Search tips
Search criteria

Results 1-25 (42)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Evidence From Human and Zebrafish That GPC1 Is a Biliary Atresia Susceptibility Gene 
Gastroenterology  2013;144(5):1107-1115.e3.
Biliary atresia (BA) is a progressive fibroinflammatory disorder of infants involving the extrahepatic and intrahepatic biliary tree. Its etiology is unclear but is believed to involve exposure of a genetically susceptible individual to certain environmental factors. BA occurs exclusively in the neonatal liver, so variants of genes expressed during hepatobiliary development could affect susceptibility. Genome-wide association studies previously identified a potential region of interest at 2q37. We continued these studies to narrow the region and identify BA susceptibility genes.
We searched for copy number variants that were increased among patients with BA (n = 61) compared with healthy individuals (controls; n = 5088). After identifying a candidate gene, we investigated expression patterns of orthologues in zebrafish liver and the effects of reducing expression, with morpholino antisense oligonucleotides, on biliary development, gene expression, and signal transduction.
We observed a statistically significant increase in deletions at 2q37.3 in patients with BA that resulted in deletion of one copy of GPC1, which encodes glypican 1, a heparan sulfate proteoglycan that regulates Hedgehog signaling and inflammation. Knockdown of gpc1 in zebrafish led to developmental biliary defects. Exposure of the gpc1 morphants to cyclopamine, a Hedgehog antagonist, partially rescued the gpc1-knockdown phenotype. Injection of zebrafish with recombinant Sonic Hedgehog led to biliary defects similar to those of the gpc1 morphants. Liver samples from patients with BA had reduced levels of apical GPC1 in cholangiocytes compared with samples from controls.
Based on genetic analysis of patients with BA and zebrafish, GPC1 appears to be a BA susceptibility gene. These findings also support a role for Hedgehog signaling in the pathogenesis of BA.
PMCID: PMC3736559  PMID: 23336978
GWA; Susceptibility Loci; Animal Model; Bile Duct Growth and Development
2.  Physicians’ Perspectives on the Uncertainties and Implications of Chromosomal Microarray Testing of Children and Families 
Clinical genetics  2012;83(1):23-30.
Chromosomal microarray analysis (CMA) has improved the diagnostic rate of genomic disorders in pediatric populations, but can produce uncertain and unexpected findings. This paper explores clinicians’ perspectives and identifies challenges in effectively interpreting results and communicating with families about CMA. Responses to an online survey were obtained from 40 clinicians who had ordered CMA. Content included practice characteristics and perceptions, and queries about a hypothetical case involving uncertain and incidental findings. Data were analyzed using non-parametric statistical tests. Clinicians’ comfort levels differed significantly for explaining uncertain, abnormal, and normal CMA results, with lowest levels for uncertain results. Despite clinical guidelines recommending informed consent, many clinicians did not consider it pertinent to discuss the potential for CMA to reveal information concerning biological parentage or predisposition to late-onset disease, in a hypothetical case. Many non-genetics professionals ordering CMA did not feel equipped to interpret the results for patients, and articulated needs for education and access to genetics professionals. This exploratory study highlights key challenges in the practice of genomic medicine, and identifies needs for education, disseminated practice guidelines, and access to genetics professionals, especially when dealing with uncertain or unexpected findings.
PMCID: PMC3527693  PMID: 22989118
Cytogenomics; incidental findings; uncertainty; health communication; pediatrics; genomic medicine; genetic counseling
3.  CCBE1 Mutation in Two Siblings, One Manifesting Lymphedema-Cholestasis Syndrome, and the Other, Fetal Hydrops 
PLoS ONE  2013;8(9):e75770.
Lymphedema-cholestasis syndrome (LCS; Aagenaes syndrome) is a rare autosomal recessive disorder, characterized by 1) neonatal intrahepatic cholestasis, often lessening and becoming intermittent with age, and 2) severe chronic lymphedema, mainly lower limb. LCS was originally described in a Norwegian kindred in which a locus, LCS1, was mapped to a 6.6cM region on chromosome 15. Mutations in CCBE1 on chromosome 18 have been reported in some cases of lymphatic dysplasia, but not in LCS.
Consanguineous parents of Mexican ancestry had a child with LCS who did not exhibit extended homozygosity in the LCS1 region. A subsequent pregnancy was electively terminated due to fetal hydrops. We performed whole-genome single nucleotide polymorphism genotyping to identify regions of homozygosity in these siblings, and sequenced promising candidate genes.
Both siblings harbored a homozygous mutation in CCBE1, c.398 T>C, predicted to result in the missense change p.L133P. Regions containing known ‘cholestasis genes’ did not demonstrate homozygosity in the LCS patient.
Mutations in CCBE1 may yield a phenotype not only of lymphatic dysplasia, but also of LCS or fetal hydrops; however, the possibility that the sibling with LCS also carries a homozygous mutation in an unidentified gene influencing cholestasis cannot be excluded.
PMCID: PMC3784396  PMID: 24086631
4.  Persistent Mosaicism for 12p Duplication/Triplication Chromosome Structural Abnormality in Peripheral Blood 
Case Reports in Genetics  2013;2013:857926.
