.1093/hmg/ddt231
PMCID: PMC3749866  PMID: 23704328
Nature genetics  2012;44(5):539-544.
During aging, intracranial volume remains unchanged and represents maximally attained brain size, while various interacting biological phenomena lead to brain volume loss. Consequently, intracranial volume and brain volume in late life reflect different genetic influences. Our genome-wide association study in 8,175 community-dwelling elderly did not reveal any genome-wide significant associations (p<5*10−8) for brain volume. In contrast, intracranial volume was significantly associated with two loci: rs4273712 (p=3.4*10−11), a known height locus on chromosome 6q22, and rs9915547, tagging the inversion on chromosome 17q21 (p=1.5*10−12). We replicated the associations of these loci with intracranial volume in a separate sample of 1,752 older persons (p=1.1*10−3 for 6q22 and p=1.2*10−3 for 17q21). Furthermore, we also found suggestive associations of the 17q21 locus with head circumference in 10,768 children (mean age 14.5 months). Our data identify two loci associated with head size, with the inversion on 17q21 also likely involved in attaining maximal brain size.
doi:10.1038/ng.2245
PMCID: PMC3618290  PMID: 22504418
PLoS Genetics  2012;8(7):e1002745.
We aimed to identify genetic variants associated with cortical bone thickness (CBT) and bone mineral density (BMD) by performing two separate genome-wide association study (GWAS) meta-analyses for CBT in 3 cohorts comprising 5,878 European subjects and for BMD in 5 cohorts comprising 5,672 individuals. We then assessed selected single-nucleotide polymorphisms (SNPs) for osteoporotic fracture in 2,023 cases and 3,740 controls. Association with CBT and forearm BMD was tested for ∼2.5 million SNPs in each cohort separately, and results were meta-analyzed using fixed effect meta-analysis. We identified a missense SNP (Thr>Ile; rs2707466) located in the WNT16 gene (7q31), associated with CBT (effect size of −0.11 standard deviations [SD] per C allele, P = 6.2×10−9). This SNP, as well as another nonsynonymous SNP rs2908004 (Gly>Arg), also had genome-wide significant association with forearm BMD (−0.14 SD per C allele, P = 2.3×10−12, and −0.16 SD per G allele, P = 1.2×10−15, respectively). Four genome-wide significant SNPs arising from BMD meta-analysis were tested for association with forearm fracture. SNP rs7776725 in FAM3C, a gene adjacent to WNT16, was associated with a genome-wide significant increased risk of forearm fracture (OR = 1.33, P = 7.3×10−9), with genome-wide suggestive signals from the two missense variants in WNT16 (rs2908004: OR = 1.22, P = 4.9×10−6 and rs2707466: OR = 1.22, P = 7.2×10−6). We next generated a homozygous mouse with targeted disruption of Wnt16. Female Wnt16−/− mice had 27% (P<0.001) thinner cortical bones at the femur midshaft, and bone strength measures were reduced between 43%–61% (6.5×10−13
Author Summary
Bone traits are highly dependent on genetic factors. To date, numerous genetic loci for bone mineral density (BMD) and only one locus for osteoporotic fracture have been previously identified to be genome-wide significant. Cortical bone has been reported to be an important determinant of bone strength; so far, no genome-wide association studies (GWAS) have been performed for cortical bone thickness (CBT) of the tibial and radial diaphysis or BMD at forearm, a skeletal site rich in cortical bone. Therefore, we performed two separated meta-analyses of GWAS for cortical thickness of the tibia in 3 independent cohorts of 5,878 men and women, and for forearm BMD in 5 cohorts of 5,672 individuals. We identified the 7q31 locus, which contains WNT16, to be associated with CBT and BMD. Four SNPs from this locus were then tested in 2,023 osteoporotic fracture cases and 3,740 controls. One of these SNPs was genome-wide significant, and two were genome-wide suggestive, for forearm fracture. Generating a mouse with targeted disruption of Wnt16, we also demonstrated that mice lacking this protein had substantially thinner bone cortices and reduced bone strength than their wild-type littermates. These findings highlight WNT16 as a clinically relevant member of the Wnt signaling pathway and increase our understanding of the etiology of osteoporosis-related phenotypes and fracture.
doi:10.1371/journal.pgen.1002745
PMCID: PMC3390364  PMID: 22792071
PLoS Genetics  2012;8(7):e1002718.