We present a rare case of mosaicism for a structural abnormality of chromosome 12 in a patient with phenotypic features of Pallister-Killian syndrome. A six-month-old child with dysmorphic features, exotropia, hypotonia, and developmental delay was mosaic for both a normal karyotype and a cell line with 12p duplication/triplication in 25 percent of metaphase cells. Utilization of fluorescence in situ hybridization (FISH) identified three copies of probes from the end of the short arm of chromosome 12 (TEL(12p13) locus and the subtelomere (12p terminal)) on the structurally abnormal chromosome 12. Genome-wide SNP array analysis revealed that the regions of duplication and triplication were of maternal origin. The abnormal cell line in our patient was present at 25 percent at six months and 19 months of age in both metaphase and interphase cells from peripheral blood, where typically the isochromosome 12p is absent in the newborn. This may suggest that the gene(s) resulting in a growth disadvantage of abnormal cells in peripheral blood of patients with tetrasomy 12p may not have the same influence when present in only three copies.
PMCID: PMC3787625  PMID: 24151566
5.  Notch signaling in human development and disease 
Mutations in Notch signaling pathway members cause developmental phenotypes that affect the liver, skeleton, heart, eye, face, kidney, and vasculature. Notch associated disorders include the autosomal dominant, multi-system, Alagille syndrome caused by mutations in both a ligand (Jagged1 (JAG1)) and receptor (NOTCH2) and autosomal recessive spondylocostal dysostosis, caused by mutations in a ligand (Delta-like-3 (DLL3)), as well as several other members of the Notch signaling pathway. Mutations in NOTCH2 have also recently been connected to Hajdu-Cheney syndrome, a dominant disorder causing focal bone destruction, osteoporosis, craniofacial morphology and renal cysts. Mutations in the NOTCH1 receptor are associated with several types of cardiac disease and mutations in NOTCH3 cause the dominant adult onset disorder CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy), a vascular disorder with onset in the 4th or 5th decades. Studies of these human disorders and their inheritance patterns and types of mutations reveal insights into the mechanisms of Notch signaling.
PMCID: PMC3638987  PMID: 22306179
Alagille syndrome; Spondylocostal dysostosis; Hajdu Cheney; Cardiac disease; Notch signaling
6.  Alagille Syndrome in a Vietnamese Cohort: Mutation Analysis and Assessment of Facial Features 
Alagille syndrome (ALGS, OMIM #118450) is an autosomal dominant disorder that affects multiple organ systems including the liver, heart, eyes, vertebrae, and face. ALGS is caused by mutations in one of two genes in the Notch Signaling Pathway, JAGGED1 or NOTCH2. In this study, analysis of 21 Vietnamese ALGS individuals led to the identification of 19 different mutations (18 JAGGED1 and 1 NOTCH2), 17 of which are novel, including the third reported NOTCH2 mutation in Alagille Syndrome. The spectrum of JAGGED1 mutations in the Vietnamese patients is similar to that previously reported, including nine frameshift, three missense, two splice site, one nonsense, two whole gene, and onw partial gene deletion. The missense mutations are all likely to be disease causing, as two are loss of cysteines (C22R and C78G) and the third creates a cryptic splice site in exon 9 (G386R). No correlation between genotype and phenotype was observed. Assessment of clinical phenotype revealed that skeletal manifestations occur with a higher frequency than in previously reported Alagille cohorts. Facial features were difficult to assess and a Vietnamese pediatric gastroenterologist was only able to identify the facial phenotype in 61% of the cohort. To assess the agreement among North American dysmorphologists at detecting the presence of ALGS facial features in the Vietnamese patients, 37 clinical dysmorphologists evaluated a photographic panel of 20 Vietnamese children with and without ALGS. The dysmorphologists were unable to identify the individuals with ALGS in the majority of cases, suggesting that evaluation of facial features should not be used in the diagnosis of ALGS in this population. This is the first report of mutations and phenotypic spectrum of ALGS in a Vietnamese population.
PMCID: PMC3331947  PMID: 22488849
Alagille Syndrome; JAGGED1; NOTCH2; JAGGED1 missense mutation
7.  Genome-wide SNP Genotyping Identifies the Stereocilin (STRC) Gene as a Major Contributor to Pediatric Bilateral Sensorineural Hearing Impairment 
Hearing loss is the most prevalent sensory perception deficit in humans, affecting 1/500 newborns, can be syndromic or nonsyndromic and is genetically heterogeneous. Nearly 80% of inherited nonsyndromic bilateral sensorineural hearing loss (NBSNHI) is autosomal recessive. Although many causal genes have been identified, most are minor contributors, except for GJB2, which accounts for nearly 50% of all recessive cases of severe to profound congenital NBSNHI in some populations. More than 60% of children with a NBSNHI do not have an identifiable genetic cause. To identify genetic contributors, we genotyped 659 GJB2 mutation negative pediatric probands with NBSNHI and assayed for copy number variants (CNVs). After identifying 8 mild-moderate NBSNHI probands with a Chr15q15.3 deletion encompassing the Stereocilin (STRC) gene amongst this cohort, sequencing of STRC was undertaken in these probands as well as 50 probands and 14 siblings with mild-moderate NBSNHI and 40 probands with moderately severe-profound NBSNHI who were GJB2 mutation negative. The existence of a STRC pseudogene that is 99.6% homologous to the STRC coding region has made the sequencing interpretation complicated. We identified 7/50 probands in the mild-moderate cohort to have biallelic alterations in STRC, not including the 8 previously identified deletions. We also identified 2/40 probands to have biallelic alterations in the moderately severe-profound NBSNHI cohort, notably no large deletions in combination with another variant were found in this cohort. The data suggest that STRC may be a common contributor to NBSNHI among GJB2 mutation negative probands, especially in those with mild to moderate hearing impairment.
PMCID: PMC3264741  PMID: 22147502
Bilateral sensorineural hearing loss; SNHI; Chr15q15.3; Stereocilin; STRC; DFNB16; SNP genotyping array; copy number variation; CNV
8.  “What does it mean?”: Uncertainties in understanding results of chromosomal microarray testing 
The increased sensitivity of chromosomal microarray (CMA) technology as compared with traditional cytogenetic analysis allows for improved detection of genomic alterations. However, there is potential for uncertainty in the interpretation of test results in some cases. This paper explores how families understand and make meaning of CMA test results, and identifies the needs of families undergoing CMA testing.
We conducted semistructured interviews with parents of 25 pediatric outpatients with CMA test results indicating either a pathogenic alteration or a variant of unknown significance (VUS). Interviews were analyzed qualitatively.
Three domains of understanding were identified: comprehension of results, interpretations of scientific uncertainty, and personal meaning for the child and family. Incomplete comprehension of test results and scientific uncertainty were prominent themes for families receiving results in both the VUS and pathogenic categories. Receiving results from non-geneticists and by telephone, long waits to see a geneticist, and misleading Internet searches all contributed to misunderstandings.
Differentiating domains of understanding allows for the identification of uncertainties that can be reduced or managed in order to improve understanding of CMA results. Using this framework, we suggest interventions to promote clarity and address the informational needs of families undergoing CMA testing.
PMCID: PMC3445036  PMID: 22241091
comprehension; genetic testing; health communication; qualitative; uncertainty
9.  Mosaic Trisomy 17: Variable Clinical and Cytogenetic Presentation 
Mosaic trisomy 17 is rare with only 28 cases reported and the clinical presentation is highly variable. The diagnosis is most commonly made by prenatal karyotype and in most cases is followed by a normal postnatal karyotype on blood lymphocytes. We present two cases of mosaic trisomy 17 diagnosed prenatally, with follow up in multiple tissues at birth. In the first case, trisomy 17 was identified in all amniocytes, and at birth standard results of chromosome analysis in peripheral blood were normal, but mosaic trisomy 17 was identified (50–75%) in skin fibroblasts by genome-wide SNP array analysis. This patient presented with minor anomalies, congenital heart disease, asymmetry, intestinal malrotation and died on day 9 of life. In the second patient amniocentesis after ultrasound finding of tetralogy of Fallot showed mosaic trisomy 17. Postnatally, results of a SNP array were normal in blood, buccal mucosa and skin. It is possible that the cardiac defect is related to trisomy 17 in key tissues during heart development, although at birth the aneuploidy could not be identified in tissues that are routinely analyzed for diagnosis. These cases add to our understanding of mosaic trisomy 17, highlighting the failure to diagnose this aneuploidy in peripheral blood.
PMCID: PMC3197730  PMID: 21998853
Mosaic trisomy 17; SNP microarray analysis; tissue specific mosaicism
10.  Mechanisms of ring chromosome formation, ring instability and clinical consequences 
BMC Medical Genetics  2011;12:171.
The breakpoints and mechanisms of ring chromosome formation were studied and mapped in 14 patients.
Several techniques were performed such as genome-wide array, MLPA (Multiplex Ligation-Dependent Probe Amplification) and FISH (Fluorescent in situ Hybridization).
The ring chromosomes of patients I to XIV were determined to be, respectively: r(3)(p26.1q29), r(4)(p16.3q35.2), r(10)(p15.3q26.2), r(10)(p15.3q26.13), r(13)(p13q31.1), r(13)(p13q34), r(14)(p13q32.33), r(15)(p13q26.2), r(18)(p11.32q22.2), r(18)(p11.32q21.33), r(18)(p11.21q23), r(22)(p13q13.33), r(22)(p13q13.2), and r(22)(p13q13.2). These rings were found to have been formed by different mechanisms, such as: breaks in both chromosome arms followed by end-to-end reunion (patients IV, VIII, IX, XI, XIII and XIV); a break in one chromosome arm followed by fusion with the subtelomeric region of the other (patients I and II); a break in one chromosome arm followed by fusion with the opposite telomeric region (patients III and X); fusion of two subtelomeric regions (patient VII); and telomere-telomere fusion (patient XII). Thus, the r(14) and one r(22) can be considered complete rings, since there was no loss of relevant genetic material. Two patients (V and VI) with r(13) showed duplication along with terminal deletion of 13q, one of them proved to be inverted, a mechanism known as inv-dup-del. Ring instability was detected by ring loss and secondary aberrations in all but three patients, who presented stable ring chromosomes (II, XIII and XIV).