To identify genetic loci influencing bone accrual, we performed a genome-wide association scan for total-body bone mineral density (TB-BMD) variation in 2,660 children of different ethnicities. We discovered variants in 7q31.31 associated with BMD measurements, with the lowest P = 4.1×10−11 observed for rs917727 with minor allele frequency of 0.37. We sought replication for all SNPs located ±500 kb from rs917727 in 11,052 additional individuals from five independent studies including children and adults, together with de novo genotyping of rs3801387 (in perfect linkage disequilibrium (LD) with rs917727) in 1,014 mothers of children from the discovery cohort. The top signal mapping in the surroundings of WNT16 was replicated across studies with a meta-analysis P = 2.6×10−31 and an effect size explaining between 0.6%–1.8% of TB-BMD variance. Conditional analyses on this signal revealed a secondary signal for total body BMD (P = 1.42×10−10) for rs4609139 and mapping to C7orf58. We also examined the genomic region for association with skull BMD to test if the associations were independent of skeletal loading. We identified two signals influencing skull BMD variation, including rs917727 (P = 1.9×10−16) and rs7801723 (P = 8.9×10−28), also mapping to C7orf58 (r2 = 0.50 with rs4609139). Wnt16 knockout (KO) mice with reduced total body BMD and gene expression profiles in human bone biopsies support a role of C7orf58 and WNT16 on the BMD phenotypes observed at the human population level. In summary, we detected two independent signals influencing total body and skull BMD variation in children and adults, thus demonstrating the presence of allelic heterogeneity at the WNT16 locus. One of the skull BMD signals mapping to C7orf58 is mostly driven by children, suggesting temporal determination on peak bone mass acquisition. Our life-course approach postulates that these genetic effects influencing peak bone mass accrual may impact the risk of osteoporosis later in life.
Author Summary
Genetic investigations on bone mineral density (BMD) variation in children allow the identification of factors determining peak bone mass and their influence on developing osteoporosis later in life. We ran a genome-wide association study (GWAS) for total body BMD based on 2,660 children of different ethnic backgrounds, followed by replication in an additional 12,066 individuals comprising children, young adults, and elderly populations. Our GWAS meta-analysis identified two independent signals in the 7q31.31 locus, arising from SNPs in the vicinity of WNT16, FAM3C, and C7orf58. These variants were also associated with skull BMD, a skeletal trait with much less environmental influence for which one of the signals displayed age-specific effects. Integration of functional studies in a Wnt16 knockout mouse model and gene expression profiles in human bone tissue provided additional evidence that WNT16 and C7orf58 underlie the described associations. All together our findings demonstrate the relevance of these factors for bone biology, the attainment of peak bone mass, and their likely impact on bone fragility later in life.