We concluded that the clinical phenotype of patients with ring chromosomes may be related with different factors, including gene haploinsufficiency, gene duplications and ring instability. Epigenetic factors due to the circular architecture of ring chromosomes must also be considered, since even complete ring chromosomes can result in phenotypic alterations, as observed in our patients with complete r(14) and r(22).
PMCID: PMC3309960  PMID: 22188645
11.  The NF1 Gene Contains Hotspots for L1 Endonuclease-Dependent De Novo Insertion 
PLoS Genetics  2011;7(11):e1002371.
Long interspersed (L1) and Alu elements are actively amplified in the human genome through retrotransposition of their RNA intermediates by the ∼100 still retrotranspositionally fully competent L1 elements. Retrotransposition can cause inherited disease if such an element is inserted near or within a functional gene. Using direct cDNA sequencing as the primary assay for comprehensive NF1 mutation analysis, we uncovered in 18 unrelated index patients splicing alterations not readily explained at the genomic level by an underlying point-mutation or deletion. Improved PCR protocols avoiding allelic drop-out of the mutant alleles uncovered insertions of fourteen Alu elements, three L1 elements, and one poly(T) stretch to cause these splicing defects. Taken together, the 18 pathogenic L1 endonuclease-mediated de novo insertions represent the largest number of this type of mutations characterized in a single human gene. Our findings show that retrotransposon insertions account for as many as ∼0.4% of all NF1 mutations. Since altered splicing was the main effect of the inserted elements, the current finding was facilitated by the use of RNA–based mutation analysis protocols, resulting in improved detection compared to gDNA–based approaches. Six different insertions clustered in a relatively small 1.5-kb region (NF1 exons 21(16)–23(18)) within the 280-kb NF1 gene. Furthermore, three different specific integration sites, one of them located in this cluster region, were each used twice, i.e. NM_000267.3(NF1):c.1642-1_1642 in intron 14(10c), NM_000267.3(NF1):c.2835_2836 in exon 21(16), and NM_000267.3(NF1):c.4319_4320 in exon 33(25). Identification of three loci that each served twice as integration site for independent retrotransposition events as well as 1.5-kb cluster region harboring six independent insertions supports the notion of non-random insertion of retrotransposons in the human genome. Currently, little is known about which features make sites particularly vulnerable to L1 EN-mediated insertions. The here identified integration sites may serve to elucidate these features in future studies.
Author Summary
Repetitive retrotransposable elements, including LINE1 and Alu elements accounting for more than one fourth of the human genome, are still actively amplifying. It is widely believed that retroelements insert randomly in the genome. Retroelements newly inserted in the germ line may cause genetic disease, if a functional gene is disrupted. Up to now, only ∼65 well-characterized pathogenic retroelement insertions in 31 different human genes have been reported. Therefore, retrotransposition is suspected to be underdiagnosed as disease-causing mutation mechanism. Reporting 18 novel insertions in the NF1 gene, all identified by a comprehensive RNA–based mutation analysis protocol, we show that L1 and Alu insertions represent 0.4% of all NF1 mutations. Strikingly, we found three integration sites within this 280-kb gene that were used twice independently to insert a retroelement. One of these sites was located in a 1.5-kb “hotspot” region where four additional integration sites clustered. These findings, together with three additional integration sites used multiple times independently to insert retroelements in other genes, indicate that some genomic sites may be especially prone to host newly retrotransposed elements. As some of these sites are embedded in “hotspot” regions, larger flanking sequences may play a role in making these sites particularly vulnerable.
PMCID: PMC3219598  PMID: 22125493
12.  Pathologic Lower Extremity Fractures in Children with Alagille Syndrome 
In this retrospective study, we aimed to determine the incidence and distribution of fractures in patients with Alagille syndrome, one of the leading inherited causes of pediatric cholestatic liver disease.
Surveys regarding growth, nutrition, and organ involvement were distributed to patient families in the Alagille Syndrome Alliance or The Children’s Hospital of Philadelphia research database. Patients with a history of fracture were identified by their response to one question, and details characterizing each patient’s medical, growth, and fracture history were obtained through chart review and telephone contact.
Twelve of 42 patients (28%) reported a total of 27 fractures. Patients experienced fractures at a mean age of 5 years, which contrasts with healthy children, in whom fracture incidence peaks in adolescence. Fractures occurred primarily in the lower extremity long bones (70%) and with little or no trauma (84%). Estimated incidence rate calculations yielded 399.6 total fractures/10,000 person years (95% CI = 206.5, 698.0) and 127.6 femur fractures/10,000 person-years (95% CI = 42.4, 297.7). There were no differences in gender, age distribution or organ system involvement between the fracture and no-fracture groups.
Children with Alagille syndrome may be at risk for pathologic fractures, which manifest at an early age and in a unique distribution favoring the lower extremity long bones. While this preliminary study is limited by small sample size and potential ascertainment bias, the data suggest that larger studies are warranted to further characterize fracture risk and to explore factors contributing to bone fragility in these children.
PMCID: PMC2893241  PMID: 20453673
Alagille syndrome; fracture; osteomalacia
13.  A Longitudinal Study to Identify Laboratory Predictors of Liver Disease Outcome in Alagille Syndrome 
Liver disease in Alagille syndrome is highly variable ranging from biochemical abnormalities only to end-stage disease. It is not possible to predict whether a child with cholestasis will have improvement or progression of liver disease. This poses a challenge to the clinician in terms of timing therapies. The study aim was to identify laboratory markers present under the age of 5 years that could predict the ultimate outcome of liver disease in Alagille syndrome.
A retrospective review of laboratory data from 33 Alagille syndrome subjects was performed. Patients greater than 10 years of age were stratified into mild (22) and severe (11) hepatic outcome groups. Non-parametric analysis was performed on longitudinal data from birth-5years to determine association with hepatic outcome. JAGGED1 mutational analysis was performed on available samples.
The following variables were statistically different between severe and mild outcome groups; total bilirubin (p= 0.0001), conjugated bilirubin (p =0.0066), and cholesterol (p =0.0022). Further analysis revealed cutoff values that differentiated between severe and mild outcomes; total bilirubin 6.5mg/dL(111micromol/L), conjugated bilirubin 4.5mg/dL(77micromol/L) and cholesterol 520mg/dL(13.5mmol/L). Genetic analysis of JAGGED1 mutations did not reveal genotype-phenotype correlation.
Total bilirubin above 6.5mg/dL, conjugated bilirubin above 4.5mg/dL and cholesterol above 520mg/dL under the age of 5 years are likely to be associated with severe liver disease in later life. These data represent cutoff values below which a child is likely to have a benign outcome and above which more aggressive therapy may be warranted, and can thus be used to guide management.
PMCID: PMC2861305  PMID: 20421762
Alagille; liver; cholestasis; transplantation
14.  Jagged1 Mutations in Patients with Tetralogy of Fallot or Pulmonic Stenosis 
Human mutation  2010;31(5):594-601.
Mutations in the Notch pathway ligand Jagged1 (JAG1) cause Alagille syndrome (AGS), as well as cardiac defects in seemingly non-syndromic, individuals. To estimate the frequency of JAG1 mutations in cases with right-sided cardiac defects not otherwise diagnosed with AGS, we screened 94 cases with tetralogy of Fallot (TOF) and 50 with pulmonic stenosis/peripheral pulmonary stenosis (PS/PPS) or pulmonary valve atresia with intact ventricular septum (PA) for mutations. Sequence changes were identified in three TOF and three PS/PPS/PA patients,that were not present in 100 controls. We identified one frameshift and two missense mutations in the TOF cases, and one frameshift and two missense mutations in cases with PS/PPS/PA. The four missense mutations were assayed for their effect on protein localization, post-translational modification and ability to activate Notch signaling. The missense mutants displayed heterogeneous behavior in these assays, some with complete haploinsufficiency, suggesting that there are additional modifiers leading to organ specific features. We identified functionally significant mutations in 3% (2/94) of TOF patients and 4% (2/50) of PS/PPS/PA patients. Patients with right-sided cardiac defects should be carefully screened for features of AGS or a family history of cardiac defects that might suggest the presence of a JAG1 mutation.
PMCID: PMC2914103  PMID: 20437614
Alagille syndrome; AGS; heart; variable expressivity; tetralogy of Fallot; pulmonary stenosis; Jagged1; JAG1; Notch signaling
15.  Genomic Alterations in Biliary Atresia Suggests Region of Potential Disease Susceptibility in 2q37.3 
Biliary atresia (BA) is a progressive, idiopathic obliteration of the extrahepatic biliary system occurring exclusively in the neonatal period. It is the most common disease leading to liver transplantation in children. The etiology of BA is unknown, although infectious, immune and genetic causes have been suggested. While the recurrence of BA in families is not common, there are more than 30 multiplex families reported and an underlying genetic susceptibility has been hypothesized. We screened a cohort of 35 BA patients for genomic alterations that might confer susceptibility to BA. DNA was genotyped on the Illumina Quad550 platform, which analyzes over 550,000 single nucleotide polymorphisms (SNPs) for genomic deletions and duplications. Areas of increased and decreased copy number were compared to those found in control populations. In order to identify regions that could serve as susceptibility factors for BA, we searched for regions that were found in BA patients, but not in controls. We identified two unrelated BA patients with overlapping heterozygous deletions of 2q37.3. Patient 1 had a 1.76 Mb (280 SNP), heterozygous deletion containing thirty genes. Patient 2 had a 5.87 Mb (1,346 SNP) heterozygous deletion containing fifty-five genes. The overlapping 1.76 Mb deletion on chromosome 2q37.3 from 240,936,900 to 242,692,820 constitutes the critical region and the genes within this region could be candidates for susceptibility to BA.
PMCID: PMC2914625  PMID: 20358598
Biliary atresia; copy number variation; deletion 2q37.3
16.  Mechanisms of mosaicism, chimerism and uniparental disomy identified by single nucleotide polymorphism array analysis 
Human Molecular Genetics  2010;19(7):1263-1275.