doi:10.1371/journal.pgen.1002718
PMCID: PMC3390371  PMID: 22792070
Bradfield, Jonathan P. | Taal, H. Rob | Timpson, Nicholas J. | Scherag, André | Lecoeur, Cecile | Warrington, Nicole M. | Hypponen, Elina | Holst, Claus | Valcarcel, Beatriz | Thiering, Elisabeth | Salem, Rany M. | Schumacher, Fredrick R. | Cousminer, Diana L. | Sleiman, Patrick M.A. | Zhao, Jianhua | Berkowitz, Robert I. | Vimaleswaran, Karani S. | Jarick, Ivonne | Pennell, Craig E. | Evans, David M. | St. Pourcain, Beate | Berry, Diane J. | Mook-Kanamori, Dennis O | Hofman, Albert | Rivadeinera, Fernando | Uitterlinden, André G. | van Duijn, Cornelia M. | van der Valk, Ralf J.P. | de Jongste, Johan C. | Postma, Dirkje S. | Boomsma, Dorret I. | Gauderman, William J. | Hassanein, Mohamed T. | Lindgren, Cecilia M. | Mägi, Reedik | Boreham, Colin A.G. | Neville, Charlotte E. | Moreno, Luis A. | Elliott, Paul | Pouta, Anneli | Hartikainen, Anna-Liisa | Li, Mingyao | Raitakari, Olli | Lehtimäki, Terho | Eriksson, Johan G. | Palotie, Aarno | Dallongeville, Jean | Das, Shikta | Deloukas, Panos | McMahon, George | Ring, Susan M. | Kemp, John P. | Buxton, Jessica L. | Blakemore, Alexandra I.F. | Bustamante, Mariona | Guxens, Mònica | Hirschhorn, Joel N. | Gillman, Matthew W. | Kreiner-Møller, Eskil | Bisgaard, Hans | Gilliland, Frank D. | Heinrich, Joachim | Wheeler, Eleanor | Barroso, Inês | O'Rahilly, Stephen | Meirhaeghe, Aline | Sørensen, Thorkild I.A. | Power, Chris | Palmer, Lyle J. | Hinney, Anke | Widen, Elisabeth | Farooqi, I. Sadaf | McCarthy, Mark I. | Froguel, Philippe | Meyre, David | Hebebrand, Johannes | Jarvelin, Marjo-Riitta | Jaddoe, Vincent W.V. | Smith, George Davey | Hakonarson, Hakon | Grant, Struan F.A.
Nature Genetics  2012;44(5):526-531.
Multiple genetic variants have been associated with adult obesity and a few with severe obesity in childhood; however, less progress has been made to establish genetic influences on common early-onset obesity. We performed a North American-Australian-European collaborative meta-analysis of fourteen studies consisting of 5,530 cases (≥95th percentile of body mass index (BMI)) and 8,318 controls (<50th percentile of BMI) of European ancestry. Taking forward the eight novel signals yielding association with P < 5×10−6 in to nine independent datasets (n = 2,818 cases and 4,083 controls) we observed two loci that yielded a genome wide significant combined P-value, namely near OLFM4 on 13q14 (rs9568856; P=1.82×10−9; OR=1.22) and within HOXB5 on 17q21 (rs9299; P=3.54×10−9; OR=1.14). Both loci continued to show association when including two extreme childhood obesity cohorts (n = 2,214 cases and 2,674 controls). Finally, these two loci yielded directionally consistent associations in the GIANT meta-analysis of adult BMI1.
doi:10.1038/ng.2247
PMCID: PMC3370100  PMID: 22484627
Diabetes  2011;60(6):1805-1812.
OBJECTIVE
To investigate whether associations of common genetic variants recently identified for fasting glucose or insulin levels in nondiabetic adults are detectable in healthy children and adolescents.
RESEARCH DESIGN AND METHODS
A total of 16 single nucleotide polymorphisms (SNPs) associated with fasting glucose were genotyped in six studies of children and adolescents of European origin, including over 6,000 boys and girls aged 9–16 years. We performed meta-analyses to test associations of individual SNPs and a weighted risk score of the 16 loci with fasting glucose.
RESULTS
Nine loci were associated with glucose levels in healthy children and adolescents, with four of these associations reported in previous studies and five reported here for the first time (GLIS3, PROX1, SLC2A2, ADCY5, and CRY2). Effect sizes were similar to those in adults, suggesting age-independent effects of these fasting glucose loci. Children and adolescents carrying glucose-raising alleles of G6PC2, MTNR1B, GCK, and GLIS3 also showed reduced β-cell function, as indicated by homeostasis model assessment of β-cell function. Analysis using a weighted risk score showed an increase [β (95% CI)] in fasting glucose level of 0.026 mmol/L (0.021–0.031) for each unit increase in the score.