Mosaic aneuploidy and uniparental disomy (UPD) arise from mitotic or meiotic events. There are differences between these mechanisms in terms of (i) impact on embryonic development; (ii) co-occurrence of mosaic trisomy and UPD and (iii) potential recurrence risks. We used a genome-wide single nucleotide polymorphism (SNP) array to study patients with chromosome aneuploidy mosaicism, UPD and one individual with XX/XY chimerism to gain insight into the developmental mechanism and timing of these events. Sixteen cases of mosaic aneuploidy originated mitotically, and these included four rare trisomies and all of the monosomies, consistent with the influence of selective factors. Five trisomies arose meiotically, and three of the five had UPD in the disomic cells, confirming increased risk for UPD in the case of meiotic non-disjunction. Evidence for the meiotic origin of aneuploidy and UPD was seen in the patterns of recombination visible during analysis with 1–3 crossovers per chromosome. The mechanisms of formation of the UPD included trisomy rescue, with and without concomitant trisomy, monosomy rescue, and mitotic formation of a mosaic segmental UPD. UPD was also identified in an XX/XY chimeric individual, with one cell line having complete maternal UPD consistent with a parthenogenetic origin. Utilization of SNP arrays allows simultaneous evaluation of genomic alterations and insights into aneuploidy and UPD mechanisms. Differentiation of mitotic and meiotic origins for aneuploidy and UPD supports existence of selective factors against full trisomy of some chromosomes in the early embryo and provides data for estimation of recurrence and disease mechanisms.
PMCID: PMC3146011  PMID: 20053666
17.  Two Siblings with Alternate Unbalanced Recombinants Derived from a Large Cryptic Maternal Pericentric Inversion of Chromosome 20 
Two brothers, with dissimilar clinical features, were each found to have different abnormalities of chromosome 20 by subtelomere fluorescence in situ hybridization (FISH). The proband had deletion of 20p subtelomere and duplication of 20q subtelomere, while his brother was found to have a duplication of 20p subtelomere and deletion of 20q subtelomere. Parental cytogenetic studies were initially thought to be normal, both by G-banding and by subtelomere FISH analysis. Since chromosome 20 is a metacentric chromosome and an inversion was suspected, we used anchored FISH to assist in identifying a possible inversion. This approach employed concomitant hybridization of a FISH probe to the short (p) arm of chromosome 20 with the 20q subtelomere probe. We identified a cytogenetically non-visible, mosaic pericentric inversion of one of the maternal chromosome 20 homologues, providing a mechanistic explanation for the chromosomal abnormalities present in these brothers. Array comparative genomic hybridization (CGH) with both a custom-made BAC and cosmid-based subtelomere specific array (TEL array) and a commercially-available SNP-based array confirmed and further characterized these rearrangements, identifying this as the largest pericentric inversion of chromosome 20 described to date. TEL array data indicate that the 20p breakpoint is defined by BAC RP11-978M13, ~900 kb from the pter; SNP array data reveal this breakpoint to occur within BAC RP11-978M13. The 20q breakpoint is defined by BAC RP11-93B14, ~1.7 Mb from the qter, by TEL array; SNP array data refine this breakpoint to within a gap between BACs on the TEL array (i.e. between RP11-93B14 and proximal BAC RP11-765G16).
PMCID: PMC2840621  PMID: 20101690
FISH; subtelomere; array comparative genomic hybridization; array CGH; SNP; 20p; 20q; pericentric inversion; duplication; deletion
18.  A de novo 8.8-Mb Deletion of 21q21.1-q21.3 in an Autistic Male with a Complex Rearrangement Involving Chromosomes 6, 10, and 21 
We report here on a normal-appearing male with pervasive developmental disorder who was found to have a de novo, apparently balanced complex rearrangement involving chromosomes 6, 10, and 21: 46,XY,ins(21;10)(q11.2;p11.2p13)t(6;21)(p23;q11.2). Further analysis by high-density oligonucleotide microarray was performed, showing an 8.8-Mb heterozygous deletion at 21q21.1-q21.3. Interestingly, the deletion is distal to the translocation breakpoint on chromosome 21. The deletion involves 19 genes, including NCAM2 and GRIK1, both of which are associated with normal brain development and function, and have been considered as possible candidate genes in autism and other neurobehavioral disorders. This case underscores the utility of genomewide microarray analysis for the detection of copy number alterations in patients with apparently balanced complex rearrangements and abnormal phenotypes.
PMCID: PMC2801886  PMID: 20034085
complex chromosome rearrangement; microarray; microdeletion; pervasive developmental disorder-not otherwise specified
19.  Microduplications of 16p11.2 are Associated with Schizophrenia 
Nature genetics  2009;41(11):1223-1227.
Recurrent microdeletions and microduplications of a 600 kb genomic region of chromosome 16p11.2 have been implicated in childhood-onset developmental disorders1-3. Here we report the strong association of 16p11.2 microduplications with schizophrenia in two large cohorts. In the primary sample, the microduplication was detected in 12/1906 (0.63%) cases and 1/3971 (0.03%) controls (P=1.2×10-5, OR=25.8). In the replication sample, the microduplication was detected in 9/2645 (0.34%) cases and 1/2420 (0.04%) controls (P=0.022, OR=8.3). For the series combined, microduplication of 16p11.2 was associated with 14.5-fold increased risk of schizophrenia (95% C.I. [3.3, 62]). A meta-analysis of multiple psychiatric disorders showed a significant association of the microduplication with schizophrenia, bipolar disorder and autism. The reciprocal microdeletion was associated only with autism and developmental disorders. Analysis of patient clinical data showed that head circumference was significantly larger in patients with the microdeletion compared with patients with the microduplication (P = 0.0007). Our results suggest that the microduplication of 16p11.2 confers substantial risk for schizophrenia and other psychiatric disorders, whereas the reciprocal microdeletion is associated with contrasting clinical features.