CONCLUSIONS
Novel fasting glucose loci identified in genome-wide association studies of adults are associated with altered fasting glucose levels in healthy children and adolescents with effect sizes comparable to adults. In nondiabetic adults, fasting glucose changes little over time, and our results suggest that age-independent effects of fasting glucose loci contribute to long-term interindividual differences in glucose levels from childhood onwards.
doi:10.2337/db10-1575
PMCID: PMC3114379  PMID: 21515849
Dastani, Zari | Hivert, Marie-France | Timpson, Nicholas | Perry, John R. B. | Yuan, Xin | Scott, Robert A. | Henneman, Peter | Heid, Iris M. | Kizer, Jorge R. | Lyytikäinen, Leo-Pekka | Fuchsberger, Christian | Tanaka, Toshiko | Morris, Andrew P. | Small, Kerrin | Isaacs, Aaron | Beekman, Marian | Coassin, Stefan | Lohman, Kurt | Qi, Lu | Kanoni, Stavroula | Pankow, James S. | Uh, Hae-Won | Wu, Ying | Bidulescu, Aurelian | Rasmussen-Torvik, Laura J. | Greenwood, Celia M. T. | Ladouceur, Martin | Grimsby, Jonna | Manning, Alisa K. | Liu, Ching-Ti | Kooner, Jaspal | Mooser, Vincent E. | Vollenweider, Peter | Kapur, Karen A. | Chambers, John | Wareham, Nicholas J. | Langenberg, Claudia | Frants, Rune | Willems-vanDijk, Ko | Oostra, Ben A. | Willems, Sara M. | Lamina, Claudia | Winkler, Thomas W. | Psaty, Bruce M. | Tracy, Russell P. | Brody, Jennifer | Chen, Ida | Viikari, Jorma | Kähönen, Mika | Pramstaller, Peter P. | Evans, David M. | St. Pourcain, Beate | Sattar, Naveed | Wood, Andrew R. | Bandinelli, Stefania | Carlson, Olga D. | Egan, Josephine M. | Böhringer, Stefan | van Heemst, Diana | Kedenko, Lyudmyla | Kristiansson, Kati | Nuotio, Marja-Liisa | Loo, Britt-Marie | Harris, Tamara | Garcia, Melissa | Kanaya, Alka | Haun, Margot | Klopp, Norman | Wichmann, H.-Erich | Deloukas, Panos | Katsareli, Efi | Couper, David J. | Duncan, Bruce B. | Kloppenburg, Margreet | Adair, Linda S. | Borja, Judith B. | Wilson, James G. | Musani, Solomon | Guo, Xiuqing | Johnson, Toby | Semple, Robert | Teslovich, Tanya M. | Allison, Matthew A. | Redline, Susan | Buxbaum, Sarah G. | Mohlke, Karen L. | Meulenbelt, Ingrid | Ballantyne, Christie M. | Dedoussis, George V. | Hu, Frank B. | Liu, Yongmei | Paulweber, Bernhard | Spector, Timothy D. | Slagboom, P. Eline | Ferrucci, Luigi | Jula, Antti | Perola, Markus | Raitakari, Olli | Florez, Jose C. | Salomaa, Veikko | Eriksson, Johan G. | Frayling, Timothy M. | Hicks, Andrew A. | Lehtimäki, Terho | Smith, George Davey | Siscovick, David S. | Kronenberg, Florian | van Duijn, Cornelia | Loos, Ruth J. F. | Waterworth, Dawn M. | Meigs, James B. | Dupuis, Josee | Richards, J. Brent
PLoS Genetics  2012;8(3):e1002607.
Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5×10−8–1.2×10−43). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3×10−4). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p = 4.3×10−3, n = 22,044), increased triglycerides (p = 2.6×10−14, n = 93,440), increased waist-to-hip ratio (p = 1.8×10−5, n = 77,167), increased glucose two hours post oral glucose tolerance testing (p = 4.4×10−3, n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL-cholesterol concentrations (p = 4.5×10−13, n = 96,748) and decreased BMI (p = 1.4×10−4, n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance.
Author Summary
Serum adiponectin levels are highly heritable and are inversely correlated with the risk of type 2 diabetes (T2D), coronary artery disease, stroke, and several metabolic traits. To identify common genetic variants associated with adiponectin levels and risk of T2D and metabolic traits, we conducted a meta-analysis of genome-wide association studies of 45,891 multi-ethnic individuals. In addition to confirming that variants at the ADIPOQ and CDH13 loci influence adiponectin levels, our analyses revealed that 10 new loci also affecting circulating adiponectin levels. We demonstrated that expression levels of several genes in these candidate regions are associated with serum adiponectin levels. Using a powerful novel method to assess the contribution of the identified variants with other traits using summary-level results from large-scale GWAS consortia, we provide evidence that the risk alleles for adiponectin are associated with deleterious changes in T2D risk and metabolic syndrome traits (triglycerides, HDL, post-prandial glucose, insulin, and waist-to-hip ratio), demonstrating that the identified loci, taken together, impact upon metabolic disease.
doi:10.1371/journal.pgen.1002607
PMCID: PMC3315470  PMID: 22479202
PLoS ONE  2012;7(3):e31821.
Background
Epigenetic markings acquired in early life may have phenotypic consequences later in development through their role in transcriptional regulation with relevance to the developmental origins of diseases including obesity. The goal of this study was to investigate whether DNA methylation levels at birth are associated with body size later in childhood.
Principal Findings
A study design involving two birth cohorts was used to conduct transcription profiling followed by DNA methylation analysis in peripheral blood. Gene expression analysis was undertaken in 24 individuals whose biological samples and clinical data were collected at a mean ± standard deviation (SD) age of 12.35 (0.95) years, the upper and lower tertiles of body mass index (BMI) were compared with a mean (SD) BMI difference of 9.86 (2.37) kg/m2. This generated a panel of differentially expressed genes for DNA methylation analysis which was then undertaken in cord blood DNA in 178 individuals with body composition data prospectively collected at a mean (SD) age of 9.83 (0.23) years. Twenty-nine differentially expressed genes (>1.2-fold and p<10−4) were analysed to determine DNA methylation levels at 1–3 sites per gene. Five genes were unmethylated and DNA methylation in the remaining 24 genes was analysed using linear regression with bootstrapping. Methylation in 9 of the 24 (37.5%) genes studied was associated with at least one index of body composition (BMI, fat mass, lean mass, height) at age 9 years, although only one of these associations remained after correction for multiple testing (ALPL with height, pCorrected = 0.017).
Conclusions
DNA methylation patterns in cord blood show some association with altered gene expression, body size and composition in childhood. The observed relationship is correlative and despite suggestion of a mechanistic epigenetic link between in utero life and later phenotype, further investigation is required to establish causality.
doi:10.1371/journal.pone.0031821
PMCID: PMC3303769  PMID: 22431966
PLoS ONE  2011;6(9):e24303.
Background
Thirty-two common variants associated with body mass index (BMI) have been identified in genome-wide association studies, explaining ∼1.45% of BMI variation in general population cohorts. We performed a genome-wide association study in a sample of young adults enriched for extremely overweight individuals. We aimed to identify new loci associated with BMI and to ascertain whether using an extreme sampling design would identify the variants known to be associated with BMI in general populations.
Methodology/Principal Findings
From two large Danish cohorts we selected all extremely overweight young men and women (n = 2,633), and equal numbers of population-based controls (n = 2,740, drawn randomly from the same populations as the extremes, representing ∼212,000 individuals). We followed up novel (at the time of the study) association signals (p<0.001) from the discovery cohort in a genome-wide study of 5,846 Europeans, before attempting to replicate the most strongly associated 28 SNPs in an independent sample of Danish individuals (n = 20,917) and a population-based cohort of 15-year-old British adolescents (n = 2,418). Our discovery analysis identified SNPs at three loci known to be associated with BMI with genome-wide confidence (P<5×10−8; FTO, MC4R and FAIM2). We also found strong evidence of association at the known TMEM18, GNPDA2, SEC16B, TFAP2B, SH2B1 and KCTD15 loci (p<0.001), and nominal association (p<0.05) at a further 8 loci known to be associated with BMI. However, meta-analyses of our discovery and replication cohorts identified no novel associations.