PMCID: PMC2951180  PMID: 19855392
20.  Genome-wide DNA methylation analysis in cohesin mutant human cell lines 
Nucleic Acids Research  2010;38(17):5657-5671.
The cohesin complex has recently been shown to be a key regulator of eukaryotic gene expression, although the mechanisms by which it exerts its effects are poorly understood. We have undertaken a genome-wide analysis of DNA methylation in cohesin-deficient cell lines from probands with Cornelia de Lange syndrome (CdLS). Heterozygous mutations in NIPBL, SMC1A and SMC3 genes account for ∼65% of individuals with CdLS. SMC1A and SMC3 are subunits of the cohesin complex that controls sister chromatid cohesion, whereas NIPBL facilitates cohesin loading and unloading. We have examined the methylation status of 27 578 CpG dinucleotides in 72 CdLS and control samples. We have documented the DNA methylation pattern in human lymphoblastoid cell lines (LCLs) as well as identified specific differential DNA methylation in CdLS. Subgroups of CdLS probands and controls can be classified using selected CpG loci. The X chromosome was also found to have a unique DNA methylation pattern in CdLS. Cohesin preferentially binds to hypo-methylated DNA in control LCLs, whereas the differential DNA methylation alters cohesin binding in CdLS. Our results suggest that in addition to DNA methylation multiple mechanisms may be involved in transcriptional regulation in human cells and in the resultant gene misexpression in CdLS.
PMCID: PMC2943628  PMID: 20448023
21.  SNP array mapping of 20p deletions: Genotypes, Phenotypes and Copy Number Variation 
Human mutation  2009;30(3):371-378.
The use of array technology to define chromosome deletions and duplications is bringing us closer to establishing a genotype/phenotype map of genomic copy number alterations. We studied 21 patients and 5 relatives with deletions of the short arm of chromosome 20 using the Illumina HumanHap550 SNP array to 1) more accurately determine the deletion sizes, 2) identify and compare breakpoints, 3) establish genotype/phenotype correlations and 4) investigate the use of the HumanHap550 platform for analysis of chromosome deletions. Deletions ranged from 95kb to 14.62Mb, and all of the breakpoints were unique. Eleven patients had deletions between 95kb and 4Mb and these individuals had normal development, with no anomalies outside of those associated with Alagille syndrome. The proximal and distal boundaries of these eleven deletions constitute a 5.4MB region, and we propose that haploinsufficiency for only 1 of the 12 genes in this region causes phenotypic abnormalities. This defines the JAG1 associated critical region, in which deletions do not confer findings other than those associated with Alagille syndrome. The other 10 patients had deletions between 3.28Mb and 14.62Mb, which extended outside the critical region, and notably, all of these patients, had developmental delay. This group had other findings such as autism, scoliosis and bifid uvula. We identified 47 additional polymorphic genome-wide copy number variants (>20 SNPs), with 0–5 variants called per patient. Deletions of the short arm of chromosome 20 are associated with relatively mild and limited clinical anomalies. The use of SNP arrays provides accurate high-resolution definition of genomic abnormalities.
PMCID: PMC2650004  PMID: 19058200
SNP array analysis; 20p deletion; copy number variants; Alagille syndrome; haploinsufficiency; JAG1
22.  Precocious Sister Chromatid Separation (PSCS) in Cornelia de Lange Syndrome 
The Cornelia de Lange syndrome (CdLS) (OMIM# 122470) is a dominantly inherited multisystem developmental disorder. The phenotype consists of characteristic facial features, hirsutism, abnormalities of the upper extremities ranging from subtle changes in the phalanges and metacarpal bones to oligodactyly and phocomelia, gastroesophageal dysfunction, growth retardation, and neurodevelopmental delay. Prevalence is estimated to be as high as 1 in 10,000. Recently, mutations in NIPBL were identified in sporadic and familial CdLS cases. To date, mutations in this gene have been identified in over 45% of individuals with CdLS. NIPBL is the human homolog of the Drosophila Nipped-B gene. Although its function in mammalian systems has not yet been elucidated, sequence homologs of Nipped-B in yeast (Scc2 and Mis4) are required for sister chromatid cohesion during mitosis, and a similar role was recently demonstrated for Nipped-B in Drosophila. In order to evaluate NIPBL role in sister chromatid cohesion in humans, metaphase spreads on 90 probands (40 NIPBL mutation positive and 50 NIPBL mutation negative) with CdLS were evaluated for evidence of precocious sister chromatid separation (PSCS). We screened 50 metaphases from each proband and found evidence of PSCS in 41% (compared to 9% in control samples). These studies indicate that NIPBL may play a role in sister chromatid cohesion in humans as has been reported for its homologs in Drosophila and yeast.