Significance
Our results indicate that the detectable genetic variation associated with extreme overweight is very similar to that previously found for general BMI. This suggests that population-based study designs with enriched sampling of individuals with the extreme phenotype may be an efficient method for identifying common variants that influence quantitative traits and a valid alternative to genotyping all individuals in large population-based studies, which may require tens of thousands of subjects to achieve similar power.
doi:10.1371/journal.pone.0024303
PMCID: PMC3174168  PMID: 21935397
Objective
There is overlap between an autistic and hyperactive-inattentive symptomatology when studied cross-sectionally. This study is the first to examine the longitudinal pattern of association between social-communication deficits and hyperactive-inattentive symptoms in the general population, from childhood through adolescence. We explored the interrelationship between trajectories of co-occurring symptoms, and sought evidence for shared prenatal/perinatal risk factors.
Method
Study participants were 5,383 singletons of white ethnicity from the Avon Longitudinal Study of Parents and Children (ALSPAC). Multiple measurements of hyperactive-inattentive traits (Strengths and Difficulties Questionnaire) and autistic social-communication impairment (Social Communication Disorder Checklist) were obtained between 4 and 17 years. Both traits and their trajectories were modeled in parallel using latent class growth analysis (LCGA). Trajectory membership was subsequently investigated with respect to prenatal/perinatal risk factors.
Results
LCGA analysis revealed two distinct social-communication trajectories (persistently impaired versus low-risk) and four hyperactive-inattentive trait trajectories (persistently impaired, intermediate, childhood-limited and low-risk). Autistic symptoms were more stable than those of attention-deficit/hyperactivity disorder (ADHD) behaviors, which showed greater variability. Trajectories for both traits were strongly but not reciprocally interlinked, such that the majority of children with a persistent hyperactive-inattentive symptomatology also showed persistent social-communication deficits but not vice versa. Shared predictors, especially for trajectories of persistent impairment, were maternal smoking during the first trimester, which included familial effects, and a teenage pregnancy.
Conclusions
Our longitudinal study reveals that a complex relationship exists between social-communication and hyperactive-inattentive traits. Patterns of association change over time, with corresponding implications for removing exclusivity criteria for ASD and ADHD, as proposed for DSM-5.
doi:10.1016/j.jaac.2011.05.015
PMCID: PMC3163265  PMID: 21871371
social-communication trait; hyperactive-inattentive trait; maternal smoking; teenage pregnancy; ALSPAC
The American journal of psychiatry  2010;167(11):1364-1372.
Objective
Recent genome-wide analysis identified a genetic variant on 5p14.1 (rs4307059), which is associated with risk for autism spectrum disorder. This study investigated whether rs4307059 also operates as a quantitative trait locus underlying a broader autism phenotype in the general population, focusing specifically on the social communication aspect of the spectrum.
Method
Study participants were 7,313 children from the Avon Longitudinal Study of Parents and Children. Single-trait and joint-trait genotype associations were investigated for 29 measures related to language and communication, verbal intelligence, social interaction, and behavioral adjustment, assessed between ages 3 and 12 years. Analyses were performed in one-sided or directed mode and adjusted for multiple testing, trait interrelatedness, and random genotype dropout.
Results
Single phenotype analyses showed that an increased load of rs4307059 risk allele is associated with stereotyped conversation and lower pragmatic communication skills, as measured by the Children's Communication Checklist (at a mean age of 9.7 years). In addition a trend toward a higher frequency of identification of special educational needs (at a mean age of 11.8 years) was observed. Variation at rs4307059 was also associated with the phenotypic profile of studied traits. This joint signal was fully explained neither by single-trait associations nor by overall behavioral adjustment problems but suggested a combined effect, which manifested through multiple subthreshold social, communicative, and cognitive impairments.
Conclusions
Our results suggest that common variation at 5p14.1 is associated with social communication spectrum phenotypes in the general population and support the role of rs4307059 as a quantitative trait locus for autism spectrum disorder.
doi:10.1176/appi.ajp.2010.09121789
PMCID: PMC3008767  PMID: 20634369

Results 1-25 (31)