PMCID: PMC2766539  PMID: 16100726
cornelia de Lange syndrome; CdLS; NIPBL; Nipped-B; precocious sister chromatid separation; PSCS
23.  Clinical Features of Three Girls With Mosaic Genome-Wide Paternal Uniparental Isodisomy 
Here we describe three subjects with mosaic genome-wide paternal uniparental isodisomy (GWpUPD) each of whom presented initially with overgrowth, hemihyperplasia (HH), and hyperinsulinism (HI). Due to the severity of findings and the presence of additional features, SNP array testing was performed, which demonstrated mosaic GWpUPD. Comparing these individuals to 10 other live-born subjects reported in the literature, the predominant phenotype is that of pUPD11 and notable for a very high incidence of tumor development. Our subjects developed non-metastatic tumors of the adrenal gland, kidney, and/or liver.AllthreesubjectshadpancreatichyperplasiaresultinginHI. Notably, our subjects to date display minimal features of other diseases associated with paternal UPD loci. Both children who survived the neonatal period have displayed near-normal cognitive development, likely due to a favorable tissue distribution of the mosaicism.Tounderstandthe rangeofUPDmosaicismlevels, we studied multiple tissues using SNP array analysis and detected levels of 5–95%, roughly correlating with the extent of tissue involvement.Giventherapidityoftumorgrowthandthedifficulty distinguishing malignant and benign tumors in these GWpUPD subjects, we have utilized increased frequency of ultrasound (US) and alpha-fetoprotein (AFP) screening in the first years of life. Because of a later age of onset of additional tumors, continued tumor surveillance into adolescence may need to be considered in these rare patients.
PMCID: PMC4082120  PMID: 23804593
Beckwith–Wiedemann; uniparental disomy; isodisomy; mosaicism; methylation; hyperinsulinism
24.  Complex Management of a Patient with a Contiguous Xp11.4 Gene Deletion Involving Ornithine Transcarbamylase: A Role for Detailed Molecular Analysis in Complex Presentations of Classical Diseases 
Molecular genetics and metabolism  2008;94(4):498-502.
A male infant was diagnosed prenatally with a partial ornithine transcarbamylase (OTC) gene deletion and managed from birth. However, he displayed neurological abnormalities and developed pleural effusions, ascites and anasarca not solely explained by OTC deficiency (OTCD). Further evaluation of the gene locus using exon-specific PCR and high density SNP array copy number analysis revealed a 3.9Mb deletion from Xp11.4 to Xp21.1 including five additional gene deletions, three causing the known genetic diseases: Retinitis pigmentosa (RP3), X-linked chronic granulomatous disease (CGD) and McLeod syndrome. The case illustrates (1) the complexities of managing a patient withneonatal onset OTCD, CGD, RP3 and McLeod syndrome, (2) the need for detailed evaluation in seemingly “isolated” gene deletions and (3) the clinical utility of high density copy number analysis for rapidly characterizing chromosomal lesions.
PMCID: PMC2572572  PMID: 18524659
ornithine transcarbamylase; OTC; Xp11.4 to Xp21.1 deletion; granulomatous disease, chronic; CGD; CGH; copy number analysis; retinitis pigmentosa; RP3; McLeod syndrome
25.  Bilateral Pheochromocytomas, Hemihyperplasia, and Subtle Somatic Mosaicism: The Importance of Detecting Low-Level Uniparental Disomy 
We report on a patient with early onset pediatric bilateral pheochromocytomas caused by mosaic chromosome 11p15 paternal uniparental isodisomy (UPD). Hemihyperplasia of the arm was diagnosed in a 4-month-old female and clinical methylation testing for 11p15 in the blood was normal, with a reported detection threshold for mosaicism of 20%. She was subsequently diagnosed at 18 months with bilateral pheochromocytomas. Single-nucleotide polymorphism (SNP) array analysis of pheochromocytoma tissue demonstrated mosaic deletions of 8p12pter, 21q21.1qter, 22q11.23qter; commonly seen in pheochromocytomas. In addition, mosaic 11p15.3pter homozygosity was noted. Molecular testing for other causes of pheochromocytomas was normal, suggesting that 11p15 homozygosity was the primary event. Subsequent SNP array analysis of skin fibroblasts from the hyperplastic side demonstrated 5% mosaic paternal UPD for 11p15. We have subsequently used SNP array analysis to identify four patients with subtle hemihyperplasia with low-level mosaic UPD that was not detected by methylation analysis. Given the increased sensitivity of SNP array analysis to detect UPD along with the increased incidence of tumorigenesis in these UPD patients, we suggest that it has high utility in the clinical work-up of hemihyperplasia. The present case also suggests that 11p15 paternal UPD may be an under-detected mechanism of sporadic pheochromocytoma in the pediatric population. Furthermore, a review of the literature suggests that patients with 11p15 paternal UPD may present after 8 years of age with pheochromocytoma and raises the possibility that ultrasound screening could be considered beyond 8 years of age in this subset of hemihyperplasia and Beckwith–Wiedemann syndrome patients.
PMCID: PMC4063309  PMID: 23532898
hemihyperplasia; hemihypertrophy; Beckwith–Wiedemann; uniparental disomy; isodisomy; mosaicism; methylation; pheochromocytoma

Results 1-25 (42)